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Abstract
We consider the problem of testing for the existence of fixed effects and random
effects in one-way models, where the groups are correlated and the disturbances are
dependent. The classical F-statistic in the analysis of variance is not asymptotically
distribution-free in this setting. To overcome this problem,we propose a new test statis-
tic for this problem without any distributional assumptions, so that the test statistic is
asymptotically distribution-free. The proposed test statistic takes the form of a natural
extension of the classical F-statistic in the sense of distribution-freeness. The new
tests are shown to be asymptotically size α and consistent. The nontrivial power under
local alternatives is also elucidated. The theoretical results are justified by numerical
simulations for the model with disturbances from linear time series with innovations
of symmetric random variables, heavy-tailed variables, and skewed variables, and fur-
thermore from GARCH models. The proposed test is applied to log-returns for stock
prices and uncovers random effects in sectors.
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1 Introduction

Longitudinal data and panel data are omnipresent in the real world. Statistical methods
to analyze such data have been studied for several decades (Diggle et al. 2002). The
methods have a wide range of applications, e.g., analysis of stress in mothers (Zeger
et al. 1985), the weight of infants (Hoover et al. 1998), and COVID-19 data (Bernardes
et al. 2020; Lucas et al. 2020).

The analysis of variance (ANOVA) is a common method to test for equality among
groups. An F-statistic, defined as the ratio of variance between groups to variance
within groups, is designed to test for the homogeneity of groups for independent
and identically distributed (i.i.d.) data. Numerous papers are devoted to ANOVA and
related topics for i.i.d. data (see, e.g., Searle et al. 1992; Rashid 1995; Clarke 2008;
Liu and Xu 2016, and references there in). By contrast, the statistic does not work for
dependent data. To resolve the issue, Nagahata and Taniguchi (2018) studied a test
for the equality of means among groups based on the Whittle likelihood for multi-
variate one-way fixed effect models. Their statistic can be rephrased as the classical
F-statistic rescaled by the spectral density of disturbances. They showed their statistic
is asymptotically Chi-square distributed, although they did not derive the consistency
of the test and assumed independence of groups.

One-way models for time series are closely related to the analysis of longitudinal
data and dynamic panel data. For dynamic panel data, Baltagi and Li (1991) con-
structed the consistent estimator of variance of random effects for dynamic panel data
models with errors from the autoregressive process of order 1 (AR(1)), provided that
the number of groups and sample size tends to infinity. Galbraith and Zinde-Walsh
(1995) dealt with error components models for panel data models with errors from
the autoregressive moving-average process of orders p and q. You and Zhou (2013)
advocated semiparametric panel data partially linear additive models with errors from
the AR(1). The statistical methods for longitudinal data also have been intensively
investigated. For example, Tang and Leng (2011) estimated regression coefficients by
the empirical likelihood. Li (2011) constructed an efficient estimator for semiparamet-
ric regression models. A panel data model with common shocks is proposed by Bai
and Li (2014), and Ergemen and Velasco (2017) extended the model to a fractionally
integrated panel data model with common shocks. Under high-dimensional settings,
Zhong et al. (2019) considered a test for homogeneity of covariance matrices and
constructed a change test for covariance matrices. Fang et al. (2020) proposed a test
for regression parameters. However, the principal objective in these fields is not fixed
and random effects but is regression coefficients.

The importance of fixed effects and random effects has been recognized, whereas,
to our best knowledge, there are few references of diagnostic tests for fixed effects
and random effects. On a related topic, Akharif et al. (2020) and Fihri et al. (2020)
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established optimal tests for the existence of random coefficients for i.i.d. data based
on the locally asymptotic normality for random coefficient regression models. The
optimal test based on multivariate ranks for the existence of fixed effects for i.i.d. data
proposed by Hallin et al. (2021). Recently, González et al. (2021) have discussed tests
for the existence of fixed effects and interactions for two-way models for spatial point
processes. Ditzhaus et al. (2021) proposed robust tests based on quantiles for fixed
effects and interaction for i.i.d. random variables.

We propose a test for the existence of fixed or random effects in one-way models
for correlated groups and derive the asymptotic null distribution. In addition, the
consistency of the proposed test and the nontrivial power under the local alternatives
are elucidated. The numerical study illustrates the finite sample performance of the
proposed test and comparison with the classical test. In particular, we also include
the skewness and the heteroscedasticity in the disturbance process, which reveals its
own importance in practical applications (Cook andWeisberg 1983). In this study, we
also compare our statistic with the classical statistic. The classical statistic, defined
in Sect. 2, assumes independence between groups, which is a major drawback in
its application. The new statistic, defined in Sect. 3, elaborately relaxes the strong
assumption of independence between groups. We emphasize that our setting allows
us to deal with correlated groups, and thus, our proposed method has a wide range of
applications.

Amotivated real data example with correlated groups is the analysis of stock prices.
Stock prices can be categorized by industry. Equity-focused investors believe that the
stock prices are linked by factors related to earnings. For example, stock prices of
automobile companies are linked to exchange rates. In other words, equity-focused
investors believe that there are randomeffects related to industries.Our testwhich takes
into account correlations between groups can be applied to verify this hypothesis.

This paper is organized as follows: We briefly review spectra and the classical
settings and test statistic in Sect. 2. In Sect. 3, we introduce the fixed effects model
and propose a new test for the existence of fixed effects. In Sect. 4, we deal with the
random effects model and derive the asymptotic results for the proposed test. Section 5
presents the simulation study. In Sect. 6, we apply our test for the existence of effects
to the log-returns in stock prices. The discussion is provided in Sect. 7. Supplementary
material includes all proofs of theorems and additional simulation results.

2 Preliminary

2.1 Spectral density

In the frequency-domain approach, the L2-based spectral density is a pivotal index to
describe time-dependent structures of data. To recall the definition, let Xt be a strictly
stationary process with the autocovariance function γX (h) = EXt Xt+h satisfying∑∞

h=−∞ |γX (h)| < ∞. Then, the spectral density function is defined, forλ ∈ [−π, π ],
as
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fX (λ) = 1

2π

∞∑

h=−∞
γX (h)e−ihλ. (1)

Since γX (h) = ∫ π

−π
fX (λ)eihλdλ, the information of the spectrum fX (λ) is equivalent

to that of autocovariance functions for all lags {γX (h)}h∈Z. A multivariate spectral
density function can be defined by replacing γX (h) in (1) with �X (h) = E XtX�

t+h
for a p-dimensional strictly stationary process Xt . Typical examples of spectra are the
spectrum for ARMAmodels of orders (p,q) and the exponential type of the spectrum
proposed by Bloomfield (1973), taking the forms of

fARMA(λ) = σ 2

2π

∣
∣1 + θ1e−iλ + · · · + θqe−iqλ

∣
∣2

∣
∣1 − φ1e−iλ − · · · − φpe−i pλ

∣
∣2

and fEXP(λ) = σ 2

2π
exp

(

2
d∑

r=1

ςr cos(rλ)

)

,

whereσ, θ1, . . . , θq , φ1, . . . , φp, ς1, . . . , ςd are parameters, respectively.Other exam-
ples can be found by, e.g., Chiu (1988).We refer readers to vonSachs (2020) for review.

2.2 Classical setting and statistic

Nagahata and Taniguchi (2018) discussed one-way models with independent groups;
for a fixed group size a, a growing sample size ni of the i th group (i = 1 . . . , a), and
a fixed dimension p of time series in each group,

yi t = μ + τ i + ei t , i = 1, . . . , a; t = 1, . . . , ni , (2)

where yi t = (yit1, . . . , yitp)T is a t th p-dimensional observation of an i th group,
μ = (μ1, . . . , μp)

T is a general mean, τ i = (τi1, . . . , τi p)
T is a fixed effect such that∑a

i=1 τ i = 0, and ei t = (eit1, . . . , eitp)T is a centered strictly stationary sequence
such that {ei t }t∈Z is independent of {e j t }t∈Z for j �= i and ei t has a p-by-p spectral
density matrix f (λ) = ( f j1 j2(λ)) j1, j2=1,...,p which is independent of i . For a test for
existence of fixed effects defined in (5), they proposed the following test statistic

Sn = n
a∑

i=1

( yi . − y..)T
(
2π f̃n(0)

)−1
( yi . − y..), (3)

where yi . = ∑ni
t=1 yi t/ni , y.. = ∑a

i=1
∑ni

t=1 yi t/(ani ), f̃n(0) is defined as

f̃n(0) = 1

a

a∑

i=1

f̂i i (λ)/ρi ,
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where f̂i i (λ) is given in (6), andρi = ni/nwithn = ∑a
i=1 ni . This statistic is standard-

ized within groups, and thus, the test based on Sn is asymptotically distribution-free in
the case of independent groups (see Sect. 7). However, it does not hold when groups
are correlated. This paper focuses on data with correlated groups such as stock prices
are considered. In stock prices, sectors correspond to groups. We propose the test
statistic standardized not only within groups but also between groups, defined in (7)
so that our test statistic is asymptotically distribution-free. In this sense, our statistic
takes the form of the natural extension of Sn .

3 Test for existence of fixed effects

In this section, we scrutinize one-way fixed effects model with dependent disturbance
processes when the number of groups is fixed and the number of observations for each
group diverges. Let us consider the model

yi t = μ + τ i + ei t , i = 1, . . . , a; t = 1, . . . , ni , (4)

where yi t = (yit1, . . . , yitp)T is a t th p-dimensional observation of an i th group,
μ = (μ1, . . . , μp)

T is a general mean, τ i = (τi1, . . . , τi p)
T is a fixed effect such that∑a

i=1 τ i = 0, and ei t = (eit1, . . . , eitp)T is a centered strictly stationary sequence.
Suppose that an observed stretch { yi t ; i = 1, . . . , a, t = 1, . . . , ni } is available, and
(eT1t , . . . , e

T
at )

T has an ap-by-ap spectral density matrix f (λ) = ( fi j (λ))i, j=1,...,a for
λ ∈ [−π, π ]. In addition, there existsρi ∈ (0, 1) such thatni = ρi nwithn = ∑a

i=1 ni .
The number of groups, the length of time series from an i th group, and the dimension
of time series from each group at each time are denoted as a, ni , and p, respectively.
The role of p is to include the multivariate analysis of variance (MANOVA) case.
Obviously, p = 1 corresponds to the univariate ANOVA.

Remark 1 The above one-way model defined in (4) seems that only one time series
for each group can be coped with, whereas we can handle the case that there are more
than one time series for each group by reconfiguring the settings as follows: taking
p as pq for q ∈ N, yi t = (yit11, . . . , yit1q , yit21, . . . , yitp1, . . . yitpq)T, where 1q
is a q-dimensional vector with all elements equal to one, μ = (μ11Tq , . . . , μp1Tq)

T,
τ i = (τi11Tq , . . . , τi p1

T
q)

T, and ei t = (eit11, . . . , eit1q , eit12, . . . , eitp1, . . . , eitpq)T.
Moreover, p and q can depend on i . In this case, p and q represent the dimension of
time series from each group at each time and the number of time series in each group,
respectively.

Remark 2 The condition
∑a

i=1 τ i = 0 is not essential. When
∑a

i=1 τ i �= 0, we can
redefine μ as μ − ∑a

i=1 τ i and τ i as τ i − ∑a
i=1 τ i .

Let the null hypothesis H0 and the alternative K0 be

H0 : τ 1 = · · · = τ a vs K0 : τ i �= 0 for some i . (5)

Under the assumption
∑a

i=1 τ i = 0, the null hypothesis is equivalent to τ i = 0 for
all i ∈ {1, . . . , a}.

123



Y. Goto et al.

Let f̂n(λ) = ( f̂i j (λ))i, j=1,...,a be the nonparametric spectral density estimator
defined as

f̂i j (λ) = 1

2π

∑

{h∈Z;|h|≤min{ni ,n j }−1}
ω

(
h

Mn

)

�̂i j (h)e−ihλ, λ ∈ [−π, π ], (6)

where ω(x) = ∫ ∞
−∞ W (t)eixt dt and the function W (·) satisfy Assumption 3.2. Here,

Mn is a positive sequence such that Mn → ∞ and Mn/mini=1,...,a ni → 0 as
mini=1,...,a ni → ∞, for h ∈ {0, . . . ,min{ni , n j } − 1},

�̂i j (h) = 1

min{ni , n j } − |h|
min{ni ,n j }−|h|∑

t=1

( yi(t+h) − yi .)( y j t − y j .)T,

for h ∈ {−min{ni , n j } + 1, . . . , 0}, and

�̂i j (h) = 1

min{ni , n j } − |h|
min{ni ,n j }∑

t=−h+1

( yi(t+h) − yi .)( y j t − y j .)T,

where yi . = ∑ni
t=1 yi t/ni , and y.. = ∑a

i=1
∑ni

t=1 yi t/(ani ). Let V̂n = (V̂i j )i, j=1...,a
be

V̂i j =2π min{ρi , ρ j }
ρiρ j

f̂i j (0) − 2π

a

a∑

s=1

{
min{ρs, ρ j }

ρsρ j
f̂s j (0) + min{ρi , ρs}

ρiρs
f̂is(0)

}

+ 2π

a2

a∑

s,k=1

min{ρs, ρk}
ρsρk

f̂sk(0).

The test statistic for H0 is proposed as

Tn = n( y1.T − y..T, . . . , ya.
T − y..T)V̂−

n ( y1.T − y..T, . . . , ya.
T − y..T)T, (7)

where V̂−
n denotes the Moore–Penrose inverse of V̂n . Using the Moore–Penrose

inverse V̂−
n in Tn is essential since V̂n is a singular matrix. Actually,

∑a
i=1 V̂i j = Op

for any j , where Op is an p-by-p zero matrix; thus, 0 is an eigenvalue of V̂n .
It is worth mentioning that our proposed test statistic Tn is scale-invariant. Since
( y1.T − y..T, . . . , ya.

T − y..T) converges in distribution to a centered normal distri-
bution with variance V , defined in Theorem 1, and V is the function of the spectral
density matrix f (λ) (see Lemma 1 in Section A in the supplementary material), f (λ)

appears.

123



Homogeneity tests for one-way models

To state the assumptions, we define, for a random variables {Xt }, the cumulant of
order 
 of (X1, . . . , X
) as

cum(X1, . . . , X
) =
∑

(ν1,...,νp)

(−1)p−1(p − 1)!
⎛

⎝E
∏

j∈ν1

Xν1

⎞

⎠ . . .

⎛

⎝E
∏

j∈νp

Xνp

⎞

⎠ ,

where the summation
∑

(ν1,...,νp)
extends over all partitions (ν1, . . . , νp)of {1, 2, . . . , 
}

(see Brillinger 1981, p. 19). The following assumptions aremade throughout the paper.

Assumption 3.1 For all 
 ∈ N, (k1, . . . , k
) ∈ {1, . . . , a}
, and (r1, . . . , r
) ∈
{1, . . . , p}
,

∞∑

s2,...,s
=−∞

⎛

⎝1 +

∑

j=1

∣
∣s j

∣
∣

⎞

⎠
∣
∣
∣κk1···k


r1···r
 (s2, . . . , s
)
∣
∣
∣ < ∞,

where κ
k1···k

r1···r
 (s2, . . . , s
) = cum{ek10r1, ek2s2r2 , . . . , ek
s
r
}.

Assumption 3.2 W (·) is a real, bounded, nonnegative, even function such that∫ ∞
−∞ W (t) dt = 1 and

∫ ∞
−∞ W 2(t)dt < ∞ with a bounded derivative.

Assumption 3.3 rank(V̂n) converges in probability to rank(V ), where V is defined
in Theorem 1, as mini=1,...,a ni → ∞.

We briefly explain all assumptions. Assumption 3.1 is an assumption often imposed
for dependent observations (see Brillinger 1981, p. 26). It implies the asymptotic nor-
mality of ( y1.T − y..T, . . . , ya.

T − y..T). This assumption can be relaxed as Remark 1
in Section A in the supplementary material. Assumption 3.2 is a natural assumption
for the nonparametric spectral density estimator. In conjunction with Assumption 3.1,
f̂n(λ) is a consistent estimator (see Brillinger 1981, Corollaries 5.6.1 and 5.6.2 and
Theorem 5.9.1). Other conditions which ensure the consistency of the nonparametric
spectral density estimator can be seen in Robinson (1991). Assumption 3.3 is a tech-
nical assumption to ensure V̂−

n converges in probability to V− as mini=1,...,a ni → ∞
(see Rakocevic 1997; Stewart 1969).

Remark 3 When we assume independence of groups and f11(0) = · · · = faa(0), V̂n

fulfills Assumption 3.3. As an illustration, we set p = 1 and a = 3. Then,

V =
⎛

⎝
1 − 1/a −1/a −1/a
−1/a 1 − 1/a −1/a
−1/a −1/a 1 − 1/a

⎞

⎠ 2π f (0),

and for matrices,

P =
⎛

⎝
1 0 0
0 1 0
1 1 1

⎞

⎠ and B =
(
1 − 1/a −1/a −1/a
−1/a 1 − 1/a −1/a

)

2π f (0),
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it holds that

PV =
(

B
0 0 0

)

.

Also, the matrix PV̂n takes the form of

(
B̂n

0 0 0

)

,

where B̂n is an appropriate (a − 1)-by-a matrix. Since B is a full rank matrix and the
set of all full rank (a − 1)-by-a matrices is open, B̂n is a full rank matrix for large n.
Hence, the condition is confirmed.

Then, we obtain the following asymptotic null distribution based on Rao and Mitra
(1971, Theorem 9.2.3, p. 173).

Theorem 1 Suppose Assumptions 3.1–3.3 hold. Under H0, Tn converges in distribu-
tion to the Chi-square distribution with r degrees of freedom as mini=1,...,a ni → ∞,
where r = rank(V ) and V = (Vi j )i, j=1...,a with

Vi j =2π min{ρi , ρ j }
ρiρ j

fi j (0) − 2π

a

a∑

s=1

{
min{ρs, ρ j }

ρsρ j
fs j (0) + min{ρi , ρs}

ρiρs
fis(0)

}

+ 2π

a2

a∑

s,k=1

min{ρs, ρk}
ρsρk

fsk(0).

From Theorem 1, we obtain an asymptotically size α test whether we reject H0
when Tn ≥ χ2

r̂n
[1 − α], where r̂n = rank(V̂−

n ) and χ2
r̂n

[1 − α] denotes the upper
α-percentiles of the Chi-square distribution with r̂n degrees of freedom.

We elucidate the theoretical power of the test in the next theorem.

Theorem 2 Suppose Assumptions 3.1–3.3 hold. Under the alternative K0, the power
of the above test based on Tn converges to 1, as mini=1,...,a ni → ∞. In other words,
the test is consistent.

To see the nontrivial power of the proposed test, let us consider local alternative
hypotheses. Provided the perturbations h1, . . . , ha satisfying

∑a
i=1 hi = 0, the local

alternative is defined as

K (n)
0 : τ i = hi√

n
(i = 1, . . . , a).

Theorem 3 Suppose Assumptions 3.1–3.3 hold. Under the local alternatives K (n)
0 ,

Tn converges in distribution to the noncentral Chi-square distribution with r degrees
of freedom and the noncentrality parameter δ = (hT

1, . . . , h
T
a)V

−(hT
1, . . . , h

T
a)

T, as
mini=1,...,a ni → ∞.
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In view of this theorem, the nontrivial asymptotic power of the test under the local
alternatives can be expressed as

1 − �r ,δ(χ
2
r [1 − α]),

where �r ,δ is the cumulative distribution function of the noncentral Chi-square with
r degrees of freedom and the noncentrality parameter δ.

Remark 4 In case that the number of time series in each group is greater than one
(q ≥ 2, see Remark 1), themultiple comparison problem occurs since our test provides
different p-values for different orders of time series. For example, for p = 1, we
obtain (q!)a−1 different p-values in total. To avoid the multiple comparison problem,
we propose that yi t = (yit1., yit2., . . . , yitp.)T , where yitpq = ∑q

j=1 yitpj/q, is used
instead of (yit11, . . . , yit1q , yit21, . . . , yitp1, . . . yitpq)T.

4 Test for existence of random effects

In this section, we consider the one-way random effects model with a series of strictly
stationary residualswhen the number of groups is fixed and the number of observations
for each groupdiverges. The only difference from thefixed effectsmodel (4) is that τ i is
random effect of the i th group. To be simple, we assume (τ T

1, . . . , τ
T
a)

T follows the ap-
dimensional centered normal distribution with variance �τ = (�τ

i j )i, j=1,...,a . Here,
{τ j } are supposed to be independent of any disturbance process {ei t ; t = 1, ..., ni }. In
this random effects model, the spectral density of yi t does not exist due to the random
effects.

Let the null hypothesis H1 and the alternative K1 for the existence of random effects
be

H1 : �τ = Oap vs K1 : �τ �= Oap, (8)

where Oap is an ap-by-ap zero matrix. The test statistic Tn , defined in (7), is still
available in this situation. The following theorem shows that the asymptotic null dis-
tribution is exactly the same as that for the fixed effects model.

Theorem 4 SupposeAssumptions3.1–3.3hold.Under the null H1, Tn converges in dis-
tribution to the Chi-square distribution with r degrees of freedom asmini=1,...,a ni →
∞.

In consequence, we reject H1 in favor of K1 if Tn ≥ χ2
r̂n

[1 − α]. The consistency
of the test is shown as follows.

Theorem 5 Suppose Assumptions 3.1–3.3 hold. Under the alternative K1, the pro-
posed test is consistent. More precisely, under the alternative K1, pr(Tn ≥ χ2

r̂n
[1 −

α]) → 1, as mini=1,...,a ni → ∞.
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Now we consider the local alternative hypothesis to study the nontrivial power of
the test based on Tn . Let H = (Hi j )i, j=1...,a be an ap-by-ap symmetric, positive
definite matrix, and the local alternatives K (n) be defined as

K (n)
1 : �τ = H

n
.

The nontrivial power of the proposed test is elucidated in the next result.

Theorem 6 Suppose Assumptions 3.1–3.3 hold. Under the alternatives K (n)
1 , we have

lim
mini=1,...,a ni→∞ pr(Tn ≥ χ2

r̂n
[1 − α]) = pr

(
ZTV−Z ≥ χ2

r [1 − α]
)

,

where Z followsanap-dimensional centerednormal distributionwith variance H̃+V ;
Here, H̃ = (H̃i j )i, j=1...,a is determined in terms of the matrix H as

H̃i j = Hi j − 1

a

a∑

s=1

(Hs j + His) + 1

a2

a∑

s,k=1

Hsk .

Remark 5 We can generalize the random effects (τ�
1 , . . . , τ�

a )� to an ap-dimensional
random vector and show corresponding theorems to Theorems 4–6.

5 Numerical study

The finite sample performance of the proposed test based on Tn and comparison with
the classical test based on Sn are illustrated in this section. To be specific, we let the
dimension of time series from each group at each time p, the number of time series in
each group q, and the number of groups a be p = 1, q = 1, and a = 3, 9. The sample
sizes are set as (I) n1 = · · · = na = 1000, (II) n3k−1 = n3k−2 = 2000 and n3k = 1000
for k ≤ a/3, (III) n1 = · · · = na = 2000. (I) and (III) are cases of the sample size of
each group being equal (balanced design). (II) is the case of the sample size of each
group being unequal (unbalanced design). For each 1 ≤ t ≤ maxi=1,...,a ni , denote
(e1t , . . . , eat )T by (et ) = (ei t )i=1,...,a .

We consider two scenarios, independent groups (Case 1) and correlated groups
(Case 2). The disturbance process {ei t } is supposed to follow a multivariate moving-
average model or a generalized autoregressive conditional heteroscedasticity model.
Let {εt } be an i.i.d. sequence in the following.

As for Processes 1–3, we suppose et = εt +�εt−1, with the coefficient matrix� =
(�i j ), where, in Case 1, � = 0.5Ia and, in Case 2, �3k−2,3k−2 = 0.7, �3k−1,3k−1 =
−0.5, �3k,3k = 0.3, �3k,3k−2 = 0.3, �3k,3k−1 = −0.1 for positive integer k ≤ a/3;
and otherwise �i j = 0.
Process 1: In Case 1, each component of εt follows a centered normal distribution
with unit variance, which is of independent other components of εt . In Case 2, εt

123



Homogeneity tests for one-way models

is distributed as a zero mean multivariate normal distribution with covariance matrix
� = (�i j ), where�i i = 1 and� j, j+1 = � j+1, j = 0.5 for 1 ≤ i ≤ a, 1 ≤ j ≤ a−1.

Process 2: In Case 1, each component of εt follows a centered t-distribution with 5
degrees of freedom, which is of independent other components of εt . In Case 2, εt is
distributed as a zero mean multivariate t-distribution with 5 degrees of freedom, with
the scale matrix � defined in Process 1.

Process 3: InCase 1, each component of εt follows a centered skewnormal distribu-
tionwith location parameter 0, scale 1 and shape parameter 50,which is of independent
other components of εt . The noncentered skew normal distribution has a nonzeromean
50

√
2/

√
π(1 + 502). In Case 2, εt is distributed as a centered multivariate skew nor-

mal distribution with location parameter 0a , correlation matrix� defined in Process 1,
and shape parameter ζ = 501a , where 0a and 1a are a-dimensional vectors with every
component being zero and one, respectively. The skewed process is found in Chan
and Tong (1986); The joint density function of multivariate skew normal distribution
is given, for x ∈ R

a , by

fSN(x;�, ζ ) = 2υa(x;�)ϒ(ζ Tx),

where υa(·;�) is the probability density function of the a-dimensional centered mul-
tivariate normal distribution with a correlation matrix � and ϒ(·) is the cumulative
distribution function of the standard normal distribution. Note that the noncentered
process has a nonzeromean

√
2/(π(1 + ζ T�ζ ))�ζ unless ζ = 0, so we need subtract

the mean. The more details of multivariate skew normal distribution can be found in
Azzalini and Valle (1996), Azzalini and Capitanio (1999).

As for Process 4, we suppose
Process 4: {et } follows the generalized autoregressive conditional heteroscedastic-

ity model

eit = h1/2i t εi t , i = 1, . . . , a,

⎛

⎜
⎝

h1t
...

hat

⎞

⎟
⎠ =

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ + 0.1�

⎛

⎜
⎝

e21t
...

e2at

⎞

⎟
⎠ +

⎛

⎜
⎝

0.1h1,t−1
...

0.1ha,t−1

⎞

⎟
⎠ ,

where εt is distributed as a zeromeanmultivariate normal distribution with covariance
Ia in case 1 and � in case 2.

Rpackagemvtnorm (Genz et al. 2021) is available to produce innovation processes
for Processes 1 and 2. Process 4 can be produced by R package ccgarch (Nakatani
2014). The skew normal distribution can be generated by R package sn (Azzalini
2022).

Features of Processes 1–4 as follows: Process 1 is the most standard setting. Fifth
and higher moments of Process 2 do not exist. Processes 3 and 4 have a nonzero
skewness and conditional heteroskedasticity, respectively.

We report the rejection probabilities of our proposed test Tn and the classical tests
Sn in Figs. 1, 2 and 3 over 1000 simulations for the following situations: (i) τ = 0a ; (ii)
τ = (τ1, . . . , τa)

�, where τ3k−2 = −0.03, τ3k−1 = 0, and τ3k = 0.03 for k ≤ a/3;
and (iii) τ is distributed as a zero mean multivariate normal with covariance matrix
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Fig. 1 Empirical size of tests for the existence of fixed and random effects based on Tn and Sn . The upper
and lower plots correspond to a = 3 and a = 9, respectively. The left and right plots correspond to the
cases 1 (independent groups) and 2 (correlated groups), respectively. The tick marks of the x-label (I), (II),
and (III) correspond to the sample size n1 = · · · = na = 1000, n3k−1 = n3k−2 = 2000 and n3k = 1000
for k ≤ a/3, and n1 = · · · = na = 2000, respectively

�τ . We let�τ be a block diagonal matrix whose off-diagonal blocks are all 3×3 zero
matrix and main-diagonal blocks are all the same 3 × 3 matrix �̃

τ = (�̃τ
i j )/5000,

where �̃τ
11 = 3, �̃τ

22 = 2, �̃τ
33 = �̃τ

12 = �̃τ
21 = 1, �̃τ

23 = �̃τ
32 = −0.5, and

�̃τ
13 = �̃τ

31 = 0.008. The significance level is set to be 0.05.
The situation (i) corresponds to both null hypotheses H0 and H1 defined in (5)

and (8), respectively, and (ii) and (iii) correspond to the alternatives K0 and K1,
respectively. Note that fixed effects and random effects are chosen as tiny so that
power become less than one to compare performances of tests against Processes 1–4.
In the supplementary material, the consistency can be confirmed by results (see Tables
1–6 in Section B.1).
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Fig. 2 Empirical power of tests for the existence of fixed effects based on Tn and Sn for fixed effects
τ = (τ1, . . . , τa), where τ3k−2 = −0.03, τ3k−1 = 0, and τ3k = 0.03 for k ≤ a/3. The upper and lower
plots correspond to a = 3 and a = 9, respectively. The left and right plots correspond to the cases 1
(independent groups) and 2 (correlated groups), respectively. The tick marks of the x-label (I), (II), and
(III) correspond to the sample size n1 = · · · = na = 1000, n3k−1 = n3k−2 = 2000 and n3k = 1000 for
k ≤ a/3, and n1 = · · · = na = 2000, respectively

Figure 1 shows the empirical size of the tests. Both tests work well for a = 3 and
the case 1 (the top left plot) for all processes. Our proposed test based on Tn has good
size for a = 3 and the case 2 (the top right plot). On the other hand, our test has small
size distortion for a = 9 and the cases 1 and 2 (the lower plots). This distortion has
occurred by the accumulation of estimating errors of the large matrix V− (see Figures
1 and 2 in Section B.2 in the supplementary material). As expected, the classical test
based on Sn has size distortion for both a = 3, 9 and the case 2 (the right plots) since
the correlated groups are dealt with.

Figures 2 and 3 show the empirical power of the tests. Figures 2 and 3 for both
a = 3, 9 and the case 1 display that empirical power of both tests are nearly equal for
each model.
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Fig. 3 Empirical power of tests for the existence of random effects based on Tn and Sn for random effects
τ distributed as a zero mean multivariate normal with covariance matrix �τ , where �̃

τ = (�̃τ
i j )/5000 is a

block diagonal matrix whose main-diagonal blocks are all the same 3×3matrix such as �̃τ
11 = 3, �̃τ

22 = 2,

�̃τ
33 = �̃τ

12 = �̃τ
21 = 1, �̃τ

23 = �̃τ
32 = −0.5, �̃τ

13 = �̃τ
31 = 0.008, and τ3k = 0.03 for k ≤ a/3. The

upper and lower plots correspond to a = 3 and a = 9, respectively. The left and right plots correspond
to the cases 1 (independent groups) and 2 (correlated groups), respectively. The tick marks of the x-label
(I), (II), and (III) correspond to the sample size n1 = · · · = na = 1000, n3k−1 = n3k−2 = 2000 and
n3k = 1000 for k ≤ a/3, and n1 = · · · = na = 2000, respectively

In most cases, size and power for the unbalanced design (II) n3k−1 = n3k−2 =
2000 and n3k = 1000 for k ≤ a/3 fall between results for the balanced designs (I)
n1 = · · · = na = 1000 and (III) n1 = · · · = na = 2000. There are the cases that the
empirical power for unbalanced design (II) is worse than that for balanced design (I)
regardless of the fact that the total sample size of (II) is larger than that of (I), e.g., the
power of Processes 1 and 2 for a = 9 and case 2 in Fig. 3. Further, we implemented
some additional experiments in the supplementary material and confirmed that the
consistency of our test, i.e., the empirical power goes to one (see Tables 1–6 in Section
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B.1). Overall, our proposed test works well to detect the existence of fixed or random
effects. In summary, our test outperforms the classical test when groups are correlated
and a is moderate.

6 Application to real data

Data analysis on stock prices often does not take randomeffects into account.However,
for some portfolio of stocks, random effects cannot always be ignored. In fact, equity-
focused investors take into account the sensitivities of currency, oil prices, market,
etc. in determining their equity portfolios. In other words, equity-focused investors
believe that the factors related to earnings and stock prices are linked. For example,
stock prices of trading companies are linked to oil prices. It can be rephrased that
equity-focused investors believe that random effects with respect to industries exist.
In this empirical study, we pursue the question of whether random effects really exist
for a portfolio that combines the automobile, telecom, and trading companies. We
analyze the log-return in stock prices from January 4, 2016, to December 30, 2019.
The companies we investigate are Itochu Corp., Mitsubishi Corp, Mitsui & Co., Ltd.,
and Marubeni Corp. from trading companies, Honda Motor Co. Ltd., Nissan Motor
Co., Ltd., Suzuki Motor Corp., and Subaru Corp. from car companies, and KDDI
Corp., Hikari Tsushin Inc. and NTT Data Corp. from telecom companies. The length
of each time series is 978. These data can be downloaded from the website https://
www.investing.com.

For this dataset, the number of groups a is three (trading, car, and telecom sectors),
the dimension of time series p from each firm is one which corresponds to univariate
ANOVA, the number of firms q is three for telecom sector and four for car and trading
sectors, and the number of observations is n1 = n2 = n3 = 978.

The plots of the log-returns are shown in Fig. 4. The dataset seems stationary
and we cannot tell the difference between sectors. Table 1 gives that sample means
and variances of the log-returns. The sample means of Suzuki and Hikari appear
to be large compared to the sample means for other car and telecom companies,
respectively. As for sample variances, the variances of Suzuki and Subaru are a little
larger than other companies. Figure 5 shows the heatmap of sample correlations. These
data have correlations between and within groups. This implies the classical F-test
statistic should not be applied in this situation since it is designed for independent
groups. Interesting observations for the data are as follows: Within-group correlations
of telecom and trading companies are low and rather high, respectively. This may be
because of a similar product mix for trading companies and a different product mix
for telecom companies. Between-group correlations for car and trading companies are
higher than those for telecom and car companies and those for telecom and trading
companies. This may be ascribed to the facts that car and trading companies’ stocks
are cyclical, and by contrast, telecom companies’ stocks are defensive.

We apply our test and the classical test as a comparison to this dataset (seeRemark 4)
and obtain the values 5.517 and 2.401 and the corresponding p-values 0.0634 and
0.301, respectively.
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Fig. 4 Plots of log-return for stock prices

Table 1 Sample means and sample variances of log-returns

Sector Company Mean×10−4 Variance×10−4

Trading company Itochu 5.89 2.15

Mitsubishi 3.74 2.57

Mitsui 3.15 2.16

Marubeni 2.80 2.81

Car company Honda −1.90 2.75

Nissan −6.80 2.35

Suzuki 2.51 3.91

Subaru −5.91 3.58

Telecom company KDDI 0.71 2.45

Hikari 12.61 2.86

NTT 2.53 2.71

Therefore, the null hypothesis H1 does not rejected under the significance level
0.05 for the existence of random effects for both tests. However, the p-values of our
test is close to 0.05, and for the significance level 0.1, our tests rejects the hypothesis,
but the classical test does not. From the observations that (i) our dataset has between-
group correlations, and thus, the classical test is not appropriate, (ii) there exists the
tendency of sample means: Car companies tend to have negative sample mean; in
contrast, telecom and trading companies tend to positive sample mean, and (iii) the
p-value of our test is close to 0.05, we conclude random effects should be taken into
consideration for modeling log-return for stock prices. This result ensures equity-
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Fig. 5 Heatmap of sample correlations between companies

focused investors’ thoughts that different industries have different factors that affect
corporate profits of companies and corporate profits influence stock prices such as
profits of trading companies are linked to the price of crude oil.

Our result is convincing from portfolio theory. In that field, it is well known that
portfolios of stocks have systematic risks related to the wholemarket and unsystematic
risks related to sectors and companies. Many studies taking into account unsystematic
risk have been conducted and emphasized the importance of unsystematic risks (see
Aber 1976; Hsu and Jang 2008, and references therein). Industry effects corresponds
to unsystematic risks in our case.

7 Additional thoughts/remarks

Nagahata and Taniguchi (2018) showed the asymptotic null distribution of Sn under
the independence of groups. The following lines show that the independence of groups
can be relaxed to uncorrelated groups. A simple algebra gives
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Sn = n
a∑

i=1

( yi . − y..)T
(
2π f̃n(0)

)−1
( yi . − y..)

= n

⎛

⎜
⎜
⎜
⎝

(
2π f̃n(0)

)−1/2
e1.

...
(
2π f̃n(0)

)−1/2
ea.

⎞

⎟
⎟
⎟
⎠

T

{
(Ia − Ja/a) ⊗ Ip

}

⎛

⎜
⎜
⎜
⎝

(
2π f̃n(0)

)−1/2
e1.

...
(
2π f̃n(0)

)−1/2
ea.

⎞

⎟
⎟
⎟
⎠

.

Under Assumption 3.1 and the balanced design (n1 = · · · = na), it holds

that
√
n

((
2π f̃n(0)

)−1/2
e1., . . . ,

(
2π f̃n(0)

)−1/2
ea.

)

converges in distribution to

N (0, Iap) as n → ∞.
The idempotence of (Ia − Ja/a) ⊗ Ip, rank

{
(Ia − Ja/a) ⊗ Ip

} = (a − 1)p,
the positive definiteness of the spectral density matrix, and the continuous mapping
theorem yield that Sn converges in distribution to the Chi-square distribution with
(a − 1)p degrees of freedom under the independence of groups. The consistency of
the test under the alternative and the power of the test under the local alternative can
also be derived along the same line as our proof.

The independence or uncorrelatedness of groups is quite restrictive and impractical.
In the case that groups are correlated, the asymptotic null limit distribution of Sn
depends on the process since the nondiagonal elements of the asymptotic variance of

the vector
√
n

((
2π f̃n(0)

)−1/2
e1., . . . ,

(
2π f̃n(0)

)−1/2
ea.

)

are not equal to zero.

Thus, the p-value of the test based on Sn is not easy to compute. On the other hand, our
proposed test statistic Tn is asymptotically distribution-free under the null. Based on
the numerical studies, we realized the proposed test statistic has some size distortion
under the null for large a. One direction to solve this problem is using Sn and applying
a bootstrap method to obtain critical value. Homogeneity tests specialized for this type
of models will be investigated in our future work.

8 Discussion

In this paper, the tests for the existence of fixed and random effects for one-way
model with correlated groups were considered. The new test statistic was proposed
and out tests are shown to be asymptotically size α under the null and consistent.
The nontrivial power of tests is derived under the local alternative. In the numerical
study, we confirmed our test performs well for several settings. In particular, our test
is superior to the classical test when groups are correlated and a is moderate. The
empirical study suggests the random effects are better to take into account in the
analysis of stock prices .
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