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The N-Back, a common working memory (WM) updating task, is increasingly used
in basic and applied psychological research. As such, an increasing number of
electroencephalogram (EEG) studies have sought to identify the electrophysiological
signatures of N-Back task performance. However, stimulus type, task structure,
pre-processing methods, and differences in the laboratory environment, including the
EEG recording setup employed, greatly vary across studies, which in turn may introduce
inconsistencies in the obtained results. Here we address this issue by conducting nine
different variations of an N-Back task manipulating stimulus type and task structure.
Furthermore, we explored the effect of the pre-processing method used and differences
in the laboratory environment. Results reveal significant differences in behavioral and
electrophysiological signatures in response to N-Back stimulus type, task structure,
pre-processing method, and laboratory environment. In conclusion, we suggest that
experimental factors, analysis pipeline, and laboratory differences, which are often
ignored in the literature, need to be accounted for when interpreting findings and making
comparisons across studies.

Keywords: working memory, N-Back, ERPs, experimental features, cross-laboratory, pre-processing

INTRODUCTION

Working memory (WM), defined as a limited capacity system responsible for temporary storage
and manipulation of relevant information (Baddeley, 2012), has been studied extensively in the
last few decades because it correlates with a wide range of complex cognitive abilities such as
problem-solving, reasoning, learning and planning of goal-directed behaviors (Miyake and Shah,
1999). A considerable number of studies have addressed behavioral and neurophysiological, and
underlying hypothetical constructs of WM using both single session (Scharinger et al., 2015, 2017)
and repeated practice (Anguera et al., 2012; Buschkuehl et al., 2014; Jaeggi et al., 2014).

One of the commonly used techniques to probe WM is the N-Back task, a complex task that
requires storage, maintenance, and manipulation of information (Chen et al., 2008; Jaeggi et al.,
2008) as well as inhibitory and interference control (Oberauer, 2005; Kane et al., 2007). The
N-Back task has been used in single-session behavioral (Jaeggi et al., 2010; Brouwer et al., 2012)
and neurophysiological (Krause et al., 2000; Pesonen et al., 2007; Esposito et al., 2009; Scharinger
et al., 2017) studies as well as in multi-session behavioral (Jaeggi et al., 2008, 2014; Minear et al.,
2016; Blacker et al., 2017) and neurophysiological (Chen and Mitra, 2009; Dong et al., 2015;
Pergher et al., 2018) training studies, to name a few. Many N-Back studies focus on task difficulty at
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different N-levels, indicating lower ERP amplitudes for more
difficult tasks (Brouwer et al., 2012; Herff et al., 2014; Scharinger
et al., 2017; Pergher et al., 2019b) and/or stimulus type, such
as the use of spatial (for instance when the target stimulus
occurs in different locations on the screen) vs. verbal (for
instance when the presented stimulus is word or syllable)
stimuli. This indicates that stimulus and load factors play a
significant role in modulating P2, N2, and P3 components
(Ross and Segalowitz, 2000; Polich, 2007; Chen et al., 2008;
Chen and Mitra, 2009). However, there are many other task
parameters such as stimulus duration, inter-stimulus interval
(ISI), feedback, etc. that, although previously explored, are rarely
consistent across N-Back studies (for a review see Pergher
et al., 2019a). Different combinations of these parameters may
differentially affect electrophysiological signatures associated
with task performance and thus limit the interpretation of the
functional significance of ERP components related to the N-Back
task and their comparison across studies.

Here we examine several candidate factors that may affect
ERP and behavioral signatures during N-Back task performance,
not only in terms of task parameters such as stimulus type
(words, pictures, and colors) and (stimulus duration, ISI, and
feedback) but also in terms of different data pre-processing
pipelines and laboratory effects, such as differences in room
setup, computer testing stations, as well as electroencephalogram
(EEG) hardware and software. While this is true of numerous
areas of ERP research, the N-Back is particularly notorious in
how it varies across studies (Owen et al., 2005; Kane et al.,
2007; Mencarelli et al., 2019) and the data presented here is
the first to detail the extent of these efforts for a variety of
N-Back variations.

MATERIALS AND METHODS

Three datasets involving the N-Back task were included
in the current study. Dataset I was collected specifically
for the current study and was collected at the University
of California—Riverside (UCR), USA. The purpose of this
study was to explore the potential factors that affect ERP
morphology and behavioral signatures of the N-Back task
and to replicate experimental procedures described in two
published datasets collected in different labs (Datasets II and
III). Dataset II was collected at KU Leuven, Belgium (Pergher
et al., 2018) as part of a study that investigated near and far
transfer effects, the former involving cognitive sub-processes
similar to the one practiced during training, whereas the
latter calling upon other mental processes (De Ribaupierre
and Lecerf, 2006), after 10 N-Back training sessions using
behavioral and EEG recording. Dataset III was collected at the
University of Maribor (UM), Slovenia (Pahor and Jaušsovec,
2018) in a study that examined the effects of transcranial
alternating current stimulation (tACS) on WM performance
and EEG responses. Participants in each dataset were healthy
young subjects, who reported normal or corrected-to-normal
vision, no history of psychiatric or neurological diseases, and
were not taking any medication known to interfere with
cognitive functioning.

Dataset I: UCR
Participants
Thirty-six right-handed adults (27 females and nine males, mean
age = 19.58, SD = 0.97), undergraduate students, were recruited
from UCR. The experimental protocol was approved by the
Institutional Review Board of UCR and all participants gave their
informed consent before the experiment. They received course
credit and a payment of $10 for participating in two sessions.

Stimuli and Task Structure
Nine variants of the N-Back task were obtained by crossing
three task structures (see below) with three stimulus types: words
(i.e., so, do, up), pictures (i.e., apple, fish, and bag), and colors
(i.e., red, green, and blue). Task structures differed in terms of
stimulus duration, ISI, response contingency, and feedback (see
Figure 1) and were modeled after tasks used in previous studies,
as mentioned above: task 1 (Pahor and Jaušsovec, 2018), task 2
(Pergher et al., 2018), and task 3 (Mohammed et al., 2017).

Task 1 had a stimulus duration of 400 ms, ISI of 1,600 ms, and
employed a two-alternative forced-choice design for responding
to targets and non-targets during the ISI. A white fixation cross
appeared during ISI, turning blue when a response was registered
or red if no response was detected. Task 2 had a stimulus
duration of 1,000 ms and ISI of 2,000 ms. During the ISI,
participants viewed a white fixation cross and were instructed
to press a button only for target trials. Task 3 had a stimulus
duration of 2,500 ms and ISI of 500 ms. Participants were
instructed to respond to targets during stimulus presentation
and were given feedback for correct (green circle around
the stimulus) and incorrect responses (red circle around the
stimulus). For task 1 and task 2 no response was allowed during
stimulus presentation.

Procedure
Each participant performed four out of the nine N-Back
variations across two different sessions conducted on different
days, where the same difficulty levels were administered each
day, for a total of approximately 90 min per session. This
ensured that all combinations of conditions existed in a within-
subject design, even though not all participants completed every
condition. The assignment of each participant to each N-Back
variant was done randomly based on the subject number to
ensure an equal number of participants (N = 16) in each variant.
Each session consisted of 11 blocks presented in the following
order: 1-back practice block, 2-back practice block, four 2-back
test blocks, 3-back practice block, and four 3-back experimental
blocks. Instructions were provided before each new N-level and
15-s breaks were given between blocks. Practice blocks consisted
of sixteen trials during which the participant performed task 3
with Color stimuli whereas experimental blocks consisted of N +
40 trials (i.e., 2-Back had 42 trials).

The experiment took place in an electrically shielded
room with DC lighting. An Apple Mac Mini with OS X
10.6.8 running MATLAB 2007b (Mathworks, Natick, MA, USA)
and Psychtoolbox Version 3.0.8 were used to present the
task and generate the stimuli (Brainard, 1997; Kleiner et al.,
2007). The stimuli were displayed on a 22.5-inch wide Sony
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FIGURE 1 | Graphic rendition of N-Back task features for stimulus type, stimulus duration, and Inter-stimulus Interval (ISI) for Dataset I.

Trinitron (Sony Corp., Tokyo, Japan) CRT monitor with a
resolution of 1,280 × 1,024 pixels and a refresh rate of 75 Hz.
Also, to guarantee temporal precision of event-markers with
experimental stimuli, a DATAPixx stimulus unit was used
(VPixx, Vision Science Solutions, Saint-Bruno, QC, Canada) that
ensured that triggers were sent precisely at the times of the
vertical interrupt of the monitor and button presses.

EEG Recording
EEG was recorded continuously using a Biosemi Active Two
system (Biosemi B.V. Amsterdam) operating at a sampling
rate of 2,048 Hz. Active Two system stored the EEG signal
with no high-pass filter and low-pass filtered only by the
anti-aliasing filter. Thirty-two active Ag/AgCl electrodes placed
according to the 10/20 system (Jasper, 1958) at O1, Oz, O2,
PO3, PO4, P7, P3, Pz, P4, P8, CP5, CP1, CP2, CP6, T7, C3,
Cz, C4, T8, FC5, FC1, FC2, FC6, F7, F3, Fz, F4, F8, AF3,
AF4, Fp1, Fp2. Also, six external electrodes were placed on
the mastoids for referencing, and to record the horizontal and
vertical electrooculogram (EOG).

Dataset II: KU Leuven
Participants
Twenty-three healthy adults (12 females and 11 males, mean
age = 24.37, SD = 1.78) were recruited via advertisements
and flyers1. We randomly selected 16 subjects out of the
first two sessions of dataset II to have a comparable sample
size for cross-laboratory comparison purposes (see Table 1).
Before starting the experiment, all participants were informed
about the experimental procedure and signed informed consent.

1Eight of these participants were included in N-Back training study conducted by
Pergher et al. (2018).

TABLE 1 | Demographics. Means [±Standard Deviations (SDs)] age
of participants.

Participants

UCR (Dataset I) KU Leuven (Dataset II) UM (Dataset III)

N 36 16 16
Age 19.58 ± 0.97 23.42 ± 0.98 20.56 ± 1.59
Sex 27 F (8 M) 9 F (7 M) 16 F

They received a payment of 20 euros for participating in two
experiments. The study was approved by the UZ KU Leuven
ethical committee (S59475).

Stimuli and Procedure
Dataset II had a task structure similar to task 2 of Dataset
I, mentioned above, where each stimulus was presented for
1,000 ms, followed by an ISI of 2,000 ms. The stimuli were
generated using MATLAB 2007b (Mathworks, Natick, MA,
USA) and Psychtoolbox Version 3.0.8 (Brainard, 1997; Kleiner
et al., 2007) and displayed on a CRT monitor. Participants
had to respond only to targets. The stimuli used were pictures
(Pergher et al., 2018).

EEG Recording
EEG was recorded at full bandwidth with a SynAmpsRT device
(Compumedics, Australia) at a sampling rate of 2,000 Hz, using
32 Ag/AgCl electrodes placed at O1, Oz, O2, PO3, P8, P4,
Pz, P3, P7, TP9, CP5, CP1, CP2, CP6, TP10, T7, C3, Cz, C4,
T8, FC6, FC2, FC1, FC5, F3, Fz, F4, AF3, AF4, Fp1, Fp2. The
reference was placed at AFz and the ground at CPz. Also, four
external electrodes around the eyes were used for EOG recording
following the instructions of Croft and Barry (2000).
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Dataset III: UM
Participants
Seventy-two healthy adults were recruited from the University
of Maribor, Slovenia (Pahor and Jaušsovec, 2018)2, 24 of which
were assigned to sham stimulation in the first session (all females,
mean age = 20.42, SD = 1.56) and were thus not exposed to any
active stimulation. Sixteen of these participants (session 1 data
only) were randomly selected for Dataset III (see Table 1). The
protocol was approved by the Commission for Ethics in Research
at the Faculty of Arts. Participants gave written informed consent
and received course credit as compensation.

Stimuli and Procedure
Dataset III had a task structure similar to task 1 of Dataset I,
where each stimulus was shown for 400 ms, followed by an ISI of
1,600 ms. The stimuli were generated on STIM2 (Compumedics
Neuroscan Systems, Charlotte, NC, USA) and displayed on a
CRT monitor. Participants had to respond to both targets and
non-targets. Two types of stimuli were used: two-letter words and
colors (Pahor and Jaušsovec, 2018).

EEG Recording
EEG was recorded over 19 scalp locations based on the 10-
20 Electrode Placement System using a Quik-Cap (Quik-Cap
Compumedics Neuromedical supplies, Charlotte, NC, USA)
with sintered electrodes. The EEG data were recorded using a
SynAmps RT system and had a band-pass filter of 0.15–100.0 Hz.
The 19 EEG traces were sampled online at 1,000 Hz. Vertical
eye movements were recorded using two external electrodes
placed above and below the left eye and a ground electrode
was applied to the forehead. Two ear lobe references (A1 and
A2) were used for online referencing, followed by common
average re-referencing.

Preprocessing and Analysis
ERP Pre-processing Pipelines
Two pre-processing pipelines were used to analyze Dataset I:
pipeline I and pipeline II. For ERP comparison across the three
datasets, only pipeline I was used. The pipelines were chosen
as they represented different, but standard approaches to ERP
analysis (Croft and Barry, 2000; Delorme and Makeig, 2004;
Groppe et al., 2009).

Pipeline I
Pipeline I was conducted in EEGLAB (MATLAB 2015a,
MathWorks Incorporation; EEGLAB v. 14.1.1 Delorme and
Makeig, 2004): the data were resampled to 512 Hz and
filtered using a Butterworth filter with lower and upper cut-off
frequencies of 0.1 Hz and 40 Hz. Electrode recordings were
re-referenced to the average of the mastoid recordings (average
mastoid reference, TP9 and TP10). Manual inspection was first
performed to locate and remove visible disturbances in the
data. Epochs were created from 1,000 ms before to 2,000 ms
after stimulus onset, and the pre-onset average was subtracted
from the post-onset signal (baseline correction). Independent

2Dataset 3 only included participants that were in a sham stimulation condition
during their first session.

components analysis (ICA) was used to extract blinking and
eye movements within the data. Independent components (ICs)
that were identified by the data analyst as ocular artifacts were
rejected. Finally, epochs were averaged for each N-Back variant
and baseline corrected using 200 ms before stimulus onset.

Pipeline II
Pipeline II was conducted by using MATLAB R2016a
(Mathworks, Natick, MA, USA). The data were resampled
to 1,000 Hz and filtered in the 0.1–30 Hz range using a
zero-phase 4th-order Butterworth filter. All electrodes were
re-referenced offline to the average of the two mastoid signals
(average mastoid reference, TP9 and TP10; Luck, 2014). Epochs
were created from 200 ms before to 1,000 ms after stimulus
onset, and baseline correction was performed by subtracting
the average of the 200 ms pre-stimulus onset signal from the
1,000 ms post-stimulus onset signal. The EOG recorded before
and during the experiment was used for correcting the EEG
signal for eye artifacts using Croft and Barry’s aligned-artifact
average (AAA) procedure (Croft and Barry, 2000). Finally,
epochs with EEG signals greater than 50 µV were also excluded
as they could signify motion artifacts (van Vliet et al., 2015;
Wittevrongel and Van Hulle, 2016). This Pipeline has been
developed by the computational neuroscience group at KU
Leuven (van Vliet et al., 2014, 2015; Wittevrongel and Van Hulle,
2016) and since then used in dozens of published studies from
this group (http://lirias.kuleuven.be/cv?Username=U0013308).
The method was developed as it accounts for eye artifacts using
an automatic procedure (AAA procedure in Croft and Barry,
2000) rather than having to rely on a post hoc ICA analysis
where the data analyst needs to identify which IC’s contain those
artifacts (as in EEGLAB).

Statistical Analysis
To assess the effect of N-Back task variations on behavioral
responses (average of correct responses across trials) and ERP
morphology (we considered the same three midline location
electrodes: Fz, Cz, and Pz investigated by Watter et al.
(2001), we used nonparametric permutation-based tests (Guo
and Yuan, 2017; Derrick et al., 2019) as our datasets failed
the Shapiro–Wilk test of normality (Shapiro and Francia,
1972) and the Levene test of equality of variances (Levene,
1960). Specifically, Dataset I utilized a mixed within/between
design where each participant performed four out of nine
variations. The rationale for using a mixed design was to
obtain enough power—16 participants—for each of the nine
variations by recruiting only 36 subjects. Therefore, we used a
nonparametric permutation-based test to account for the mixed
(within/between) design (Efron and RJ, 1993; Farrell et al.,
1998). The null hypothesis distribution is generated empirically
regardless of any assumptions about the data distribution. The
observed results were then assessed relative to the empirical
null hypothesis distribution (Collingridge, 2013) and the p-value
was calculated by comparing the absolute distance between
observed values of two groups to the absolute of the empirical
null distribution (Cohen, 2017). The results were considered
statistically significant when the p-value was less than 0.05. We
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ran 30.000 iterations for permutation testing of behavioral data
and 3.000 for ERP data. We adopted the same statistical tests
for the comparison between datasets (UCR, KU Leuven, and
UM), and ERP and behavioral data comparisons respectively.
We note that this p-value is monotonically relatable to other
measures of reliability, such as differences in signal to noise
ratio (SNR).

Furthermore, we performed a power analysis for accuracy to
ensure that our samples, considering the significant results of
Figure 2, were large enough. Here, we reported the comparison
between task 1 and task 3 for words that revealed that 14 subjects
were sufficient to support the power of 80%, for colors that
showed that 16 subjects were sufficient to support the power of
80%, and for pictures that demonstrated that 22 subjects were
sufficient to support the power of 80%. Although the latter did
show that a bigger sample size would be necessary, we believe
that it does not significantly affect our results.

ERP Components
We investigated the following ERP components in the 0–800 ms
post-stimulus time window:

P100 (P1), a positive deflection with a peak around 100 ms
after stimulus presentation. It is distributed over the lateral
occipital electrodes and reflects the early sensory processing of
visual stimuli. P1 latency depends on stimulus contrast, such
as luminance or SNR, while its amplitude is modulated by
attention (Hillyard et al., 1998) and discrimination processes
(Vogel and Luck, 2000).

N100 (N1), a negative deflection that peaks around
100–200 ms after stimulus onset. It has a distribution over
the entire scalp, but it peaks earlier over the frontal regions of
the scalp. It has been shown that its amplitude is modulated by
attention. Larger amplitude is associated with attended stimuli,
while smaller is associated with increasing stimulus presentation
frequency (Luck et al., 1990). N1 latency is affected by cognitive
processing effort: the bigger the effort, the longer the latency
(Callaway and Halliday, 1982).

P200 (P2), a positive deflection with a peak of around
150–275 ms after stimulus presentation. It is distributed over the
fronto-central and parieto-occipital regions of the scalp, but its
maximal is over the frontal area. It is elicited by visual stimuli
and modulated by attention (Liu et al., 2013). Its amplitude is
suppressed by increasing the attentiveness (Kanske et al., 2011)
and more frequent target stimuli (Lu et al., 1992).

N200 (N2), a negative deflection detected around 200–350 ms
after stimulus onset. It is distributed over the frontal regions of
the scalp and posterior regions in visual attention tasks (Folstein
and Van Petten, 2008). N2 component reflects several functions
such as stimulus identification, attentional shift, and motor
response inhibition (Patel and Azzam, 2005).

P300 (P3), a positive deflection with a peak occurring around
250–600 ms after stimulus onset. It shows a stronger distribution
over the centro-parietal electrodes on the scalp. Its amplitude
becomes larger with infrequent target stimuli and decreases with
habituation and task difficulty. Its latency is modulated by the
difficulty in discriminating the target stimulus (Picton, 1992;
Polich and Kok, 1995).

FIGURE 2 | Mean accuracy and SEM for target trials in the University of
California—Riverside (UCR) dataset. (A) Accuracy as a function of task type.
(B) Accuracy as a function of stimulus type. ∗ Indicates the significance of
p < 0.05.

N400 (N4), a negative deflection detected between
400–600 ms after stimulus onset. It is typically stronger
over centro-parietal regions of the scalp and reflects brain
response to semantically meaningful stimuli that can include
visual and auditory words, sounds, pictures, and faces (Kutas
and Federmeier, 2011). N4 amplitude is affected by priming and
frequency of the stimulus (Van Petten and Kutas, 1990).

Positive Late Component (PLC), a positive deflection, with a
peak occurring around 500–1,000 ms after stimulus onset. It is
most prominent for posterior scalp channels. The PLC amplitude
is modulated by stimulus repetition: suppressed for stimuli that
have been already presented, and generally larger for new stimuli
(i.e., ‘‘old-new’’ effect), in both long- and short-term memory
paradigms (Olichney et al., 2000; Danker et al., 2008). PLC
is believed to index the top-down allocation of attention in a
memory recollection process (Mecklinger, 2000).

RESULTS

Effect of Stimulus Type and Task
Structure—Dataset I (UCR)
To investigate the effect of experimental features
(stimulus type and task structure type), we performed a
nonparametric permutation-based analysis on behavioral and
electrophysiological data.

Behavioral Results
While pictures were associated with the highest accuracy
level when holding task structure constant (Figure 2A; see
Supplementary Tables 1–3 in Supplemental Material for
means, standard deviations, and statistics per condition,
respectfully), there was no statistically significant effect of
stimulus type on accuracy (p > 0.2 for all conditions other than
for task 1:words vs. pictures: p = 0.075). On the other hand, results
revealed a robust overall effect of task structure (see Figure 2B),
showing higher accuracy for task 3 vs. task 1 (p < 0.002 for all
stimulus types), and for task 3 vs. task 2 for words (p < 0.001)
and colors (p < 0.012) but only a trend for pictures (p = 0.067).
However, there was no statistically significant difference between
task 1 and 2 (p > 0.4 for all conditions other for words p = 0.074).
These results show that while there is a highly significant effect of
tasks, especially task 3 vs. the others, that the choice of stimulus
has a lesser effect on task performance.
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ERP Morphology
Overall, ERP morphologies changed substantially both as a
function of stimulus type and task structure. This can be seen in
Figures 3, 4 for channel Cz, while channels Fz and Pz are shown
in Supplemental Material (Supplementary Figures 1–4). We
also presented topographies and reported differences between
them in the Supplemental Material (see Supplementary Figure
9 and Supplementary Tables 6, 7). In the following sections, we
highlight some of the significant effects by running permutation
tests that demonstrate the extent to which differences in
morphology across the time-course are different as a function of
condition. Significant differences discussed below are concerning
shaded regions in graphs that indicate periods in the ERPs where
differences are p-value of less than or equal to 0.05 for at least
12 consecutive bins with ∆t of 1/512 Hz.

Effects as a Function of Stimulus Type
For task 1, ERP morphologies differed more frequently for
pictures compared to colors and words, as seen in Figure 3. While
pictures vs. words differed more frequently in the N1, N2 and
P2 components in channels Fz, Cz, and Pz (the latter only for
P2), pictures vs. colors showed differences in the N2, P2, and
P3 components in channels Fz and Cz. Additionally, words vs.
colors showed differences in the P2 component in channels Fz,
Cz, and Pz.

For task 2, we found that ERP morphologies differed more
frequently for colors compared to pictures and words (see
Figure 3). While both colors and words differed from pictures
more frequently in the N1 component in channels Cz, Pz, and
Fz respectively, colors vs. words and colors vs. pictures showed
differences mostly in the P2 component in channels Fz and
Cz. Additionally, words differed from pictures and colors in the
N2 component for channel Cz, while colors compared to pictures
differed more frequently in the P3 component for channels Fz
and Cz.

For task 3, ERP morphologies differed more frequently for
words compared to pictures (see Figure 3). words and pictures
showed differences in the N2, P2, and P3 components in channel
Fz and Cz. Additionally, words differed from colors in the
P3 component in channel Fz and Cz.

Effects as a Function of Task Structure
For words, ERP morphologies differed more frequently for task
3 compared to task 1 and task 2 (see Figure 4). While task 3 and
task 1 showed differences in the N1, P1, and P2 components in
channels Fz, Cz, and Pz, task 3 and task 2 showed differences in
the N1 and P2 components in channels Fz, Cz, and Pz. We do
note, that in the case of where the stimulus offset occurred at
400 ms, waveforms after 400 ms may have been impacted by a
stimulus offset event in addition to other task-related factors.

For pictures, ERP morphologies differed more frequently for
task 1 compared to task 3 and task 2 (Figure 4). While task 1 and
task 3 showed differences in the N1 component in channels Fz
and Cz, task 1 and task 2 showed differences in the P2 component
in channels Fz, Cz, and Pz. Additionally, task 3 differed from task
2 in the N1 component in channels Fz and Cz.

For colors, ERP morphologies differed more frequently for
task 3 compared to task 1 and task 2 (Figure 4). While task 3

and task 1 showed differences in the N1 and P2 components in
channels Fz, Cz, and Pz, task 3 and task 2 showed differences in
the N1 and P2 components in channels Cz and Pz.

Effects as a Function of Task Load and Performance
To understand how other factors may have influenced the ERPs,
we also examined the effects of memory load and performance on
ERP waveforms (see Figure 5). Concerning N-back load (N = 2,
N = 3), the main effect of the load is shown in Figure 5A with this
effect of load being significant (p < 0.05) for all the components
mentioned in this paper except for P1 (see Supplementary
Table 4 for stats). However, this effect was largely independent
of the task, and stimulus types (see Supplementary Figure 5,
Supplementary Table 4 for the break-down of ERPs and stats
across the different task and stimulus conditions). Likewise,
we also observed differences in the ERPs as a function of
metrics of performance (Figure 5B); hits (correctly responded
targets), misses (incorrectly responded targets), correct rejections
(correctly responded non-targets), and false alarms (incorrectly
responded non-targets). There is a significant main effect of
performance (p < 0.001) for all the components, except for
P1. However, again, this effect was largely independent of
the task, and stimulus types (see Supplementary Figure 6,
Supplementary Table 5 for ERPs for break-down of ERPs and
stats across the different stimulus and task conditions).

Comparison Between Pre-processing
Pipelines in Dataset I (UCR)
We next examined the extent to which differences in analysis
pipelines used across labs resulted in changes in estimated
ERP morphologies. Interestingly, early ERP components are
relatively preserved across the pipelines, but that later ERP
components showed significant differences between pipeline I
and pipeline II (see Figure 6). Further, these differences showed
some interaction with task and stimulus. For example, the effect
of the pipeline was found in all variations in task structure
1 (for channels Fz, Cz, and Pz). Moreover, the word N-Back
variation with task structure 1 showed significant differences in
P3 components between the two pipelines. For task structure
2 and words, Cz showed a significant difference in N2 and
P3 components. For task structure 2 and pictures, Fz revealed
significant differences in PLC and Cz in P3 and PLC. For task
structure 2 and color stimulus, Fz showed significant differences
in P3, N4, and PLC signatures and Cz in P3 and PLC. For task
structure 3 and words, Fz showed significant differences in N2,
P3, N4, and PLC components. Further, Cz showed differences for
N2 and P3 and Pz for PLC. For task structure 3 and pictures, Fz
and Cz showed a significant difference in PLC. Finally, for task
structure 3 and colors, Fz showed significant differences in P3,
N4, and PLC components and Cz showed a significant difference
in PLC.

Because Pipelines I and II differ in several ways ranging
from analysis toolbox, eye artifacts removal to reference
electrodes, etc., there are too many candidate parameters to be
causally related to a specific difference in an ERP component.
Nevertheless, these results are interesting as they highlight how
the use of different pre-processing pipelines commonly used in
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FIGURE 3 | Grand average and SEM of ERP curve for UCR dataset at Cz electrode for target trials during variations of stimulus types (words, pictures, and colors).
Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are less than 0.0001 are thresholded to 0.0001 for viewing purposes, as
shown by the black curve at the bottom of each graph where log p-values are reported.

FIGURE 4 | Grand average and SEM of ERP curve for UCR dataset at Cz electrode for target trials during variations of task structure (task 1, task 2, and task 3).
Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are less than 0.0001 are thresholded to 0.0001 for viewing purposes.

the EEG literature can affect ERP morphology at an aggregate
level, and in particular, the choice of the pipeline can impact the
extent to which one correctly/incorrectly determines differences
between conditions. While it would be interesting to unveil

possible causal relations between these differences in the pipeline,
the goal of the present study is to illuminate the impacts of
commonmethodological differences between studies rather than
to fully explain such differences, which would require a larger
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FIGURE 5 | Grand average and SEM of ERP curve for UCR dataset at Cz
electrode as a function of N-back load (A) and performance metrics (B).

study. Furthermore, considering the few existing studies in the
literature (Dong et al., 2019; Jiang et al., 2019; Yao et al., 2019)
that demonstrated a significant role played by pre-processing
factors, we think it is likely that the eye artifacts removal
method and reference electrodes might have greatest impacts
in our pipelines on the resulting ERPs. Still, we note that our
analysis of pipeline is merely illustrative of how the pipelines
used in the previously published versions of these datasets
give rise to different ERP morphologies and that a complete
characterization of how pipeline elements affect the signal
and/or SNR (Robbins et al., 2020) is beyond the scope of the
present manuscript.

Laboratory Effects
Another potential aspect of variation is the experimental
location resulting in behavioral and ERPmorphology differences.
Specifically, we refer to different laboratories to explore
differences in several characteristics such as lab settings, stimuli,
tasks, subject pools, subject instructions, processing pipelines,
and so on. Using pipeline I, we compared task 2 (pictures only,
N = 16) as used in Dataset I (UCR) and Dataset II (KU Leuven),
as well as task 1 (words only, N = 16) which was used in
Dataset I (UCR) and Dataset III (UM). We did not compare
Datasets II and III as the stimuli were different: pictures vs.
words respectively, whereas Dataset I included both words and
pictures and could therefore be compared to both datasets. We
note, that while this analysis is far from comprehensive and it
would be ideal to collect data on identical procedures across the
labs, however, this is at least illuminative of other, unexplained,
variance that can be expected from different labs conducting
similar research but not coordinating on the exact details of the
studies, which is typical of the extant literature.

Dataset I vs. Dataset II (UCR vs. KU Leuven)
Behavioral results for task 2 showed significantly higher accuracy
in Dataset II compared to Dataset I (p < 0.001; Figure 7A) and
ERP morphology outcomes revealed larger ERP amplitudes in
Dataset II compared to Dataset I (Figure 8). Namely, significant
differences between Dataset I and Dataset II (p < 0.05) were
found in P1, N1, P2, N2, and P3 components, in channels
Fz and Cz.

Dataset I vs. Dataset III (UCR vs. UM)
For task 1, higher accuracy was observed in Dataset III compared
to Dataset I (p < 0.001; Figure 7B), and ERP morphology

(Figure 9) indicated significant differences in P1, N1, P2, N2, and
P3 components, in channels Fz, Cz, and Pz.

DISCUSSION

The goal of the present study was to fill a gap in the
extant literature by illuminating the extent to which common
procedural differences related to N-back task variants, EEG
recording setups, and pre-processing pipelines affect behavioral
and electrophysiological correlates of performance. To address
this, we compared variants of the N-Back task used in
three laboratories, two in Europe (Pahor and Jaušsovec, 2018;
Pergher et al., 2018) and 1 in the US where the behavioral and
EEG datasets were replicated. Our findings suggest that stimulus
type, task structure, pre-processing pipeline, and lab factors
contribute to differences in behavioral and neurophysiological
responses on the N-Back task.

Given the fact that most meta-analyses overlook differences
in the N-Back task adopted in each study (Glahn et al., 2005;
Heishman et al., 2010; Redick and Lindsey, 2013; Brunoni and
Vanderhasselt, 2014), we characterized some of those factors
that might affect cognitive task outcomes. First, we examined
task structure and showed differences in accuracy level between
tasks (task 1, task 2, and task 3), revealing higher accuracy
for task 3 compared to the other two, perhaps due to having
the longest stimulus duration (2,500 ms) thereby supporting
the process for the encoding of information that is facilitated
when stimulus duration is longer. Indeed, Kunimi (2016) showed
that increasing stimulus duration (from 500 to 5,000 ms)
improves memory performance during retention of visuospatial
information, whereas Fox et al. (2007) showed that longer ISI
was associated with increased accuracy level.We also investigated
stimulus type and observed better performance for pictures of
objects compared to words and colors. In contrast, Nystrom et al.
(2000) reported higher accuracy for letters compared to shapes.

Another important aspect when considering the following
factors such as task structure and stimulus type is their
impact on ERP morphology. To highlight this variance, we
examined differences in several ERP components, named N1,
P2, N2, and P3 for both factors, as previous studies suggested
ERP component modulation in response to WM experimental
features, particularly for stimulus type, and observed their spatial
distribution. Mecklinger and Pfeifer (1996) reported that the
encoding of object features was associated with modulation of
P2 component, whereas Ruchkin et al. (1992) showed variations
of N2 and P3 components for visuospatial stimuli compared to
phonological stimuli, indicating that visuospatial stimuli were
processed more quickly than phonological ones. Moreover,
Rossion et al. (2003) observed N1 modulation in response to
faces and objects compared to objects. Thus while it is clear in
the literature that both task and stimulus should influence ERPs
in systematic ways, to date this has been largely overlooked in
the literature examining ERP signatures of WM tasks such as
the N-Back.

In addition to stimulus type and task structure, we suggest
that different experimental laboratories and pre-processing
procedures might also affect the accuracy and ERP morphology.
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FIGURE 6 | Grand average and SEM of ERP curve at Cz electrode for target trials for different pipelines (Pipeline I vs. Pipeline II) for the UCR dataset (see
Supplementary Material for Fz and Pz, Supplementary Figures 7, 8). Gray shaded areas indicate significantly different data points (p < 0.05). P-values that are
less than 0.0001 are thresholded to 0.0001 for viewing purposes. Data in Pipeline II was up-sampled to 512 to make the comparison possible.

FIGURE 7 | Cross-laboratory accuracy comparison. (A) Accuracy for
N-Back task 2 with pictures in the dataset I (UCR) and in dataset II (Ku
Leuven). (B) Accuracy for N-Back task 1 with words in the dataset I (UCR)
and in dataset III (University of Maribor, UM). ∗ Indicates significance of
p < 0.05.

Seemingly arbitrary procedures are employed by different
laboratories, in terms of environment and equipment, as well as
data pre-processed and analyzed by different pipelines, which
have been shown to produce different findings (Busch et al.,
2006; for review, see Zimmer et al., 2001). Here we show
that the same N-Back task performed in two laboratories
produces different behavioral and ERP morphology results.
However, we suggest interpreting these results carefully, as
participants’ individual differences and EEG and analysis
operator skills may also have affected these results (Jaeggi et al.,
2014). Green et al. (2019) observed that reward, motivation,
and/or participant expectations, such as differences in task

performance, researcher instructions, etc., could also count as
factors for behavioral differences when comparing performances
between different laboratories. Moreover, we highlight the
impact of pre-processing pipelines on ERP data, supporting
the recommendations provided by Smith and Kutas (2015)
regarding the power of EEG data pipeline, including baseline
correction, artifact rejection, and the filtering procedure (Acunzo
et al., 2012) on ERP analysis. In line with the goal of this
study, we did not associate a specific step of the pre-processing
pipeline procedure to an ERP component or cognitive process
since we aimed to show at a more general level the impact of
stimuli, tasks, and laboratory environment on both accuracy and
ERP responses.

Our study presents several limitations. We considered only
accuracy during N-Back performance, because the three Datasets
and the related tasks had different response requirements, and
so it would have been very complex to compare them. As
Dataset I utilized a mixed within/between design, individual
differences might have affected ERP signatures attributed to
laboratory effects. Indeed, a recent review paper highlighted
the variety of features that may impact N-Back performance,
including both task and individual features (Pergher et al.,
2019a). The samples compared here were of similar age and
had a similar educational level (undergraduates) and in Datasets
I and II, a similar distribution of gender. While Dataset III
only consisted of data collected from females, a recent study
by Pliatsikas et al. (2019) demonstrated that gender, age, and
education level affect response accuracy after a single N-Back
training session in healthy older individuals. Since the present
study consists of N-Back performance across 1 or 2 sessions
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FIGURE 8 | ERP responses during task 2, only for target stimuli recorded at different laboratories. Gray shaded areas show significant differences at p < 0.05. Both
datasets were pre-processed with pipeline I.

FIGURE 9 | ERP responses during task 1 (mean and standard deviation of targets) recorded at different laboratories. Gray shaded areas show significant
differences at p < 0.05. Both datasets were pre-processed with pipeline I.

in young subjects, we do expect these variables to have a
moderate effect on behavioral and electrophysiological results.
Nevertheless, there might be other individual difference factors
such as motivation, personality, and WM capacity (Dong et al.,
2015) that were not accounted for but could have affected
the results. Future studies will need to examine whether these
individual differences, along with other factors such as time-
of-day and environment, affect N-Back task performance and
ERP signatures. Moreover, further studies should also consider
the choice of words, pictures, and colors, as they may play
an important role in affecting behavioral and ERP responses
due to different colors and shapes used, and familiarity with
the objects presented. Finally, since Dataset III represents
a sham condition in a brain stimulation study (Pahor and
Jaušsovec, 2018) possibly the placebo effects affected performance.
Since we only retained data collected in session 1, i.e., before
exposure to active stimulation, it is unlikely that these effects
are large. Still, we suggest that while more work can be done
to clarify the effects presented here, and that other differences
still exist in the extant literature, that the present work is
informative of how some of the most common differences in
the N-Back between studies can impact observed behavioral and
physiological measures.

In conclusion, the present data sets help clarify the extent
to which common N-Back task variations in terms of stimulus
type, task structure, and laboratory and processing pipeline give
rise to differences in behavioral and physiological outcomes.
While future research is needed to help us understand the
mechanisms that underly these observed differences, the present
work can help readers appreciate effect sizes to be expected
related to the many variations considered here. We note that

while, in general, it is well acknowledged any difference between
studies can have an impact, the significance of these variations
in the case of the N-Back has been largely overlooked, thus
limiting understanding of their role in affecting accuracy and
ERP morphology and of potentially important information
related to the mechanisms that regulate WM processes. We
suggest that for the field to move forward, experimental features,
analysis pipeline, and laboratory differences need to be taken
into consideration when interpreting findings and making
comparisons across studies.
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