CHEMICAL REVIEWS

Gates of Enzymes

Artur Gora,[†] Jan Brezovsky,[†] and Jiri Damborsky^{*,†,‡}

[†]Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic

[‡]International Centre for Clinical Research, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic

CONTENTS

1. Introduction	5871
2. Molecular Function of Gates	5873
2.1. Control of Substrate Access	5873
2.2. Control of Solvent Access	5873
2.3. Control and Synchronization of Reactions	5874
3. Structural Basis of Gates	5874
3.1. Residue Motion: Wings	5874
3.2. Residue Motion: Swinging Doors	5877
3.3. Residue Motion: Apertures	5877
3.4. Motions of Loops and Secondary Structure	
Elements: Drawbridges and Double Draw-	
bridges	5877
3.5. Domain Motion: Shell	5878
4. Locations of Gates	5878
4.1. Active Site Entrance and Active Site	5880
4.2. Tunnel Entrance and Tunnel Bottleneck	5880
4.3. Cofactor Cavity	5880
5. Engineering of Gates	5917
5.1. Gate Modification	5917
5.2. Gate Removal	5917
5.3. Gate Insertion	5918
6. Conclusions	5918
Author Information	5919
Corresponding Author	5919
Notes	5919
Biographies	5919
Acknowledgments	5919
References	5919

1. INTRODUCTION

Enzymes are very efficient catalysts that are essential for the functioning of living organisms. The low efficiency of biocatalysts produced de novo relative to those that have

evolved naturally demonstrates that our understanding of enzymatic catalysis is still incomplete.^{1–4} The dynamic motion of enzymes during catalytic events is one of the many aspects of protein chemistry that are currently insufficiently well understood.⁵⁻⁹ On one hand, proteins need to have well-defined and organized structures in order to maintain stable functionality in the intracellular environment. On the other hand, some degree of flexibility is often required for catalytic activity. Molecular dynamics simulations have provided key insights into the importance of protein dynamics in catalysis, such as the observation of substrate access and product exit pathways that cannot be identified by inspecting crystal structures.¹⁰ Csermely et al. recently reported that mutations in regions that affect protein dynamics, such as hinge regions that are important in substrate binding, can have dramatic effects on catalytic activity.¹¹ In this review, we highlight the role of protein gates as another class of highly dynamic structures that play key roles in protein function.

Given the importance of gates for enzymatic catalysis, the number of studies that have examined them systematically is surprisingly small. Conformational gating in proteins was first described by McCammon and co-workers in 1981, but there have been relatively few systematic studies in this area since then.¹²⁻¹⁴ Moreover, much of the available data on gates in macromolecular systems is hidden or otherwise dispersed within the scientific literature, partly because there is currently no consensus regarding what defines a gate. Some authors describe all residues that affect the ligand's access to a target area as gating residues, whereas others apply the term exclusively to structural features that undergo large movements during the gating event. In this review, we define a gate as a dynamic system consisting of individual residues, loops, secondary structure elements, or domains that can reversibly switch between open and closed conformations and thereby control the passage of small molecules-substrates, products, ions, and solvent molecules-into and out of the protein structure. Under this definition, the anchoring residues that stabilize the open or closed conformations of a gate are not themselves gating residues. However, because of their various interactions with the gating residues, they can control the size and properties of the ligands that pass through the gate as well as the frequency of the exchange events.

Gates can be found in various systems, including enzymes, ion channels, protein—protein complexes, and protein—nucleic acid complexes.^{14,15} In this work, we focus specifically on gates in enzymes. We attempt to answer three basic questions—why, how, where—by describing the molecular function, structural

Received: September 17, 2012 Published: April 25, 2013

Figure 1. Distribution of (A) reviewed proteins and (B) proteins from the PDB database according to EC classes, (C) reviewed proteins and (D) proteins from the PDB database according to SCOP classification, and (E) identity matrix of reviewed enzymes (only the enzymes with sequence identities above 20% are shown for clarity).

basis, and location of gates within protein structures. We discuss 71 illustrative examples of enzymes that together contain 129 different molecular gates and propose a system for

their classification. Reviewed enzymes were chosen based on a literature search with a set of keywords corresponding to gates and conformational changes in enzymes. A preliminary set of

protein structures was filtered out, leaving only those entries for which both open and closed conformations were described. The final set represents different classes of enzymes (Figure 1A) and different protein folds (Figure 1C) and spans structurally and functionally the entire enzyme world. Among 71 chosen enzymes, only 17 have higher than 20% sequence identity with other set members (Figure 1E). The proposed classification system provides a useful framework for comparing gates of different enzymes and drawing general conclusions about gate function, structure, and position. Moreover, the classification scheme is easily extendable to describe the new gate types that will almost certainly be revealed by structural and functional analyses of newly isolated enzymes in the future.

2. MOLECULAR FUNCTION OF GATES

Analyses of protein dynamics have identified a number of enzymes with gates, suggesting that these structures are rather common. What is the molecular function of the gates? It seems that in enzymes they facilitate precise control over processes that are directly linked to catalysis. Enzyme gates can (i) contribute to enzyme selectivity by controlling substrate access to the active site, (ii) prevent solvent access to specific regions of the protein, and (iii) synchronize processes occurring in distant parts of the protein (Figure 2). The proper function of

Figure 2. Schematic illustration of the molecular functions of protein gates: (A) control of substrate access, (B) control of solvent access, (C) control and synchronization of reactions. Protein is represented by the area colored in gray, active site cavity by the area in white, gating residues by red lines, substrate molecules by green or violet lines, and water molecules by blue lines.

even the simplest gates can potentially be essential for catalysis, and the gating event may even represent the rate-limiting step of the catalytic cycle. Interestingly, different gating residues within a single protein molecule may be responsible for restricting the access of specific substrates. High variability of the gating residues within an enzyme scaffold can lead to the evolution of enzyme families whose members are selective for specific substrate types. The best known example of such specialization within a single enzyme family is provided by the cytochromes P450.¹⁶

2.1. Control of Substrate Access

Enzyme selectivity has been traditionally explained by the "lock and key" model,¹⁷ which was subsequently complemented by the "induced fit" or "hand in glove",¹⁸ "selected fit",¹⁹ and "keyhole, lock, and key"²⁰ models. In many cases, these models provide an adequate description of enzyme selectivity based on adjustable complementarity between the active site and the cognate substrates. However, research conducted over the past decade has shown that regions located further from the active site can also affect enzyme selectivity. Substrate access pathways, which often incorporate molecular gates, impose additional constraints on ligand binding to the active site.²⁰ The ability of ligands to traverse these access pathways can be controlled by (i) size discrimination at the narrowest point along the pathway forming a bottleneck, (ii) geometrical constraints, e.g., the curvature of the pathway, and (iii) specific molecular interactions such as hydrogen bonds, electrostatic interactions, and hydrophobic interactions with the residues comprising the access pathway. Protein gates can be regarded as molecular filters that discriminate between molecules as similar as molecular oxygen and carbon monoxide in NiFe hydrogenases^{21,22} or water and hydroxyperoxide in catalases.^{23,24} Gates act as filters in a wide range of enzymes, controlling the range of substrates that can be accepted by broad-specificity cytochromes P450,²⁵ the stereospecificity of epoxide hydrolases,²⁶ and product length in undecaprenyl-pyrophosphate synthases.²⁷

One of the first systematic descriptions of the influence of the gating process on substrate binding was reported by Szabo et al., who assumed that the switching between the open and the closed conformations of the gate was a stochastic process.^{28–30} This model was successfully used to demonstrate that despite conformation gating¹³ acetylcholinesterase can bind acetylcholine with a rate constant of $10^9 \text{ M}^{-1} \text{ s}^{-1}$ and predict the rate of formation of the enzyme–substrate complex in choline oxidase.³¹ Since gates create a barrier on the substrate access pathway, the kinetic rate constant for passage over the barrier can be obtained using Kramers' reaction rate theory or its later modifications.^{32–34} This methodology was used to compare the results of computational and experimental studies on the passage of the tetramethylammonium cation through acetylcholinesterase³⁵ and migration of ammonia through carbamoyl phosphate synthetase.³⁶

2.2. Control of Solvent Access

Spatial localization of the hydrophobic and hydrophilic regions within the structure of a protein is important in maintaining its proper fold and can also be crucial for catalytic function. The various steps of an enzymatic reaction may require different environments. These distinct environments can be generated by having the individual steps occur in spatially separate regions of the protein, but this does not eliminate the problem of transporting the substrate between these sites. There are important problems to be addressed, including transporting polar molecules from a polar environment to a nonpolar one and separating hydrophilic compartments from hydrophobic ones within the structure of a single protein.

In some proteins, these problems are addressed by the presence of selective barriers that permit passage of solutes but not water molecules. Crystallographic and NMR data can be used to identify cavities within a protein structure accessible to water molecules. Exclusion of water from some parts of the cavity, such as the active site or a specific tunnel, is essential for functioning of numerous enzymes. In simple cases, the gates may prevent the entrance of water molecules into the cavity when a substrate or a cofactor is not present, as occurs in rabbit 20a-hydroxysteroid dehydrogenase.³⁷ In more complex cases, the gates may permit access only to a specific part of the cavity, as occurs in carbamoyl phosphate synthesas³⁶ and imidazole glycerol phosphate synthase.³⁸ In the cytochromes P450, a "water channel" controls hydration of the substrate in the active site, which is extremely important for cytochrome activity.¹⁶

The potential importance of gates that act as solvent barriers is further illustrated by the example of enzymes with ammonia tunnels. In these proteins, gates prevent water from entering the channel and protonating the ammonia, which is essential for maintaining its nucleophilic character.³⁹

Control of water access can be seen as a special case of the function described in section 2.1. However, when discussing water exclusion, the main emphasis is on the water permeability of the gates and their ability to distinguish water molecules from other ligands. The gate can simultaneously act as a barrier to passage of water molecules while acting as a selective filter for other molecules, allowing them to access the active site. Gates of this type resemble semiselective membranes that can distinguish between species such as water and ammonia, allowing only the second to pass. It is worth noting that passage of 'permitted' species can be facilitated by rearrangement of an individual gating residue, such as K99 in imidazole glycerol phosphate synthase. Conversely, passage of water molecules through gates of this type would often require significant conformational changes in all of the residues that comprise the gate.³⁸ This makes gates in enzymes far more sophisticated than semipermeable membranes.

2.3. Control and Synchronization of Reactions

Another function of gates becomes apparent when considering enzymes with two or more active sites. Many protein structures contain tunnels to facilitate efficient migration of intermediates and gates to synchronize chemical reactions. Such arrangements can be compared to a pair of workers on an assembly line. The second worker has to be ready before he can receive a product from the first one. Moreover, the products generated by the first worker must satisfy certain standards. The control gates located between the workers regulate the exchange of products over a well-defined period of time. Gates of this kind are common in ammonia-transferring enzymes, suggesting that they are old in evolutionary terms and functionally important.40-43 The need to efficiently transport ammonia within the interior of the protein may be related to its high cellular toxicity. We speculate that gates of this kind may be present in many enzymes that have multiple active sites connected by internal tunnels for the transport of intermediates. Many such enzymes have been studied in some detail, including carbamoyl phosphate synthetase, which has tunnels for ammonia and carbamate transportation;³⁶ asparagine synthetase,⁴⁴ glucosamine 6-phosphate synthase,⁴⁵ and glutamate synthase,⁴⁶ all of which have tunnels for ammonia transportation; tryptophan synthase for indole⁴⁷ and carbon monoxide dehydrogenase/acetyl coenzyme A synthase for carbon monoxide transportation. $^{\rm 48}$

Systematic analysis of the functions of the known gates in the 71 proteins discussed in this article revealed the following distribution of gate types: 40% of the studied gates control substrate access, 19% control solvent access, 15% control and synchronize catalytic events, and 26% have other function (Figure 3).

3. STRUCTURAL BASIS OF GATES

Gates are dynamic systems that can make reversible transitions between open and closed states. They vary in size and complexity, from individual amino acid residues to loops, secondary structure elements, and even domains. The simplest gates consist of only one amino acid side chain that can close or open an access pathway by rotating. Opening and closing of more complicated systems can involve the synchronized movement of two or more residues, and the largest systems involve rearrangements of secondary elements or even entire domains (Table 1). For larger systems, movement of the gate may cause formation of a tunnel or enclosed cavity in addition to permitting or denying access to selected species.^{49,50} The following parameters can be useful for describing and discriminating between gates: (i) their constituent residues, (ii) their anchoring residues, (iii) the hinge region, i.e., the amino acids that make the structure flexible and allow it to move, (iv) the gate's position, (v) the gate's bottleneck diameter in the open and closed states, (vi) changes in the bottleneck's size over time, (vii) the energy required to switch the gate from one state to the other, and (viii) the energy required for passage of specific molecules through the gate.

3.1. Residue Motion: Wings

The energetic barriers for residue rotation are quite small, 1-16 kcal/mol.⁵¹ While generally low, such barriers can nevertheless be large enough to significantly affect the probability that a given species will be able to pass through the gate or the rate at which they do so. Depending on the particular amino acid and its surroundings, one or both states of the gate may be stabilized by interactions with anchoring residues, e.g., hydrophobic interactions, H bonds, ionic interactions, salt bridges, and $\pi-\pi$ interactions. The strongest effect on the control of the passage is achieved when a large gating residue is located in the bottleneck of the pathway. The most common residues in this role are those whose side chains contain aromatic rings, i.e., W, F, and Y (Figure 4). Wing-type gates are common and can be found in enzymes such as imidazole

Table 1. Classifying Enzyme Gates According to Their Structural Basis

	1	2	3
Symbol	•	••	>-•
Scheme of closed state	Jeg Jeg	Jo Ja	
Illustration of closed state			
Scheme of open state		A A	to al
Illustration of open state			- , ,
Metaphor	wing	swinging door	aperture
Mechanism and moving part	side chain rotation	side chain rotation	backbone motion
Structural basis	1 residue	2 residues distant in sequence	2-4 residues distant in sequence
Amplitude of motion	< 2Å	< 3Å	< 3Å
Time scale	$ps - \mu s$	$ps - \mu s$	$ns - \mu s$
Other features	anchoring residue	anchoring residues	hinge and anchoring free

Table 1. continued

	4	5	6
Symbol	\sim		Z
Scheme of closed state			
Illustration of closed state			
Scheme of open state			
Illustration of open state	- California -		B
Metaphor	drawbridge	double drawbridge	shell
Mechanism and moving part	fragment movement	fragments movement	domain movement
Structural basis	~8-20 residues neighbour in sequence	2x ~8-20 residues neighbour in sequence	domain
Amplitude of motion	> 5Å	> 5Å	> 5Å
Time scale	$ns - \mu s$	$ns - \mu s$	ms – s
Other features	hinge region, anchoring residues	hinge region, anchoring residues	hinge region, anchoring residues

glycerol phosphate synthase,³⁸ cytidine triphosphate synthetase,⁵² methane monooxygenase hydroxylase,⁵³ FabZ β hydroxyacyl-acyl carrier protein dehydratase,⁵⁴ and cytochrome P450.^{25,55} Even small gates of this type may require an activating agent to open. For example, the gate in the water channel of human monooxygenase CYP3A4 is created by the

Figure 4. Relative occurrences of specific amino acid residues in wing and swinging door gates; 71 proteins with 129 gates were analyzed, and 154 residues that form wings or swinging doors were identified. Detailed description of the analyzed proteins is provided in Table 3. Values were normalized against the frequency with which each amino acid appears in all of the protein structures of the UniProtKB/Swiss-Prot database (2012_07).

interaction of the conserved residue R375 with the heme, which opens upon cytochrome P450 reductase binding to the enzyme.⁵⁶

3.2. Residue Motion: Swinging Doors

A more complex type of gate consists of two residues that can rotate but are stabilized in the closed conformation by a mutual interaction. Lario et al. introduced the phrase "swinging door" to describe gates of this type that were identified in cholesterol oxidase type I.⁵⁷ Some swinging door gates open by having both residues rotate in the same direction, while in others the two residues rotate in opposite directions. Common stabilizing interactions in swinging door gates include π stacking as occurs in the F–F pair of cytochrome P450_{3A4} 58,59 and acetylcholinesterase,⁶⁰ ionic interactions as in toluene-4-monooxygenase⁶¹ and cytochrome $P450_{cam}$, $P450_{BM3}$, and $P450_{eryF}$, aliphatic hydrophobic interactions such as those between the F-I, the F–V, and the F–L pairs of cytochrome $P450_{3A4}$, ^{58,59} aliphatic interactions such as those between the R–L and the L–I pairs of cytochrome $P450_{3A4}$, ^{58,59} and hydrogen bonds such as that between the R-S pair in cytochrome P450_{3A4}.⁵⁸ The open conformations of one or both of the gate residues may also be anchored, depending on the amino acids surrounding the gate. In comparison to wing gates, gates consisting of two residues can control wider tunnels and channels. It is worth mentioning that the individual residues that comprise a swinging door gate may simultaneously be components of another gate, as occurs in cytochrome P450_{3A4}. ⁵⁸ Literature data indicate that most gates of this type consist of F-F pairs, and one way to screen for potential gates is to search for phenylalanine sandwiches.

3.3. Residue Motion: Apertures

Proteins undergo low-frequency breathing motions that may involve synchronized movements of bottleneck residues. In contrast to the previously described gates, the residues that form aperture type gates do not need to rotate and can maintain a rigid conformation. Their movements occur as a result of the synchronized relocalization of the enzyme backbone during its breathing motions. The ability of a given species to pass through gates of this type depends on the length of time the gate remains in the open state, which is determined by the enzyme's rigidity (especially in terms of the compartments housing the gating amino acids) and the strength of the interactions between the gating residues. Gates of this kind can therefore switch between states at different frequencies, which can be adjusted by mutating the gating residues. Aperture-type gates have been identified in several enzymes including carbamoyl phosphate synthetase,³⁶ choline oxidase,³¹ glutamate synthases,⁶² extradiol dioxygenases-homoprotocatechuate 2,3dioxygenase,⁶³ cytochrome P450_{eryF},²⁵ and acetylcholinesterase.⁶⁴

3.4. Motions of Loops and Secondary Structure Elements: Drawbridges and Double Drawbridges

The movements of loops and secondary structure elements can provide an energetically favorable method of controlling access for larger ligands. The gates described above consist of individual residues and would not provide sufficient control for enzymes that have large substrates and correspondingly large active site cavities. In many cases, the loops involved in access control also contribute to formation of substrate/ cofactor binding cavities. Alternatively, in enzymes with complex systems of internal tunnels such as the members of the cytochrome P450 family, the dynamic motion of the protein structure, especially the flexible B-C and F-G loops in the cytochromes P450, plays a vital role in the opening and closing of the tunnels.¹⁶ Protein motions of this type can also merge different tunnels, creating a wider opening. Here, gating elements control the access of large substrates by merging and dividing the space shared by the tunnels.¹⁶ However, in such cases the movements of the loops can cause formation of smaller and more selective gates such as the swinging doors described in the preceding sections.56,58

Movements of loops and secondary structure elements can change the solvation of a cavity or the gate itself. The equilibrium between the open and the closed conformations depends on the anchoring residues and the flexibility of the hinge region. All of these elements play important roles in the movements of large gates. The conserved GxG motif found in most cytochrome P450 family members provides a good example.⁶⁵ Depending on cytochrome isoform, the motif flanks either one or both ends of the B–C loop. It increases the

Figure 5. Frequencies of different gate types based on analysis of 71 proteins with 129 gates. Detailed description of the analyzed proteins is provided in Table 3.

flexibility of the loops, lowers the energy required for their motion, and facilitates tunnel opening and closing. The loops' variable lengths and levels of flexibility mean that each member of the P450 family has a gate with unique properties.¹⁶

3.5. Domain Motion: Shell

Large domain motions in enzymes are not generally regarded as gating systems. "Gates" of this scale are common in ion channels, which are beyond the scope of this review.¹⁴ However, one might expect that such large gates could be present in enzymes that catalyze reactions of very large substrates. Indeed, a gate of this kind has been observed in RNA polymerase, whose clamp domain opens to permit entry of promoter DNA during initiation, closes to establish a tight grip on the DNA during elongation, and then opens again to release the DNA during termination.⁶⁶ Interestingly, movement of large domains may protect enzymes from small molecule leakage and control their transport through long tunnel networks. This has been observed in carbon monoxide dehydrogenase/acetyl coenzyme A synthase, which operates as a tetrameric complex of distinct subunits.⁶⁷ The cap domain movement of epoxide hydrolase from Mycobacterium tuberculosis is another enzyme with a domain-scale gate that controls substrate access to the active site cavity.⁶⁸ Monomers of phospholipase A2 control access to their interface and the active site by adopting a different conformation during dimer aggregation.⁶⁹ Large domain movements often require an additional source of energy. For example, in the ATPdependent protease HsIVU,⁷⁰ ATP hydrolysis is required to initiate conformational changes and propagate them to the residues that form the gate.

Structures of the gates found in 71 different proteins were analyzed systematically, yielding the results presented in Tables 2 and 3. The most common gate types are wings, swinging doors, and drawbridges, while apertures, double drawbridges, and shells are less common (Figure 5). However, these numbers may be distorted by the difficulty of identifying different gate classes by experimental methods or molecular dynamics simulations. Movements of only a few residues are more easily captured than those of secondary structure elements or domains due to the different time scales involved and the sizes of the moving structures. Moreover, gates may be controlled by overlapping processes that occur on different time scales and affect different structural regions.⁵⁰

4. LOCATIONS OF GATES

The roles of gates in the enzymatic catalysis discussed above suggest that these structures are natural hot spots for modifying enzyme properties. Identification of structural components of natural gates would therefore be very useful to protein designers. This raises a question: how and where should one look for the gates? Gates in proteins can be identified experimentally by protein crystallography and NMR spectroscopy and computationally by molecular dynamics simulations and normal-mode analysis.

Crystallographic analyses can provide information on alternative configurations of particular amino acids in a protein structure. The presence of residues that can adopt both openand closed-type configurations along the access or release pathways of ligands, ions, and solvents may suggest the presence of a gate. However, in order for a gate to be detected by crystallography, it is necessary for both the open and the closed conformations to be sufficiently represented. Despite this restriction, crystallographic analyses have identified gates in tryptophan synthase,⁷¹ haloalkane dehalogenase LinB,⁷² L-amino acid oxidase,⁷³ and toluene-*o*-xylene monooxygenase.⁷⁴ In some cases, only one conformation will be present in the solved crystal structure, which may create a somewhat distorted picture, suggesting the absence of a gate when the open conformation is stabilized or the absence of a pathway when the closed conformation is stabilized.^{31,61,75}

The limitations of crystallographic analysis can be overcome by advanced NMR spectroscopy, which makes it possible to study multiple protein conformations simultaneously, over time scales ranging from picoseconds to milliseconds.^{7,76} Such analyses provide information on both the open and the closed states as well as the population of each state and rate of their interconversion. NMR techniques have been used to measure the rate of exchange between the open and the closed conformations of triosephophate isomerase,^{77,78} HIV-1 protease,⁷⁹ and dihydrofolatereductase.^{80,81} Overall, the utility of NMR for studying distant effects of mutations on protein dynamics suggests that it has great potential for investigating gating mechanisms.⁹

Some of the most useful tools for identifying gates are the computer programs developed for detecting tunnels, channels, and cavities in protein structures.⁸² The outputs of CAVER,⁸³ MOLE,⁸⁴ and MOLAXIS⁸⁵ can be analyzed to detect bottleneck residues that form a potential gate or identify the best position for introduction of a new gate. Mutations at these "hot spots" can provide enzymes with new selectivities or

Table 2. List of Enzymes Possessing Gates Described in the Scientific Literature with Indication of Their Function, Structural Basis, and Location

				Fun	ction					Structu	ral basis				Loca	tion	
No.	Enzyme name	Substrate	accessionity	Solvent accessibility	Synchronization of reactions	Other	Ļ		¶ ↓	}→	6	Ę	Q	Active site entrance and active site	Tunnel entrance and tunnel bottleneck	Cofactor cavity	Other
01	2-Amino-2-Desoxyisochorismate Synthase PhzE	+			+		+										+
02	3-Hydroxybenzoate Hydroxylase MHBH			+		+	+									+	
03	Acetaldehyde Dehydrogenase DmpF	+			+	+	+		+						+		
04	4-Hydroxybenzoate Hydroxylase PHBH			+			+!						+			+	+
05	Acetylcholinesterase AChE	+		+			+		+					+			
06	Acylaminoacyl Peptidase					+							+				+
07	Asparagine Synthetase	т			+	+	+ +							Ŧ	+	+	
09	ATP-Dependent Proteases HslVU	+					+!								+		
10	Carbamoyl Phosphate Synthetase CPS - type II			+	+				+	+					+		
11	Carbon Monoxide Dehydrogenase / Acetyl Coenzyme	+			+	+							+				+
12	Carbonic Anhydrase β – type I			+					+					+			
13	Carbonic Anhydrase β – type II	+		+	+		+			+				+	+		
14	Carboxylesterase pnbCE	+				+	+					+		+	+		
15	Catalase CAT-1 and CAT-3	+		+			+			+				+	+		
10	Cellobiose Phosphorylase	+				+					+						+
18	Chalcone Synthase	+				+			+						+		
19	Chloramphenicol Halogenase CmlS	+									+				+		
20	Cholesterol Oxidase – type I SCHOX	+		+	+	+	+		+						+	+	
21	Cholesterol Oxidase – type II BsChOx	+				+			+	I.	.?						
22	Chondroitin AC Lyase			+		+				1		+		+			+
24	Copper-Containing Amine Oxidase			+			+								+		
25	Cytidine Triphosphate Synthetase CTPS		+	-	+		+			+			+	+		+	
26	Cytochrome P450 CYP3A4	+	+				+!!	+					+	+			
27	Dihydrofolatereductase Digeranylgeranylglycerophospholipid Reductase				+					+					+		
28	DGGR	+			+					+		+			+	+	
29 30	Epoxide Hydrolase H37Rv Epoxide Hydrolase M200	+			+		±?					+		+		+	
31	FabZ β-Hydroxyacyl-Acyl Carrier Protein Dehydratase	+			+		+							+			
32	Formiminotransferase-Cyclodeaminase FTCD				+					+						+	
33	Glucosamine 6-Phosphate Synthase GlmS		+	-	+ +		+	+		+			+	+			
34	Glutamate Synthases GItS Glutamine Phosphoribosylpyrophosphate	+	+	-	+ +			+		+			+	+			
35	Amidotransferase	+	+	-	+ +		+			+			+	+			
36 37	Haloalkane Dehalogenase LinB	+	+				+	+						+			
38	Histone Deacetylase HDAC1 and HDAC2	+					+	+						+			
39	Histone Deacetylase HDAC8		+	-	+		+							+			
40	HIV-1 Protease	+									+					+	
41 42	Homoprotocatechuate 2,3-Dioxygenase	+						+		+				+		+	
43	Hydrogenase NiFe				+					+!			+				
44	Imidazole Glycerol Phosphate Synthase IGPS		+	-	+		+			+				+			
45 46	Inosine 5'- Monophosphate Dehydrogenase	+	+		+		+			+			+	+			
40	L-Amino Acid Oxidase	+			+		+							+			
48	Lipase B	+			+		+									+	
49	Lon Protease	+								+				+			
50 51	Mannitol 2-Dehydrogenase Methane Monooxygenase Hydroxylase MMOH	+		-	+ +		+ +	+					+	+ +			
52	Monoamine Oxidase A	+								+			+				
53	Monoamine Oxidase B	+			+			+		+			+			+	
54 55	Monooxygenase ActVAOrf6	+	+		+		+ +!			+			+			+	
55 56	O-Acetylserine Sulfhydrylase Cysteine Synthase	+			+		+			+			т	+			
57	Oxidosqualene Cyclase SceOSC	+					+							+			
58	Phenol Hydroxylase PHHY	+				+	+		+					+	+		+
59 60	Phospholipase A2	+											+				+
61	Quercetin 2,3-Dioxygenase	+					+		+		Ŧ			т	+		

l'able	2. continued											
62	Rabbit 20a-Hydroxysteroid Dehydrogenase		+		+			+		+		+
63	Raucaffricine O-\beta-Dglucosidaseglucosidase	+				+				+		
64	RNA-Dependent RNA Polymerase				+			+				+
65	RNA Polymerase	+							+		+	
66	Toluene-4-Monooxygenase T4MO	+	+		+	+	+			+	+	
67	Toluene-Ortho-Xylene Monooxygenase ToMO	+				+				+	+	
68	Triosephophate Isomerase		+					+		+		
69	tRNA-Dependent Amidotransferase GatDE and GatCAB		+	+	+		+	+		+	+	
70	Tryptophan Synthase		+	+	+	+	+	+		+	+	+
71	Undecaprenyl-Pyrophosphate Synthase				+			+			+	
-							2					

+¹ Indicates gates interacting with cofactor. +¹¹ Cofactor assisted gating. +² Classification uncertain.

activities.⁸⁶ Zawaira et al.⁵⁹ used the CAVER software together with the Protein Interaction Calculator⁸⁷ for identifying gating residues within the cytochrome P450 family.

MD simulations are well suited for identification and analysis of gates and their behavior over time. Detailed descriptions of MD methods and their applications in simulating ligand migration can be found in recent reviews.^{9,88} Movements of large protein fragments on microsecond time scales can be investigated using Brownian dynamics,^{31,89} while Random Expulsion Molecular Dynamics and Steered Molecular Dynamics can be used to study pathways dedicated to transport of specific ligands.^{58,90} Some proteins have multiple pathways, each of which accommodates a different ligand or ligand class. This may in fact be a lot more common than is currently realized and can dramatically increase the complexity of gating systems arising from protein movement and the difficulty of identifying the true gating residues. For example, different residues control the ability of inhibitors E2020 and Huperzine A to access the active site of Torpedo californica acetylcholinesterase.⁶⁰ Similarly, in cytochrome P450_{3A4}, different residues in the same tunnel control access of temazepan and testosterone-6OH.58 The importance of a gating residue identified by computational methods can be confirmed experimentally by site-directed mutagenesis and kinetic experiments.

Studies using the experimental and theoretical approaches for gate identification discussed above have demonstrated that their locations within the protein can vary widely. Gates have been observed (i) at the entry to the active site or even directly inside the active site, (ii) at the entry or in the bottleneck of the protein tunnel connecting the buried active site to the protein surface or connecting two active site cavities, and (iii) at the interface of the cofactor and active site cavities (Figure 6).

4.1. Active Site Entrance and Active Site

The entrance to the active site cavity is a suitable location for a gate, and gates situated here can have strong effects on enzyme activity. In some cases, the gating residues may even be a part of the active site.⁹¹ The simplest gates serve as filters that discriminate between potential substrates and thus play an important role in controlling enzyme selectivity. More advanced systems can prevent substrate entry when the active site residues are not properly oriented, e.g., in enzymes that require conformational changes before substrate binding. Many enzymes have gates at the entrance to their active sites, including acetylcholinesterase,⁶⁰ imidazole glycerol phosphate synthase,³⁸ glutamate synthase,⁴⁶ toluene-*o*-xylene monooxyge-

nase,⁹¹ monooxygenase,⁹² choline oxidase,³¹ NiFe hydrogenases,²¹ carbonic anhydrases,⁹³ formiminotransferase-cyclodeaminase,⁹⁴ type III polyketide synthases,⁹⁵ and FabZ β hydroxyacyl–acyl carrier protein dehydratase.⁵⁴

4.2. Tunnel Entrance and Tunnel Bottleneck

The ability of ligands and solvent molecules to move from the media surrounding the protein to the active site can be controlled by gates located at any point along the tunnel. Gating residues may be situated at the tunnel entrance. However, it is more common to find them at the tunnel bottleneck. The tunnel entrance refers to the first shell of residues that define the tunnel and have contact with the bulk solvent. The tunnel bottleneck refers to the narrowest part that can be positioned anywhere along the tunnel (Figure 6). Even a single large residue whose side chain can project into the interior of the tunnel can exert efficient control over the access pathway. One might speculate that it might be favorable to have gates located inside tunnels because this allows their position to be more tightly controlled; their movements are restricted by the surrounding residues, and both the open and the closed conformations can be stabilized via interactions with neighboring amino acids. In contrast, residues located on the surface of the protein possess more degrees of freedom, and it is rare for both the open and the closed conformations to be stabilized. Examples of such gates inside the tunnels can be found in cholesterol oxidase type I,⁵⁷ toluene-4-monooxygenase,⁶¹ undecaprenyl-pyrophosphate synthase,²⁷ homoprotocatechuate 2,3-dioxygenase,⁶³ 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase,⁹⁶ epoxide hydrolase from *Asper*gillus niger M200,²⁶ and FabZ β -hydroxyacyl-acyl carrier protein dehydratase.⁵⁴ Similarly, gates can be situated in the bottlenecks of tunnels connecting two active sites. Gates in such positions are essential for enzymes that catalyze two reactions requiring different environments, such as glucosamine 6 phosphate synthase,⁴⁵ imidazole glycerol phosphate synthase,³⁸ cytidine triphosphate synthetase, $\frac{\xi_2}{2}$ carbamoyl phosphate synthetase, $\frac{36}{36}$ and glutamate synthases.

4.3. Cofactor Cavity

Gates can be positioned at the interface of the active site and the cofactor cavity, allowing for more fine-grained control during the reaction. In NADH oxidase, the W47 residue acts as a gate that controls the accessibility of the FAD flavin ring and thus plays a crucial role during the catalytic cycle. The closed conformation is stabilized by hydrogen bonds between the cofactor and the peptide backbone, whereas stabilization of the open form may be advantageous during the initial steps of

Table 3. Detailed Description of Enzymes Possessing Gates Presented in the Scientific Literature

No. Enzyme name					EC number	
Gate function			Enzyme funct	tion		
Information about	ut gate fu	nction	Information about catalysed reaction			
Gate location			Small picture of whole enzyme with detected tunnels a			
Information abou	Information about gate location g		gates			
Gate structural	basis		prote	in – light blue si	ırface	
Schematic drawing of gate	GATE	1- font colour corresponds to the colour of residues on the picture	tunne gates	l – dark blue wi residues – red b	re pall and stick	
class	Informa gate sta	ation about residues, open and closed conformation and mechanism of the changes of ates	Large picture	– close-up on ga in – light blue ca	ate residues artoon	
? in front of a picture indicates a lack of data –	? GAT lack of	E1 - ? indicates a hypothetical gate, some data missing to fulfil all requirements, e.g., information about open and close conformation	tunne	l profile – grey s sites residues (stick	spheres if shown) – green ball and	
classification has been made	classification has been made * GATE1- * indicates important residues used for gates engineering		gates	residues (eleme representatio colour of gat	nts) – ball and stick on colour correspond to te name	
residues localisation			cofac substi	tor – yellow ball rate – yellow bal	l and stick ll and stick	
Gate engineering	y					
Information abou	t mutants	that change gate state or create new gates, including information about mutants closing	All pictures pr tunnels visuali	esent results of (zed bv PvMOL.	CAVER 3.0 calculations of Tunnels corresponding	
ana opening tunn	els		to those repo	rted in literatu be aware that c	re have been visualised. alculations were performed	
			therefore calcu described on t	e static structure ulated tunnels cc he base of result	es from the PDB database, an differ from the tunnels ts from MD simulations.	
		Tunnel	Name or part of	of the tunnel		
			Length	Tunnel length	in [Å]	
PDB: Wild-type	WT) or n	nutants available in Protein Data Bank database	Bottleneck	Bottleneck dia from the litera	meter ın [A]; data taken ture	
References: All r	references	s used for table preparation	Role	Information al	bout transported molecules	

01	2-Amino-2-Desoxyisochorismate Synthase PhzE	4.1.3.27		
Gate function GATE1 – Controls a	ecess of ammonia, synchronizes active sites	Enzyme funct Utilizes choris amino-2-desoy phenazine bios	tion mate and glutan kyisochorismate synthesis	nine to synthesize 2- in the first step of
Gate location GATE1 – Between tl Gate structural basi ––––––––––––––––––––––––––––––––––––	e MST (menaquinone, siderophore, tryptophan) domain and GATase1 active site TTE1 51 ms two hydrogen bonds with N149 in closed conformation eracts with K254 in open conformation	phenazine bios	synthesis	E251
		Tunnel U-shap	bed	
		Length	25	
PDB: <i>WT</i> – 3R74 (op	en), 3R75 (closed)	Bottleneck		
References: 111		Role	Ammonia trar	sport

Table 3. continued

02	3-Hydroxybenzoate Hydroxylase MHBH			1.14.13.23
Gate function GATE 1 – Controls t	he contact of NADPH with the isoalloxazine ring, protects FAD from the solvent	Enzyme funct Conversion of dihydroxybenz	ion 3-hydroxybenzoat coate	e to 3,4-
Gate location GATE 1 – Between s	ubstrate tunnel and the FAD binding pocket			
Gate structural basi	S			
Gate engineering	ATE 1 17 he residue creates parallel π - π stacking interaction with FAD being – reorientation of both FAD and Y317	è		
Gate engineering		Y317 FAD PDB ID: 2DKI		substrate
		Tunnel	E1	E2 (not shown)
		Length	20-22	32
PDB: <i>WT</i> – 2DKH, 2	DKI	Bottleneck	4.5	4
References: 98		Role	O_2 , substrate	Product

03	4-Hydroxy-2-Ketovalerate Aldolase DmpG / Acylating Acetaldehyde Dehyd	etovalerate Aldolase DmpG / Acylating Acetaldehyde Dehydrogenase DmpF				
Gate function GATE1 – Controls a GATE2 – Proton tran GATE3 – Controls in	ccess of the substrate to the DmpG active site nsfer, synchronizing two active sites by controlling the passage of the acetaldehyde ntermediate entry to the DmpF active site; facilitates interaction between N171 and NAD	Enzyme funct Catalyses final intermediates i	t ion I two steps in de in the meta-clea	gradation of toxic aromatic vage pathway of catechol		
Gate location GATE1 – Tunnel ent GATE2 – Tunnel ent GATE3 – Tunnel ext Gate structural basi Gate fructural basi	trance in aldolase subunit trance in aldolase subunit it in dehydrogenase subunit is ATE1 21	H2	21			
	Pening – reorientation of H21 ATE2 291 pening – reorientation of Y291	Y291		5		
	A 1E.9 72 + 1196 and M198 72, 1196 and M198 block the tunnel exit in the dehydrogenase subunit pening – in the structure with bound NAD ⁺ – an interaction of N171 with NAD induce unique ientation of I172, additionally I196 and M198 adopt open conformations	1196 M198	-	5		
Gate engineering H21A – acetaldehyde and propionaldehyde channelling reduced by more than 70% Y291F – reduced channelling efficiencies by >30% I196L, I196F – no significant changes in the channelling efficiency		PDB ID: 1NV	M	62		
		Tunnel betwee	n active sites			
		Length	29			
PDB: <i>WT</i> – 1NVM		Bottleneck	1.7			
References: ^{96,112}		Role	Acetaldehyde	intermediate transport		

Review

04	4-Hydroxybenzoate Hydroxylase PHBH	1.14.13.2		
Gate function GATE1 – Controls GATE2 – Controls	access of the solvent access of the solvent	Enzyme funct Monooxygena 3,4-dihydroxy	tion ation of <i>p</i> -hydrox benzoate	ybenzoate (p-OHB) to
Gate location GATE1 – Close to t GATE2 – One dom Gate structural bas Gate structural bas	the FAD cofactor ain of the protein sis GATE1 8220 and FAD 8220 modulates the dynamics of flavin movements Dening – reorientation of R220; out – solvent exposed; in – solvent excluded	6	βαβ domain	
Gate engineering	GATE2 arge domain movement As substrate (p-OHB) moves forward in the tunnel and reaches its high-affinity site, the $\beta\alpha\beta$ (1- 80) and the sheet domains (180-270) are expected to rotate and close the active site onto the ubstrate	6		sheet domain
R220Q – keeps enzy	yme in the open conformation – loss of selectivity and decrease of activity (100-fold)		FAD	R220
		PDB ID: 1IUV Tunnel	W	
		Length		
PDB: <i>WT</i> – 11UW,	<i>Mutant R2200</i> – 1K0I, 1K0J, 1K0L	Bottleneck		
References: 113	~ / /	Role	Substrate acces	s

05	Acetylcholinesterase AChE				
Gate function		Enzyme func	tion		
GATE1 – Controls	access of the substrate to the active site	Hydrolysis of	acetylcholine		
GATE2 – Controls	escape of the acetic acid and/or the water molecule				
Gate location					
GATEI – Main tuni	hei - 12 A from the bottom of the gorge – entrance to the active site				
GATE2 - Back doo	sin				
Gate structural bas		-			
				-00.000	
F	330 controls the entrance of the natural substrate			A BROAD	
	Second most important residue – Y121, followed by W84, F288, F290, F331, Y334			1772-5 B	
	<i>Cationic substrate (Huperzine A):</i> – movement of F330, Y121 and D72 generate an electrostatic			- Stip -	
f	ield affecting the substrates			STATISTICS.	
	Aromatic substrate (E2020): residues grouped in 3 groups acting as "sender" and "receiver",	Y12	1	THE STREET	
с	ompose a "conveyer belt" via π - π stacking interactions with benzene ring of E2020:			- 0000	
٩	Group I contains W84, F330, and F331				
} →	Group II consists of F288, F290, and Y334			1//8/	
•	Group III includes $Y/0$, $Y121$, and $W2/9$			104	
	A TEO				
	V84 G441 and V442 (TcAChE) W86 G448 and V449 (mAChE)				
	Dening - movement of the W84 indole ring, almost 90° rotation to a position where it interacts				
v	vith Y442				
A	Ilternative propositions	× 1			
• • • ?	GATE2b –E82, P76, and G77 (with some small movement of D72, E73, and N85)				
2	GATE2c – Between V71, N85, P86, and M90	F330			
	GATE2d – 90° rotation of the F78 and the displacement of V431 and W432			¥442	
	GATE2e – W84, V129, and G441				
	CATE2a = Facial rearrangement of the loop between W270 and S201				
?• .	Grinze Taolar rearrangement of the loop between w279 and 5291				
Gate engineering					
V129W - 4-fold inc	rease of $K_{\rm m}$	PDB ID: IEA	5 open main tunr	el and closed back door	
v451C - 2-101d incr	case of Λ_m	Tunnel	main	back door	
		Length	20		
PDB: <i>WT</i> – 1W75,	1ACJ, 1ACL, 1EA5, 2ACE, 1MAH, 1QTI, 1DX6, 1EVE, 1OCE, 2XI4 (open back door)	Bottleneck	1.2-2.4	1.4-1.7	
References: 13,35,60,64	,114–123	Role	Acetylcholine	Small molecules	

Table 3. continued

06	Acylaminoacyl Peptidase	,	3.4.19.1
Gate function GATE1 – Controls	enzyme activity – only closed form is active	Enzyme function Removes acylated amino acid residues from the oligopeptides	N terminus of
Gate location GATE1 – Two don	ains of an enzyme monomer		
Gate structural ba	sis GATE1 Wo domains may move away to form an opening of about 30°, with D376 weing the hinge Jopen - accept substrate Closed - rearrange active site		
		closed PDB ID: 304G	open
		Tunnel Length	
PDB: <i>WT</i> – 304G		Bottleneck	
References: 124,125		Role	

07 α-Amylase TK1436			2.4.1.18
Gate function GATE1 – Controls access of the substrate to the active site, regulates transglycosylation	Enzyme funct Formation of b by cleavage of transfer to a ne	ion oranch points in α-1,4 glycosidi w α-1,6 position	glycogen and amylopectin c bonds and subsequent
Gate location GATE1 – At the entrance of the active site Gate structural basis GATE1 W270 The residue displays different conformations depending on the presence or absence of ligands in the active-site pocket Other possible gate-keepers W28, W407, W416 Gate engineering	PDB ID: 3N8T Tunnel	w α-1,6 position	
	Length		
PDB: <i>WT</i> – 3N8T, 3N92, 3N98	Bottleneck		
References: ¹²⁶	Role	Substrate reco	gnition and binding

dx.doi.org/10.1021/cr300384w | Chem. Rev. 2013, 113, 5871-5923

08 Asparagine Synthetase			6.3.5.4	
Gate function ? GATE1 – Synchron ? GATE2	nizing active sites, establish the intramolecular tunnel for ammonia passage	Enzyme funct ATP depender L-aspartic acid	ion It synthesis of L I	-asparagine from
Gate location ? GATE1 – C-termin ? GATE2 – C-termin Gate structural basis	al end of the ammonia tunnel linking the active site near to the ATP moiety al domain s			
E3	GATE1 148			
•	GATE2 389		T	AMP
Gate engineering E348D – impairs acyl of an impaired rate of	l-adenylate formation, tunnel is more solvent exposed leading to loss of the ammonia because β AspAMP formation	Substrate		E348 N389
		Tunnel		
		Length		
PDB: <i>WT</i> – 1CT9	10	Bottleneck		
References: 42,44,127,12	.8	Role	Ammonia tran	sport

09	ATP-Dependent Protease HslVU			3.4.25.2
Gate function GATE1 – Control	access of the substrate to the active site located inside the chamber	Enzyme funct Degradation of	ion f the majority of p	roteins in a cell
Gate location GATE1 – Translo Gate structural b	eation tunnel sis GATE1 Y91 "Twist-and-open" mechanism - conformational changes induced by ATP hydrolysis are propagated to the gating sequence Y91 can move (180° rotation) from inside HsIU toward HsIV through the pore – closed pore has diameter 4.4Å open pore has diameter of 19.3Å HsIVU works as a hexamer therefore pore diameter depends on the number of Y91 pointed toward HsIV			
Gate engineering Y91F, V92I, V92/ G90P, G93P, G90 activity of HslV	, and V92S – decrease in protein degradation activity A, G93P, Y91I, Y91C, Y91S, Y91A, V92F, V92C – are not capable to support the proteolytic	PDB ID: 1G4/	Y91	
		Tunnel		
		Length	-	
PDB: <i>WT</i> – 1G4A	1G4B	Bottleneck	Closed - 4.4; o	open up to 19.3
References: 13,129,	30	Role	-	

Table 3. continued

10 Carbamoyl Phosphate Synthetase CPS – type II				6.3.	5.5
Gate function GATE1 – Desolva GATE2 – Controls GATE3 – Controls	tion of ammonia entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate	Enzyme funct Synthesis of ca	ion arbamoyl phosph	ate	
Gate location GATE1 – Large su GATE2 – Carbama GATE3 – Carbama Gate structural ba	bunit/ammonia tunnel te tunnel near the carboxy phosphate binding site te tunnel near the site for the synthesis of carbamoyl phosphate sis GATE1 C232, A251, A314 (barrier 7.2 kcal/mol) Two more triad that may act as gate/switches for an ammonia passage are: I234-T249-L310 E217-T244-S307 GATE2 R306, E25, ?E383, ?E604 R306 – ion pair with E25	C232 A251 A214			
••	GATE3 R848, E577 and ?E916 R848 – ion pair with E577		2 Pe		
Gate engineering C232V/A251V/A3 nitrogen source G359F, G359Y – d intermediate αP360A/αH361A/β an escape route for E916Q – 10-fold de E25Q/E383Q – car E25Q/E383Q/E604	14V – closing ammonia tunnel - unable to synthesize carbamoyl phosphate using glutamine as a ecoupling separate chemical reactions via creation an escape route for the ammonia R265A – unable to utilize glutamine for the synthesis of carbamoyl phosphate via creation of the ammonia intermediate; full catalytic activity with external ammonia source ecrease in the rate of carbamoyl phosphate synthesis bamoyl phosphate synthesis to fold Q – glutaminase activity is decreased about 5-fold, and the bicarbonate-dependent ATPase	PDB ID: 1JDB	E25 R306 E383 E604	E577 R848 E916	2
activity is diminish	ed at least 20-fold f aarhamaul phaenhata gunthagig (100 fold)	Tunnel	Whole	I part	II part
ESTIQ –decrease o	1 caroamoyi phosphate synthesis (100-1010)	Length	>100	45	
PDB: <i>WT</i> – 1BXR	, 1JDB	Bottleneck		3.2	
References: ^{36,41,103}	,131-134	Role	Connects all 3 active sites	Ammonia transport	Carbamate transport

11	Carbon Monoxide Dehydrogenase / Acetyl Coenzyme A Synthase		1.2.7.4 / 1.2.99.2 / 2.3.1.169	
Gate function GATE1 – Controls cluster – acetyl-Co	the reaction, protects from CO leakage and controls CO access to Ni_p - Ni_d - $[Fe_4$ - $S_4]$ cluster (A A synthase active site)	Enzyme function $\alpha 2\beta 2$ tetramer; β subunit catalyses the reduction of CO ₂ to CO (C cluster), α subunit is responsible for the synthesis of acetyl-CoA from CO, coenzyme A (CoA) and a methyl group donated by a cobalamin-containing protein (A cluster)		
Gate location GATE1 – 20 Å fro	m the A cluster – on the A and C cluster border			
Gate structural ba	ısis			
Gate engineering A110C, A222L, A A578C, L215F, A2 F70W, N101Q - t	GATE1 Large conformation change of subunit α, gating residues – residues of the α subunit N-terminal domain 143-148 Open conformation – accessible active site – closed tunnel – F512 moves to a position within 4 Å of both Ni _p and Ni _d blocking putative ligand binding to the axial coordination site of Ni _p Close conformation – closed active site – open tunnel – F229 blocks axial ligand binding to Ni _d but not to the Zn ion 265M – block the tunnel between the A and C-clusters; A222L complete blocking 19F – block the tunnel between the C clusters lock a region at the ββ subunit interface that might dynamically connect the tunnel with a newly		Card Card	
discovered water to	nnel	PDB ID: 10A0 Only one from two	symmetrical tunnels is shown on a	
		Tunnel		
		Length 130) between A clusters, additional two nels connecting C clusters 37+ litional water channel	
PDB: WT (M. the	moacetica) – 10AO (open+closed form), WT (C. hydrogenoformans) – 1RU3 (closed form)	Bottleneck		
References: 48,67,13	5–137	Role CC	transport between two active sites	

Review

Review

12	Carbonic Anhydrase β – type I			4.2.1.1
Gate function ?GATE1 – Prote	cts zinc cation site	Enzyme funct Catalyses a rev carbon dioxide	tion versible reaction e and water	to form bicarbonate from
Gate location ?GATE1 – Vicin	ity of the active site			
Gate structural	Pasis PGATE1 D162 donates a hydrogen bond to Q151 Acts as a gatekeeper residue by excluding anions from the zinc ligand environment that cannot donate a hydrogen bond at this position	Q1: Q1: D162 PDB ID: 1EK. Tunnel		Zn
PDB • <i>WT</i> – 1FK		Bottleneck		
References: ⁹³	,	Role	Acetate ion, CO	D_2 transport
L		1	/	*

13	13 Carbonic Anhydrase β – type II			4.2.1.1
Gate function GATE1 – Controls a GATE2 – Controls a site or from solution t	ccess of the bicarbonate ion ccess of the solvent, protects active site, controls transport of bicarbonate ion from the active to the allosteric pocket	Enzyme funct Catalyses a rev carbon dioxide	tion versible reaction e and water	to form bicarbonate from
Gate location GATE1 – Middle of GATE2 – Vicinity of pseudo-dimer interfac Gate structural basi	the tunnel f the active site in a narrow hydrophobic active site cleft that lies along the dimer or ce s			
• G.	ATE1 54 – HICA otation of the guanidinium group allows migration of bicarbonate ion into the allosteric site	~	P	
? • G. F6 Oth PF R1 No	ATE2 i1, V62?, Y83, and V87 ther anhydrases PCA – F422, 1173, Y444, Y448 v3588 – F70, A75, Y89, V93 ce103 – F97, L102, G111, D59	Y83	R	F61
Gate engineering				R64
		Tunnel)	
		Length		
PDB: WT (HICA) -	2A8D, <i>WT (PPCA)</i> – 1DDZ, <i>WT (Rv3588)</i> – 1YM3, <i>WT (Nce103)</i> – 3EYX	Bottleneck		
References: 93,138		Role	Acetate ion, C	O ₂ transport

14	Carboxylesterase pnbCE		3.1.1
Gate function GATE1 – Controls GATE2 – Controls GATE3 – Controls	exit of hydrolysis products by a side door access to the active site gorge access to the active site gorge	Enzyme function Detoxification of xenobiotics	
GATE1 – Between GATE2 – Entrance GATE3 – Entrance GATE3 – Entrance Gate structural bas	active site and side door to active site gorge to active site gorge sis GATE1 .362 Rotates 180° around its C-C bond and adopts two distinct conformations	coil_17 308-323	
Gate engineering $\Delta \operatorname{coil}_{21} - k_{\operatorname{cat}} 3$ -fol	GATE2 .oop coil_5 (residues 61-82) and coil _21 (residues 408-422) .dove away from their equilibration conformation, the active site opens and can accommodate ncoming substrate GATE3 .oop coil_17(residues 308-323) and coil_21 Close for substrate hydrolysis, move away to release products .old smaller d smaller	coil_5 61-82	L362
PDR: <i>WT</i> _ 10F3		PDB ID: 1QE3 Tunnel Length Battleneck	coil_21 408-422
PDB: $WI = 1QE3$ Deferrences: ^{139,140}		Bottleneck	
References:		Kole	

15	Catalase CAT-1 and CAT-3			1.11.1.6
Gate function GATE1 – Blocks ac ?GATE2 – ?	eccess to the heme, controls solvation	Enzyme funct Decomposition	t ion n of hydrogen p	eroxide to water and O ₂
Gate location GATE1 – Entrance ?GATE2 – Side tun Gate structural bas ? ? Gate engineering	to the active site cavity from main tunnel nel sis GATE1 154, V95, and F132 Sarrier to reach the active site: $H_2O_2 < 4.8 \text{ kcal/mol}$ $O_2 \sim 2.2 \text{ kcal/mol}$ $H_2O \sim 3.6 \text{ kcal/mol}$ Opening of the gate may be regulated according to the H_2O_2 concentration in the small cavity refore the gate; H_2O_2 in the cavity would change the net of hydrogen bonds and trigger opening of the gate; water molecules interacting with amino acid residues in the cavity would determine losure of the gate GATE2 (not shown on picture) CAT-1 – hydroxyl group of S198 blocks tunnel CAT-3 – hydroxyl group of T208 blocks tunnel	V95 H54		F132 HEM
		Tunnel	Main	Back
		Length	31	
PDB: <i>WT</i> – 1NM0		Bottleneck		
References: ^{23,24,88}		Role	O ₂ and H ₂ O ₂	transport

16	Cellobiohydrolase CEL7A		3.2.1.91
Gate function GATE1 – Facilitates	processing of crystalline cellulose degradation	Enzyme funct Hydrolysis of	tion amorphous and crystalline cellulose
Gate location GATE1 – Exo loop		_	
Gate structural basis Gate structural basis (ATEI o loop + Y247 47 in closed conformations interacts with Y 371 from the short loop – acting like a button – reates tunnel, loop covers the active site during reaction time drogen bond between Y247 and substrate - small effect on cellulose hydrolysis ces mobility of the loop, disulphide bridge enhanced the activity on both amorphous and – increases activity on amorphous cellulose, and half of the activity on crystalline cellulose 	exo loop PDB ID: 1CEI Tunnel Length	50
PDB: WT - 1CEL		Bottleneck	3.5
References: 49,141–143		Role	Substrate cavity

17 Cellobiose Phosphorylase		2.4.1.20
Gate function GATE1 – Controls access of the substrate	Enzyme function Phosphorolysis of cellobiose i phosphate (G1P) and D-gluco	nto α-D-glucose 1- se
Gate location GATE1 – Flexible loop		
Gate structural basis		
GATE1 Flexible loop (495–513) Loop undergoes conformational changes during substrate binding and release		
Gate engineering		A Star
T5081 – changes substrate specificity N156D and N163D – increase of the activity		
N156D/N163D/T508I/E649G/N667A – improves activity towards a whole range of β -glucosidic acceptors	h h	
	loop	5
	(Sec)	
	PDB ID: 2COT	
	Tunnel	
	Length	
PDB: <i>WT</i> – 2CQT, 1V7X	Bottleneck	
References: ^{144,145}	Role	

18	Chalcone Synthase CHS			2.3.1.74
Gate function GATE1 – Controls	orientation of the substrate	Enzyme funct Decarboxylativ CoA-linked sta	ion we condensation arter	s of malonyl-CoA with a
Gate location GATE1 – Between	the active-site cavity and the CoA binding tunnel			
Gate structural ba	sis			de la
••	GATE1 Medicago sativa CHS F215 and F265 Block the lower portion of the opening between cavities and help with folding and the internal prientation of the tetraketide intermediate during the cyclization reaction; F215facilitate the lecarboxylation of malonyl-CoA by maintaining the orientations of substrates and intermediates luring the sequential condensation reactions		Ř	
Gate engineering M. sativa CHS F215S – changes th A. arborescens PCS *GATE2 M207G – opens a g number of condenss F80A/Y82A/M2076	e substrate specificity via opening a space at the cavity entrance ate to two novel hidden pockets behind the active site of the enzyme - residue 207 controls the tions of malonyl-CoA G – provide further elongation of products	F265	c – blue Aloe arti	F215
		PDBID: 1CGK tunnel calculat	S – light green M ed for 3ALE str	Medicago sativa CHS ucture
		Tunnel		
		Length	16	
PDB: WT (M. sativ	a CHS) – 1CGK, WT (A. arborescens PCS) – 3ALE	Bottleneck		
References: 95,106,14	6	Role	Reaction cavit	у

19	Chloramphenicol Halogenase CmlS		Not determined
Gatefunction		Enzyme funct	tion
GATE1 – Blocks a	access to the active site	Formation of t	he dichloroacetyl group
Gate location GATE1 – Flexible	loop (the C-terminal lobe of CmlS)		
Gate structural ba	asis		Sector Sector
Gate engineering	GATE1 Flexible loop (the C-terminal lobe of CmIS) + F562 acting as a plug	block acce tunn C-termin lobe	ed se el F562 al
		PDB ID: 3I3L	
		Length	10
DDD . <i>WT</i> 2121		Dattlangals	10
PDD: WI - 515L		вошепеск	Connecting hole consting action site
References:		Role	and FAD binding site

20	Cholesterol Oxidase – type 1 SCHOX			1.1.3.6
Gate function GATE1 – Controls a GATE2 – Controls a reaction, tuning the r	access of the solvent access of O2 to the flavin and assures that isomerization occurs before the oxidative half of the redox state of the cofactor	Enzyme funct Catalyses the f degradation	ion ìrst step in the p	athway of cholesterol
Gate location GATE1 – Frames th GATE2 – Gate is in Gate structural bas F F	the entrance to the tunnel the tunnel leading to the isoalloxazine ring of flavin is CATE1 359 359 adopts two distinct alternate conformations separated by a 65° rotation of		F	AD
	the benzene group Closed gate - maximizing hydrophobic packing interactions with V189, V124 and G347 Open conformation - the tunnel becomes solvent accessible Control of F359 gate appears to be dependent on the adopted conformation of N485 ATE2			
• • 2 n	with 485, E361 and M122 witch between their side-chain conformations, controls the access of O₂ to flavin . Binding of steroid → rotation of the methyl group of M122 → pushes N485 sealing the innel and creating an ideal environment for oxidation . After substrate oxidation, a strong hydrogen bond forms when N485 moves to conformation ear the flavin, forcing M122 to a conformation that destabilizes the binding of the oxidized roduct.	E36:		M122 N485
Gate engineering F359W – rate of cata	. When the substrate is oxidized and the FAD cofactor is reduced, the side chain of N485 otates toward the cofactor → tunnel opening - regulates access of oxygen to the active site alysed reaction decreases 13-fold	<u>F3</u>	59	
G347N – could not b N485D – could not b	be saturated with oxygen be saturated with oxygen	PDB ID: 1MX	T	
		Length	32	
PDB: <i>WT</i> – 1MXT,	<i>Mutant F359W</i> – 3CNJ, <i>Mutant N485D</i> – 3GYI	Bottleneck	1.2	
References: 57,99,148		Role	O ₂ and H ₂ O ₂ t	ansport

21	Cholesterol Oxidase – type II BsChOx			1.1.3.6
Gate function GATE1 – Modulates	access/reactivity of dioxygen	Enzyme funct Catalyses the f degradation	tion first step in the p	athway of cholesterol
Gate location GATE1 – Bottleneck	c of the tunnel			
Gate structural basi	S			
• - • G. E3 Op E3	ATE1 311, I423, E475 and R477 pen conformation of R477 is stabilized by a salt bridge with E311 311 tunes the E475—R477 pair	y w		
Gate engineering E311D/Q/L – cause a type and most mutant For E311 – a linear d R477A – limits both A204C, G309A, G30	gineering Q/L - cause a switch in the basic kinetic mechanism of the reoxidation with dioxygen, while BsChOx wild I - a linear dependence was found that would reflect a second-order process - limits both oxidation and isomerization activities G309A, G309C, I423L, I423V, E475D, E475Q, R477K – no significant changes		E311	E475 R477 FAD
		Tunnel		
		Length	23	
PDB : $WT - 1119$		Bottleneck	1.4	
References: ^{99,149,150}		Role	Oxygen transp	ort

22	Choline Oxidase		1.1.3.17
Gate function ?GATE1 – Controls GATE2 – Controls a	access of the positively charged substrate access of the positively charged substrate	Enzyme funct Oxidation of c trimethylglycin	tion choline to glycine betaine (N,N,N- ne)
Gate location ?GATE1 – Loop adj GATE2 – Located in Gate structural bas ? ? M G M B	acent to the active site of choline oxidase - residues 74-85 the tunnel above active site is GATE1 fovement of the loop can open active site ATE2 162, L65, V355, F357, and M359 reathing motion of M62, L65, V355, F357, and M359	L65	M62
Gate engineering	he weakly hydrophobic interactions between the gating residues ensure that the positively harged substrate can easily slip to the highly electronegative active site he distribution of the residues just outside the five gating residues contains a considerable mount of negatively charged amino acids, which include E63, E66, E358, and E370, which hay attract and guide the positively charged choline substrate to the active site	FAD	V355
		loop 74	-85 T
		Tunnel	V
		Length	
PDB: <i>WT</i> – 2JBV		Bottleneck	2.5
References: 31		Role	Substrate transport

23	Chondroitin AC Lyase		4.2.2.5
Gate function GATE1 – Creates tur	nel and the active site, controls access of the solvent	Enzyme funct Degradation of	ion glycosaminoglycans
Gate location GATE1 – N-terminal	domain and C-terminal domain		
Gate structural basis	3		
GA Tw Lo Ga do	ATE1 zo loops ops are flexible and open periodically allowing the glycosaminoglycan chain to slide in; ting involves the movement of the tips of one or two loops only, D71-W76 of the N-terminal main and G373-K375 of the C-terminal domain		
Gate engineering		PDB ID: 1CB8	71-76 loop 373-375
		Length	
PDB: <i>WT</i> – 1CB8, 11	HM2, 1HMU, 1HM3, 1HMW	Bottleneck	
References: 151		Role	Active site cavity

24	Copper – Containing Amine Oxidase			1.4.3.21
Gate function GATE1 – Blocks th	e back side of the active site from solvent access	Enzyme function Oxidation of produced and pr	ion imary amines to a gen to hydrogen pe	ldehydes reducing roxide
Gate location GATE1 – Amine tu	nnel			
Gate structural bas	sis			m B B
G Y ₩ Y F G (1	EATE1 381 in amine oxidase ECAO 7156 in amine oxidase HCAO 296 in amine oxidase AGAO 298 in amine oxidase PSAO bating residues can form a π/π ring stacking interaction with the pyridine ring of the cofactor GPQ)	K (
Gate engineering		PDB ID: 10A0 Tunnel Length		Y381
PDB: <i>WT (ECAO)</i> - 1W2Z	– 10AC, <i>WT (HCAO)</i> – 20QE, 200V, <i>WT (AGAO)</i> – 1RJO, 1RKY, <i>WT (PSAO)</i> –	Bottleneck		
References: ^{88,152–15}	4	Role		

25	Cytidine Triphosphate Synthetase CTPS		6.3.4.2
Gate function GATE1 – Creates tu ?GATE2 – Controls GATE3 – Controls	innel, protects tunnel from access of the solvent s passage of ammonia to the amidotransferase active site passage of ammonia to the amidotransferase active site	Enzyme funct Catalyses the f glutamine	tion formation of CTP from UTP, ATP and
Gate location GATE1 – Loop of t ?GATE2 – The don GATE3 – Between Gate structural bas	he glutaminase domain nain interface, interacts with the amide group of the bound glutamine UTP site and the tunnel exit is SATE1(PDB ID: 1VCM) oop 'he synthetase active site is exposed to the solvent and the binding pocket for the allosteric ffector GTP is not properly formed ffector GTP is not properly formed fiter ATP and acceptor binding loop covers the entrance of the glutaminase site shielding hutamine and creates the tunnel		H57
2 2 4 4 7 9 7 9 7	GATE2 (PDB ID: 1VCM) (64 (64 might act as a door to the ammonia tunnel leading to the synthetase site	9	loop
Gate engineering	GATE3 (PDB ID: 2ADP) 157 Binding of the substrate UTP induces the rotation of H57 Rotation of H57 opens the tunnel for ammonia passage 'he ligand-induced change is postulated to regulate the timing for the translocation of ammonia		Y64
		PDB ID: 1VC PDB ID: 2AD Tunnel calcula	M – Light green 5 – Blue ted for PDB ID: 2AD5 structure
		Tunnel betwee	en active sites
		Length	25
PDB: <i>WT</i> – 1VCM,	1VCN, 1VCO, 2AD5, 1S1M	Bottleneck	0.8-1.2
References: 52,155–15	7	Role	NH ₃ transport between active sites

26	Cytochrome P450 CYP3A4	ł						1.14.13.32	2
Gate function Controls access to the active site, controls selectivity and specificity of the enzyme			Enzyme function Catalyses mono-oxygenation reactions such as hydroxylation and epoxidation, major drug metabolizing enzyme in humans						
Gate location	D450 is 6 years to an 1 of a set								
Depends on the	P450 isoform, tunnel and the gate								
Gate structura	al basis							£2.0	
Common gatin	g mechanisms in cytochrome P450 family are:							A 19 28 10	
(i) associated v	Ath F-G-helix-loop-helix or B-C loop movement (tunnels 2a, 2ac, 2b, 2c, 2e);						52	243	
(iii) associated	with wing type;						- AR	8865	
(iv) cofactor as	sisted (CPR)	1						CHARTS I	
For details of o	ther cytochrome P450 gates see references ^{16,59,90}			T				C.S. Con	
	π -stacking, aliphatic contact, H-bond, salt bridge, protein conformation changes								
	Tunnel Proposed gating residues for product release								
	TMZ TST-OH			T		7			
CYP3A4	2a F57-F215 F57-F215						-		
	2b F108-F220 F108-F220		HE	EM			6		
••	2c F108-F241 F108-F241		F					-	
	2e F108-1120 R105-S119					X	L		
	3 F213-F241 F213-V240				7	1			
	8 K212-L482 K212-L482					-	P	7	
-•	W K3/5 + CPK protein Mechanism of gates enening:		1	75	1	-	0		
	(i) breaking $\mathbf{F} = \boldsymbol{\pi}$ stocking			d		10	2		
\bigcirc	(ii) breaking alighbric contacts between R212 and L482 - S tunnel					1.		T	
2	(iii) breaking the H bond as observed during the exit of TST-OH through				11	T			
	tunnel 2e between R105 and S119					0010			
	(iv) opening of water tunnel when the FMN domain of CPR binds to CYP3A4					RZ1Z		F215	
	via R375 rotation.					L482			
Gate engineer	ing		1		2-				
F108W, I120W	<i>I</i> – closure of tunnel 2e, switching of the midazolam entrance to another tunnel	PDB ID: 1TC	QN - fo	or clarit	y only	gate of	tunnel	2a and tunnel S are sl	nown
that may lead t	o a different active site orientation and product formation	Tunnel	2a	2b	2c	2e	3	S	W
		Length	19	18	17	12	17	13	
PDB: WT – 1TQN (CYP3A4), 1AKD (P450cam), 2D09 (CYP152A2), 1JPZ (P450-BM3), 1PQ2 (CYP2C8), 1IZO (CYP152A1), 1F4T (CYP119), 1NR6 (CYP2C5), 1OXA (P450eryF)		Bottleneck	4.1	4.0	3.9	4.2	4.1	4.5	
References: ¹⁰	16,25,55,56,58,59,90,158,159	Role	Dif	ferent	product	s pathv	vays	Proton access/ water/substrate	Water

27	Dihydrofolatereductase		1.5.1.3
Gate function GATE1 – Controls	the activity	Enzyme function Catalyses the stereospecific re tetrahydrofolate	duction of dihydrofolate to
Gate location	to the sofester posity		
GATEI – Entrance			
	GATE1 M20 loop (residues 9 to 24) n closed conformation the loop packs tightly against the nicotinamide ring of the cofactor n occluded conformation the loop projects into the active site and sterically blocks the cofactor avity	loop 9-24	
Gate engineering N23PP – k_{eat} decrea S148A – k_{eat} decrea N23PP/S148A – k_{eat}	sed 5-fold sed 2-fold , decreased 6-fold		substrate
		PDB ID: 1RX2	
		Tunnel	
		Length	
PDB: <i>WT</i> – 1RX2,	Mutants – 3QL0, 3QL3	Bottleneck	
References: ^{80,81,160}	-162	Role	

28	Digeranylgeranylglycerophospholipid Reductase DGGR			1.3.1
Gate function GATE1 – Opens to GATE2 – Controls	innel, controls entry of the substrate, controls reduction of FAD substrate binding/release	Enzyme funct Converts 2,3-c 2,3-di-O-phyta	t ion li-O-geranylgeranylgl anylglyceryl phosphat	yceryl phosphate to e (archaetidic acid)
Gate location GATE1 – Vicinity GATE2 – C-termi Gate structural ba	of the cofactor binding site (FAD) nal helical subdomain sis	-	•	
\swarrow	Glycine-rich αI – αJ loop (residues 289–298) Cofactor FAD has two conformation IN (not accessible by solvent) and OUT (exposes the soalloxazine ring allowing it to be reduced by NADH (or NADPH). In IN conformation tunnel A is blocked, to open it has to turn into OUT conformation. The conformational changes in the glycine-rich αI – αJ loop disrupt interaction between Y209 and T292 allowing change of the FAD position. Conserved RxxFD and LxGD motifs may play a role in FAD's IN/OUT conformational switch.	loop 2	Y209 89-298	FAD
26	GATE2 Two regions, the β6–β7 loop (residues 87–94) and the C-terminal helices (residues 370–396) The conformation changes of the C-terminal helical subdomain may be involved in substrate binding/release			
Gate engineering		C-term 370-396		loop 87-94
		PDB ID: 3OZ	2	
		Tunnel	Α	В
		Length		
PDB: <i>WT</i> – 30Z2		Bottleneck		
References: ¹⁰⁰		Role		

29	Epoxide Hydrolase H37Rv		3.3.2.3
Gate function GATE1 – Regulates	access to the active site	Enzyme function Hydrolysis of epoxides	
Gate location GATE1 – Cap doma	in		
Gate structural bas	is	-	
G M	ATE1 (Mycobacterium tuberculosis H37Rv) Iovement of the cap domain regulates access to the active site		
\sim		cap domain	
Gate engineering	Gate engineering		
		PDB ID: 2E3J	
		Tunnel	
		Length	
PDB: WT (Aspergill	lus niger M200) – 1Q07	Bottleneck	
References: 68		Role	

30	Epoxide Hydrolase M200			3.3.2.3
Gate function ?GATE1 – Controls ?GATE2 – Controls	s enantioselectivity and activity s enantioselectivity and activity	Enzyme func Hydrolysis of	t ion epoxides	
Gate location ?GATE1 – Tunnel (?GATE2 – Middle (Gate structural bas ?	entrance of the tunnel sis GATE1 (Aspergillus niger M200) (219 GATE2 (Aspergillus niger M200) (217			
Gate engineering Aspergillus niger M. A217C, A217E, A2 different enantiosele A217G mutation res A217V 6,6-fold incr glycidyl	200 17G, A217L, A217P, A217Q, A217R, A217T, A217V – at the entrance to the tunnel result in ctivity and activity; e.g.: ults in a 33-fold decrease of activity ease of activity with no changes in the products enantioselectivity for the reaction with allyl	R219 PDB ID: 100		217
		Tunnel	С	N terminal cleft (not shown)
		Length	25	15
PDB: WT (Aspergil	lus niger M200) – 1Q07	Bottleneck		
References: ^{26,163}		Role	Substrate binding cavity	sEH N terminal cleft

31	FabZ β-Hydroxyacyl-Acyl Carrier Protein Dehydratase			4.2.1.59
Gate function GATE1 – Controls ad enzyme GATE2 – Controls le	ccess of the substrate, prohibits binding of small hydrophobic molecules to the unliganded	Enzyme funct Elongation cyc acids biosynth system (FAS I	tion cles of both satu eses in the type I) pathway	rated and unsaturated fatty II fatty acid biosynthesis
Gate location GATE1 – Entrance to GATE2 – Exit (back Gate structural basis GATE2 – Exit (back Gate structural basis GATE2 – Exit (back GATE2 – Exit (back GATE	 b the tunnel b the tunnel c TE1 c O0 (Y88 in PaFabZ and L170 in PfFabZ) c opts either an open or closed conformation in the crystal structure c closed conformation - Y100 is stabilized by the Van der Waals interactions with M102, 154, and P112; in open one it flops ~120° and is stabilized by the Van der Waals interactions th M154, K62, and I64 c ATE2 3 a fined in two additional alternative conformations, leading the tunnel to form a L-shape or an shape, in closed conformation - F83 points toward I98, in open position it rotates ~120° ints toward I93, exposing the exit to the bulk solvent c or F74 play a similar role in PaFabZ 	Y100		
Gate engineering Y100A – drops the ac entrance has ~15 Å in mutant more stronger extremely slow.	tivity of the mutant to less than 50% of the enzymatic activity of the wild type, the new width, completely exposes the active site to the bulk solvent – as a results ACP binds to the than to the wild-type. In particular, the dissociation step of ACP from the HpFabZ mutant is	PDB ID: 2GL Tunnel	L	F83
PDB: WT (HpFabZ)	– 2GLL, 2GLP, 2GLM <i>Mutant Y100A</i> – 2GLV, <i>WT (PfFabZ)</i> – 1ZHG, <i>WT (PcFabZ)</i> –	Bottleneck	20	
References: ^{54,164,165}		Role	Substrate bind groove	ing tunnel, ACP binding

32	Formiminotransferase-Cyclodeaminase FTCD			2.1.2.5
Gate function GATE1 – Controls	position of H82 in proper orientation for reaction	Enzyme funct Two independ histidine degra	t ion ent, but sequent idation pathway	al reactions in the
Gate location GATE1 – Blocks en	ntrance from a short tunnel into active site			
Gate structural ba	sis			a starter
	CATE1 .00p rearrangement including a change in the histidine H82 side-chain position			
Gate engineering		юор +Н82		substrate
		Tunnel	Main	Second
		Length	38	9
PDB: <i>WT</i> – 1QD1		Bottleneck	8	4
References: 94		Role	Intermediate transport	Formiminoglutamate substrate entry, glutamate product exit

33 Gluce	samine 6 Phosphate Synthase GlmS		2.6.1.16
Gatefunction GATE1 – Protects Fru 6P site from the solvent, creates the ammonia GATE2 – Protects glutaminase active site from the solvent GATE3 – Opens ammonia tunnel, ammonia enters the sugar site, act GATE4 – Opens ammonia tunnel	tunnel s as a solvent barrier	Enzyme function Catalyses glucos and glutamine	on samine-6P synthesis from fructose-6P
Gate location GATE1 – Part of the active site cavity GATE2 – Part of the active site cavity GATE3 – Tunnel between two active sites GATE4 – Bottleneck of the tunnel between active sites Gate structural basis GATE1			
C-terminal loop (residues 600–608) Open state – relaxed loop Closed state – anchored by Y28 and W74 with Q	юор	Q-loop 7	73-81
GATE2 Q-loop (residues 73–81) Open state - anchored by R539*, Close state - after Q enters the active site anchore	d by Y28 and W74 with C-terminal loop		W74
GATE3 W74 x1 torsion angle of W74 changes by 75°			
GATE4 A602 and V605 A shift of the side-chain of the A602 residue is co carbonyl group, which can then form a strong H-t	ncomitant to a re-orientation of its backbone ond with the hydroxyl group of the Y28		A602 V605
Gate engineering W74A, W74L, W74F – inefficient ammonia transfer A602L, V605L – efficiency of ammonia transfer decreased 2-fold		PDB ID: 2BPL	
		Tunnel	
DDD. WT 216H 11YA 2VEA 2DDI		Length	18
References: ^{14,45,50,155,166,167}		Role	Ammonia transport

34	Glutamate Synthases GltS			1.4.7.1
Gate function GATE1 – Controls glutaminase activat GATE2 – Shields s GATE3 & GATE4	correct conformation of active site for L-glutamine binding and hydrolysis, crucial for ion and coupling of the glutaminase and synthase sites, creates ammonia tunnel ubstrate from bulk solvent - Controls transport of ammonia	Enzyme funct Formation of 2 oxoglutarate	tion 2 L-glutamate fro	om L-glutamine and 2-
Gate location GATE1 – Loop pro GATE2 – Loop pro GATE3 – Entrance GATE4 – Entrance Gate structural ba	becting Fru 6P site from solvent tecting glutaminase site from solvent to the interdomain tunnel to the synthase site (end of the tunnel) sis			
\leq	GATE1 Loop 4 (residues 933–978) Shifts to the active conformation – C-terminal residue E1013 forms a hydrogen bond with C1 and keeps correct conformation of C1 and loop 29–34 for L-glutamine binding and hydrolysis. E1013 side chain may also play a role in the precise geometry of the tunnel entry point		FMN	E903 K966
5	GATE2 Loop 206–214 Closing of loop 206–214 after L-glutamine binding			
••	GATE3 I503, N504, S1011 and I1012 Small conformation changes of T503, N504 of the central domain, S1011 and I1012 of loop 4	T503 N504 S1011		loop4
•• 2	GATE4 2903 and K966 Small conformation changes of E903 and K966 Additionally residues T507 and N508 and S976 and I977 may function as a gates for signalling between active sites	I1012		loop 206-214
Gate engineering E1013D – 100-fold E1013N – 1000-fol	decrease of activity, a sigmoid dependence of initial velocity on L-glutamine concentration d decrease of activity, exhibited hyperbolic kinetics	PDB ID: 10FI	D – GATE3 clos	ed
E1013A - 1000-fol	d decrease of activity	Tunnel		
PDB • <i>WT</i> – 10FD	10FE 1E40	Length	33	
References: ^{46,62,155}	.168	Role	NH ₃ transport, NH ₃	prevents protonation of

35	Glutamine Phosphoribosylpyrophosphate Amidotransferas	e		2.4.2.14
Gate function GATE1 – Closes sy GATE2 – Covers g GATE3 – Protects t	In thase site and creates a narrow, solvent-inaccessible tunnel between active sites lutaminase site unnel from the solvent access and avoids wasteful release of ammonia into solution	Enzyme funct Catalyses the i biosynthesis	t ion nitial reaction ir	a <i>de novo</i> purine nucleotide
Gate location GATE1 – Loop nea GATE2 – Loop nea GATE3 – On Q-loo Gate structural bas	r the synthase active site r the glutaminase active site p sis			
	GATE1 Loop (residues 326–350) The active site cavity is created by closure of the loop (residues 326–350) Closing of the active site creates a narrow, solvent-inaccessible tunnel between active sites I335 Interacts with Y74	Q-loop 73	-84	
\sim	GATE2 Q-loop (residues 73–84)		VTA	
• 2	GATE3 (74 A key residue in coupling the glutamine and acceptor sites upon acceptor binding may play a imilar gate role as W74 in GlmS		1/4	
Gate engineering		Substra PDB ID: 1ECC	ate	loop 326-350
		Tunnel betwee	en two active site	es
		Length	20	
PDB: <i>WT</i> – 1ECF,	1ECC	Bottleneck		
References: 155,169,17	//	Role	Ammonia tran	sport

36	Haloalkane Dehalogenase DhaA				3.8.1.5
Gate function GATE1, GATE2, G	ATE3, GATE4, GATE5 – Controls access to the tunnel	Enzyme fun Hydrolytic d aliphatic hyd	ction ehalogenation o rocarbons	f various hal	ogenated
Gate location GATE1 – Tunnel p1,	GATE2 –Tunnel p2a, GATE3 –Tunnel p2b, GATE4 –Tunnel p2c, GATE5 –Tunnel p3				
Gate structural bas	is				2 St X
• _ • F	ATE1 144 and F149	6			
^G	ATE2 35	P210			F149
•	ATE3 245, W141			3	5
•— —• β ⁻	ATE4 bridge interaction between P210 and A212 of the CC loop and I135 of the NC loop	I135	WIAL	A	F144
G	ATE5 /138 blocks tunnel p3		W141 V	245	
Gate engineering				1	
C176Y, V245F, A17	2F, A145F – limiting access of water to the active site	PDB ID: 1C	QW	n2a n2h	
		Tunnel	p1	p2a, p20, p2c	p3
		Length	20	22	24
PDB: WT (DhaA) -	1CQW, 1BN6, 1BN7	Bottleneck	2.8	1.8	1.6
References: 109,110		Role	Product	Product	Product

37 Haloalkane Dehalogenase LinB				3.8.1.5
Gate function GATE1 – Controls access to the ac GATE2 – Controls selectivity	tive site	Enzyme fun Hydrolytic d aliphatic hyd	ction ehalogenation of lrocarbons	various halogenated
Gate location GATE1 – Tunnel bottleneck GATE2 – Tunnel bottleneck Gate structural basis		-		
GATE2	esidues is necessary for entry of large substrates			D147
Gate engineering L177A, L177C, L177G, L177F, L1 L177V, L177Y influence the substr	the entrance of the main tunnel 77K, L177T, L177W, L177D, L177H, L177M, L177Q, L177R, L177S, rate specificity and activity	X	5	
		PDB ID: 1C	V2	L177
		Tunnel	p1	
		Length	12	
PDB: <i>WT (LinB)</i> – 1CV2		Bottleneck	2.6	
References: ^{72,108,171}		Role	Product	

38	Histone Deacetylase HDAC1 and HDAC2			3.5	.1.98
Gate function GATE1 – Controls ac GATE2 – Controls ac GATE3 – Controls ac	excess to the active site through tunnel A excess to the active site through tunnel B1 excess to the active site through tunnel B2 (only HDAC1)	Enzyme funct Modifies chron group from the	tion matin structure: ε ε-amino lysin	s by removing e residues	the acetyl
Gate location GATE1 – Bottleneck GATE2 – Bottleneck GATE3 – Bottleneck Gate structural basis Gate structural basis F1 Sic GATE3 – Bottleneck F1 F1 F1 Op G4 Y3 Ob res Gate engineering	of tunnel A of tunnel B1 of tunnel B2 (only HDAC1) STE1 55 (F150) de chain of F155 has to rotate ~ 180° ATE2 14 + Y27 and Y29 (F109 + Y22 and Y24) 14 residue is located between two tyrosine rings in closed conformation ensing requires unzipping of the gate ATE3 103 103 103 103 103 104 105 105 105 105 105 105 105 105 105 105	F155 PDB ID: 3MA	Y29 OF S	F114	¥27
		Tunnel	А	B1	B2
		Length	11	14	16
PDB: WT (HDAC2) -	- 3MAX	Bottleneck			
References: ¹⁷²		Role	Access to the active site	Access to the active site	Water exchange

39	Histone Deacetylase HDAC8			3.5.1.98
Gate function GATE1 – Regulates	water or product (acetate) transit from the active site through the internal tunnel	Enzyme funct Deacetylation residues within	tion of the E -amino g n histones and oth	roup of specific lysine her proteins
Gate location GATE1 – Centre of t	he internal tunnel			
Gate structural basis	3			
GATE engineering R37A – the values for	ATE1 7 structural reorientation of R37 and the loop is required for opening the access to the active e via the 14 Å 'internal' tunnel. R37 forms multiple hydrogen bond interactions with the ckbone carbonyl oxygen atoms of conserved G303 and G305 positioned in a loop between β8and α10-helix ting interaction between G139 and G303 • k_{cal}/K_{M} decrease 530-fold		5303 R37	G139
		PDB ID: 2V5V	W	
		Tunnel		
		Length	11	14
PDB: <i>WT</i> – 2V5W		Bottleneck		
References: ¹⁷³		Role	Access to activ	e site

Review

40	HIV-1 Protease		3.4.23.16
Gate function GATE1 – Controls	access to the active site	Enzyme funct Central role in precursors	tion processing HIV-1 viral polypeptide
Gate location GATE1 – β-turn fl Gate structural ba	ps sis	-	
	GATE1 -turn flaps (residues 43–58) Λovement of two β-turn flaps controls access to the active site		
Gate engineering WT – open 14% of G48V/V82A – ope I84V/L90M – oper L90M, G48V – ope F53L – unstabilised	time (Brownian dynamics simulations) 2% of time (Brownian dynamics simulations) 2% of time (Brownian dynamics simulations) n 14% of time (Brownian dynamics simulations) semi open conformation due to lack of F53-I50 interaction	4	
		PDB ID: 1HV	R
		Length	
PDB: <i>WT</i> – 1HHP	1HVR	Bottleneck	
References: 79,89,17	-177	Role	Active site gorge

41	Homoprotocatechuate 2,3-Dioxygenase			1.13.11.15
Gate function GATE1 – Controls O GATE2 – Controls a	$_2$ diffusion pathway Iternative O ₂ diffusion pathway	Enzyme funct Degradation of of aromatic rin	t ion f catechol and its ags	s derivatives by cleavage
Gate location GATE1 – Just below GATE2 – Below the j Gate structural basis Gate structural basis GATE2 – Below the j Gate structural basis GATE2 – Below the j GATE2 – Be	the protein surface protein surface S STE1 05, H213, and W304 eathing motion of protein causes synchronizing movement of residues XTE2 93, H213 e fluctuation of R293 along with H213 could result in opening of the pathway	Y30 Y30 T205 R2 PDB ID: 21G9 Tunnel Length Bottleneck	93	H213
Poforonoost 63	6 <i>7</i>	Polo	O transport	
References:		Kole	O_2 transport	

42	Hydrogenase FeFe			1.12.7.2
Gate function		Enzyme funct	ion	
Controls access of	oxygen and hydrogen to the active site	Catalyses the r	eversible oxidat	on of molecular hydrogen
Gate location Not specified, betw	een dynamic cavities			
Gate structural b	isis			
Gate engineering	No permanent tunnel – O_2 moves from cavity to cavity as the cavities fluctuate inside the protein	5		the second
	engineering PDB ID: IFEH PDB ID: IFEH		tunnels connect probe radius 0.	ing internal cavities
		Tunnel	1	
		Length	30 - 35	
PDB: <i>WT</i> – 1HFE	1FEH	Bottleneck	2	
References: 88,178-	80	Role	H_2 and O_2 trans	sport

43	Hydrogenase NiFe			1.12.2.1
Gate function		Enzyme funct	tion	
'GATEI – Protects t	he active site against O_2	Catalyses the r	reversible oxida	tion of molecular hydrogen
Gate location	of NiFa alustar, bottlanaak alasa ta tha aatiya sita			
Cate structural hasi		-		
Gate structural basi	SATE1			A CAR
E E	5ATE1 25. V74 and I 122			ALC A
	he size of the amino acids at positions 122 and/or 74 may determine the accessibility of the			- 18 Ban
	tive site and therefore the resistance to O_2			
? •	-			and the second
Gate engineering				
V/4Q, V/4M, V/4E	V /4N, V /4W, V /4F, V /4D, L122M/V /4M, L122F/V /4I, L122A/V /4M - two			E25
influences on reaction	a polarity, are independent and have different effects to H_2 , CO, O_2 molecules, different	210		
influences on reaction				
			AL.	
			T	
		L122		
				V/4
			2 07	
		PDB ID: 1VO	W	
		Tunnel	**	
		Length	30	
PDB : $WT = 1$ YOW	Mutante - 3011R 3011S 3H3X	Bottleneck	50	
1 DD: $WI = 110WI$	тицинэ – эсок, эсоз, эпэл	Dottieneck	O transmit	
Keierences:		Kole	O_2 transport	

Table 3. continued

44	Imidazole Glycerol Phosphate Synthase IGPS		2.4.2	
Gate function Enzyme function GATE1 – Prevents penetration of bulk water molecules into chambers I and II Catalyses the closure of histidine biosynthesis and area carboxamide ribotide (<i>A</i> synthesis of purines)			ion closure of the im nthesis and prov ibotide (AICAR rrines	idazole ring within ides 5-aminoimidazole -4-) for use in the <i>de novo</i>
Gate location GATE1 – Near the er GATE2 – Between cl Gate structural basi	ntrance of the (βα) ₈ barrel of hisF hamber I and chamber II s			
R5 nu Fo	(R239), E46 (E293), K99 (K360), and E167(E465) mbers from yeast or (<i>Thermotoga maritima</i>) ur strictly conserved gate residues act as the wall barrier for water molecules			
G KS Cc KS Bc Ar rec en	ATE2 (for ammonia) 99 (K360) and E46 (E293) onformational change of all residues – high barrier 25 kcal/mol for ammonia transfer 99 (K360) side chain rotation barrier 10 kcal/mol 99 (K360) side chain rotation barrier 10 kcal/mol 99 mmonia enters to chamber II through a side-opening between residues K99 and E46, the only 99 quisite is the slight bending of the side chain of K99 (K360) - eliminates the need for an 99 ergetically costly gate-opening mechanism	R239	E293	
Gate engineering Y138F – experimentally no change of kinetics and stoichiometry, in simulations Y138 is not a gate but prevents bulk water from entering the interface during a reaction, keeping ammonia sequestered within the tunnel R5A (R239A) – loss of ammonia through new hole and results in a 10 ³ decrease in k_{cul}/K_M values for the cyclase reaction, in simulations possibly because the mutation allowed water molecules to access chamber II; these additional water molecules increased the energetic barrier to ammonia entry and passage through the tunnel K99A (K360A) – experimentally 3-fold decrease in the overall reaction stoichiometry, in sumulations larger opening between chamber I and chamber II, and simultaneously deprives E167 and E46 of a salt-bridge partner T78A – allowed a rapid and unhindered conduction of ammonia through the tunnel		E465		K360
T78F, P76F –block the ammonia conduction Any mutation K181 (K196), D98 (D359), and Q123 (Q387) – decouples the two reactions		Gate in closed Tunnel Length	position blockir	g the tunnel
PDB: <i>WT</i> – 1KA9, 1	JVN	Bottleneck	3.8	
References: 38,43,155,18	1–186	Role	Ammonia tran	sport

45	Inosine 5'- Monophosphate Dehydrogenase		
Gate function GATE1 – Conforma	ational change converts the enzyme from a dehydrogenase into hydrolase	Enzyme function Transformation of inosine 5'-1 xanthosine 5'-monophosphate	monophosphate into
Gate location GATE1 – Loop cov	ering active site cavity		
Gate structural bas	is		
	GATE1 319 loop (313-328) adopts different conformations during the dehydrogenase and hydrolase eactions		
Gate engineering		loop 313-328	IMP
		PDB ID: 1ME9	
		Tunnel	
		Length	
PDB: <i>WT</i> – 1ME9,	1LRT, 1ME8, 1PVN	Bottleneck	
References: 187		Role	

Review

46	Ketoacyl Synthase KS			2.3.1.86
Gate function GATE1 – Shields the GATE2 – Controls ad	active site ccess of the substrate	Enzyme function Elongates an ACP- adding C2 units thr condensation mech	- or CoA-ass rough a ping hanism	ociated acyl chain by -pong decarboxylating
Gate location GATE1 – Entrance to GATE2 – Centre of t Gate structural basi	o the active site ne acyl-binding tunnel	-		
• GJ F1 Sh	ATE1 646 ields the active site, flips and allows access to the nucleophilic cysteine		Sec. 2	
M	ATE2 1251 rotates and unlocks the inner part of the fatty acid binding cavity			4-11-11-
Gate engineering		M1251		F1646
		PDB ID: 2VKZ Tunnel		
		Length		
PDB: <i>WT</i> – 2VKZ		Bottleneck		
References: ¹⁸⁸		Role		

47	7 L-Amino Acid Oxidase			1.4.3.2	
Gate function		Enzyme function	Enzyme function		
GATE1 – Controls ac	ccess to the oxygen tunnel, binds the substrate initially	Oxidative deam	e deamination of L-amino acid substrates		
Gate location GATE1 – 15 Å from	surface in main funnel		Γ		
Gate structural basis	Gate structural basis				
Gate engineering	ATE1 223 223 has two conformations and can act as a gate and binds the substrate initially 223 conformation A closing oxygen tunnel → substrate entry and deprotonation of the itterion → substrate into Michaelis position →H223 turn into conformation B → opening of ygen tunnel	H223 closed	.50	H223 open	
		PDB ID: 1F8S	1		
		Tunnel	Main funnel	Y shape tunnel	
		Length	25	9	
PDB: <i>WT</i> – 1F8R, 1F	785	Bottleneck	4.2	2	
References: 73,189		Role	Access to active site	O ₂ access and H ₂ O ₂ release	

48	48 Lipase B				
Gate function (lipase from <i>Candida antarctica</i>) GATE1 – Controls regiospecificity, controls length of the substrate			Enzyme function Hydrolyse triacylglycerols and a broad range of other substrates, important for asymmetric synthesis		
Gate location GATE1 – Bottom of	the substrate tunnel				
Gate structural bas	is				
G W T P R si	ATE1 704 he stereospecificity pocket is defined by T42, S47 and W104 pocket is buried under a surface helix and delimited by the side chain of W104 enantiomer of butanoic ester fits well into the active site pocket after a small movement of the de chain of W104	•			
side chain of W104 Gate engineering W104A, W104Q – change in substrate specificity Gate creation in other lipases Lipase from Burkholderia cepacia – mutation in bottleneck for increased enantioselectivity – the best double mutant L17S/L2871 - 15-fold increased activity and a tenfold enhanced enantioselectivity Candida rugosa lipase 1 – mutation of amino acids in different position inside the tunnel – P246F, L413F, L410W, L410F/S300E, L410F/S365L – different chain length selectivity		Substrate PDB ID: 1LBS Tunnel Length			
PDB: WT (Candida	antarctica) – 1LBS, 3ICV, 3ICW, WT (Burkholderia cepacia) – 3LIP, WT (Candida	Bottleneck			
<i>rugosa)</i> – 1LPO					
References: ^{60,190–192}		Role	Access to active site		

49	Lon Protease		3.4.21.53
Gate function GATE1 – Controls th	e access of the substrate	Enzyme function ATP-dependent proteolysis	
Gate location GATE1 – At the entr	ance to an internal unfolding and degradation chamber	_	
Gate structural basis	i TE1 16 loop TE2 175 loop		
Gate engineering F216A – lost almost a	Il of the ATP-dependent proteolytic activity against a casein and the aromatic peptide	International and the second sec	
		Tunnel	
PDB: <i>WT</i> – 3K1J		Bottleneck	
References: ¹⁹³		Role	

50	Mannitol 2-Dehydrogenase			1.1.1.67
Gate function GATE1 – E292 funct	ions as a gate in water chain mechanism of proton translocation	Enzyme funct Dehydrogenati	t ion ion of mannitol	
Gate location GATE1 – Bottleneck	of the tunnel connecting active site with protein surface			
Gate structural basis				A LAND
G A E2	YTE1 92 may adopt two conformation open and closed	s	ubstrate	
Gate engineering E292A – 120-fold dec	rese in a rate of microscopic steps preceeding catalytic oxidation of mannitol	E29 opt	E292 closed	NAD
		PDB ID: 1M2	W (open), 1LJ8	closed)
		Tunnel		
		Length		
PDB: <i>WT</i> – 1LJ8 (clo	sed), 1M2W (open)	Bottleneck		
References: ¹⁹⁴		Role	Proton transfer	

51	1.14.13.25		
Gate function		Enzyme function	
GATE1 – Controls to	ransport of the substrate between cavities 1 and 2	Converts hydrocarbon substrates either to alcohols or	
GATE2 – Allows su	bstrate to traverse the protein cavities	epoxides	
GATE3 – Controls e	ntrance of small substrates such as O_2 , H_3O^{T} , CH_4		
Gate location			
GATE1 – Separates	cavities 1 and 2		
GATE2 – Separates	cavities 2 and 3		So allo
GATE3 - One of the	residue from active site is positioned at the interface between the cavity and the surface		A STOLEN
above the fron-coord	inaung residue		
Gate structural basi	S		
G	ATE1		
	110, F188		
	billormation changes of L110 and F188 opens the access between the cavities 1 and 2, other	1110	
Ie	sidue involved 121		
G	ATE2		
L2	289		
M	oves to allow the substrate analogues to traverse between the cavities 2 and 3, other residues		- A
` cr	eating the bottleneck F109, V285 and Y291		
G	ATE3		
• N	214		
C	onformation changes – movement of N214 forms a deep crevice in the four-helix bundle	N214	1,200
Gate engineering		N214	L289
Gate engineering			F188
		PDB ID: 1MHY	
		Tunnel	
		Longth	
		D ut 1	
PDB: <i>WT</i> – 1MHY,	1XVG, 1XVF, 1XVE, 1XVB, 1XVC, 1XU5, 1XVD, 1XU3	Bottleneck	
References: 53,74,195		Role	

52	Monoamine Oxidase A		1.4.3.4
Gate function GATE1 – Contro	Is the access of the substrate	Enzyme function Oxidative deamination of bi neurotransmitters (serotonin	ogenicamines and amine , dopamine and epinephrine)
Gate location GATE1 – At the	entrance to the active site cavity	_	
	GATE1 Loop 99-104 The loop movement is regulating access to the active site cavity and the loop flexibility is critical for opening the entry for substrates/inhibitors	loop 99-104	
Gate engineering G110A – increase G110P – increase	of $K_{\rm m}$ of 5-fold of $K_{\rm m}$ of 19-fold	substrate PDB ID: 2Z5X Tunnel Length	FMN
PDB: <i>WT</i> – 2Z52	X, Mutant G110A – 2Z5Y	Bottleneck	
References: ^{196,19}	7	Role	

53	Monoamine Oxidase B			
Gate function		Enzyme function		
GATEI – Controls th	GATEL – Controls the access of the substrate		deamination of biogenic amines and amine	
GATE2 – Controls th	ie size of the active site cavity by separating or merging two smaller cavities	neurotransmitters (serotonin, o	iopamine and epinephrine)	
Gate location	anes to the active site equity			
GATE1 - At the chuGATE2 - Separates t	ance to the active site cavity			
Gate structural basi	s			
G, Lc Fi	ATE1 top 99-104 03 side chain conformation movement is synchronized with the conformation changes of 99 residues (1199 open \rightarrow F103 closed)	loop 99-104		
• • • 119 M	99, Y326 ovement of side chain residues separate or merge the entrance cavity and the substrate cavity			
Gate engineering 1199A/Y326A – exhi	bits inhibitor binding properties more similar to those of monoamine oxidase A	II99 substrate PDB ID: 2V5Z	Y326	
		I united		
PDB · $WT = 2V57$ M	lutant 1100 4/Y3264 _ 37VX	Bottleneck		
References: ^{197,198}	((((() 1) / / 1) / V/1 =)L 1 / /	Role		

54	Monooxygenase ActVAOrf6			Not determined	
Gate function GATE1 – Controls access of the substrate, hydrogen bond donor and acceptor/proton gate GATE2 – Controls opening of the narrow tunnel, can also control exit for H ₂ O, O ₂ , H ₂ O		Enzyme function Oxidation of a phenolic compound 6- deoxydihydrokalafungin at the C-6 position into the corresponding quinone dihydrokalafungin			
Gate location GATE1 – Entrance to GATE2 – Opposite si Gate structural basis Gate structural basis Th do	o the active site ide of the bound substrate s ATE1 /2 le residue possess two possible conformation that can act as a gate and act as hydrogen bond nor and acceptor		5		
Gate engineering	ATE2 10 + loop (residues 34-38) information changes close and open the narrow tunnel; gate can also control an exit path for O	pen the narrow tunnel; gate can also control an exit path for		Y72 closed	
		Length			
PDB: <i>WT</i> – 1LQ9		Bottleneck			
References: ^{14,92}		Role	Proton transfer	Oxygen/water transport	

55	NADH Oxidase		1.6.99.3
Gate function GATE1 – Controls accessibility of t	he flavin ring and plays a crucial role during the catalytic cycle	Enzyme function Hydride transfer from NADH cofactor	to the intrinsic flavin
Gate location GATE1 – Above the active site			
Gate structural basis GATE1 W47 and cofactor Cofactor-assisted pyrimidine sectior Closed conformat backbone Stabilization of th binding, it may sh Gate engineering DDD U/// LDD///	FAD gating mechanism, W47 moves from the original position toward the n ion is stabilized by the hydrogen bonds between cofactor and peptide are open form may have advantages during the initial steps of the substrate ow down the product dissociation	PDB ID: 1NOX Tunnel Length	
PDB: <i>WT</i> – 1NOX		Bottleneck	
References: 97,199		Role	

56	6 O-Acetylserine Sulfhydrylase Cysteine Synthase			2.5.1.47
Gate function GATE1 – Controls au GATE2 – Controls au	ccess to the active site ccess to the active site	Enzyme funct Production of intermediate	t ion cysteine from th	e O-acetyl-serine
Gate location GATE1 – Bottleneck GATE2 – Bottleneck Gate structural basi G. Mu up Gate engineering	of tunnel 12–20 Å from the active site cavity of tunnel 8–12 Å from the active site cavity s ATE1 otion of side chains in addition to backbone movements M101 or S100 on the loop of the per domain ATE2 otion of side chains in addition to backbone movements S75 on the Asn-loop for the inner te	substrate S7		
		Tunnel	(
		Length	~ 28	
PDB: <i>WT</i> – 1Z7V 12	77W	Bottleneck	20	
References: 200		Role	Access to the a	active site

57	Oxidosqualene Cyclase SceOSC			5.4.99.7
Gate function GATE1 – Controls ad ?GATE2 – Controls a	access of the substrate	Enzyme funct Cyclization of	tion the 2,3-oxidosq	ualene into lanosterol
Gate location GATE1 – Bottleneck ?GATE2 – Bottleneck Gate structural basis GATE1 – Bottleneck ?GATE2 – Bottlenec Gate structural basis ? ? Gate engineering Y239F – 5-fold decre Y239A – 2-fold decre	between tunnel and active site cavity k between tunnel and active site cavity s TE1 39 (Y237 in <i>Hsa</i> OSC) rotation of the side chain stabilized by a hydrogen bond bridge with P228 could open the annel and enable the substrate to enter the active site ATE2 35 (C233 in <i>Hsa</i> OSC) ase in enzyme activity, mutation keeps the channel in a closed conformation ase in enzyme activity, mutation keeps the channel in a open conformation	PDB ID: 1W6	233	substrate
		Length		
PDB: WT (HsaOSC)	- 1W6K	Bottleneck		
References: ²⁰¹		Role	Connects activ	e site cavity with bulk

58	Phenol Hydroxylase PHH		1.14.13.7
Gate function GATE1 – Controls a GATE2 – Closes ca GATE3 – Closes ca	access to the active site vity 2 vity 2	Enzyme funct Hydroxylates a	ion aromatic compounds
Gate location GATE1 – Entrance GATE2 – Between GATE3 – Between Gate structural bas	to the tunnel active site pocket and cavity 2 cavity 3 and cavity 2 is ATE1		Curry C
	204 he residue shift is redox-dependent elix E orients N204 away from the active site and opens the tunnel 204 in closed conformation forms a hydrogen bond with S72 ATE2 107 and L272	V455	
	ATE3 399 and V455		
Gate engilitering		PDB ID: 2INP	L272 N204
		Tunnel	
		Length	
PDB: <i>WT</i> – 2INP, 2	INN	Bottleneck	
References: 74,195		Role	Substrate transport

59 Phospholipase A2			3.1.1.4
Gate function GATE1 – Controls	access to the interface and active sites	Enzyme function Catalyses the hydrolysis of ac phospholipids	yl bonds in sn-3-
Gate location GATE1 – Position of	f monomers		36
Gate structural bas	is ATE1 he dimer interface might act as a hinge he homodimer can be observed in open and closed conformations formed by different angle etween monomers		
		PDB ID: 1CLP – open Tunnel	
		Length	
PDB: <i>WT</i> – 1CLP (open), 1PP2 (closed)	Bottleneck	
References: ^{69,202,203}		Role	

60	Phosphatidylinositol-Specific Phospholipase C			
Gate function GATE1 – Controls	access to the active site, controls product exit	Enzyme funct Catalyses the c anchored prote	tion cleavage of glyca eins	n-phosphatidylinositol
Gate location GATE1 – Entrance	to the active site			
Gate structural ba	sis GATE1	_		
\swarrow	Rim loop (residues 241-252) and W45 Rim loop undergoes the pH-dependent movement with a maximum backbone displacement of 9.4 Å between the acidic and basic forms H258 serves as a anchoring residue holding F249 residue from a loop by π-cationic interaction W45 closes the product exit pathway when the loop is in extended position		m loop open	
W45 closes the product exit pathway when the loop is in extended position Gate engineering H258Y – keeps the rim mobile loop in extended conformation		Closed	45 subst	rate
		PDB ID: 3V18	5 – blue 3 – light green	
		Length		
PDB: <i>WT</i> – 3V16,	3V18, <i>Mutants H258Y</i> - 3V1H	Bottleneck		
References: 204		Role		

61	Quercetin 2,3-Dioxygenase			1.13.11.24
Gate function Enz GATE1 - Controls access of small molecules into the active site Deg CATE2 - Controls access of small molecules into the active site Deg		Enzyme funct Degradation pa	Enzyme function Degradation pathway of flavonoids	
Gate location GATE1 – Tunnel cor GATE2 – Tunnel cor Gate structural basic Gate structural basic Gate structural basic F1 Sid Sm Gate engineering PDB: WT = 1600 G	Inecting the bulk solvent and the active site cavity meeting the bulk solvent and the active site cavity S TE1 75 de-chain of F175 switches from the enzyme surface to the bulk and opens access to the cavity its turnel opening occurs as soon as the cavity is inflated by a sufficient number of water olecules (16–18) ATE2 32 and L135 de-chains of F132 and L135 are structurally mobile enough to provide access for the entry of hall molecules into the enzyme active site	F1 Substrat PDB ID: 1GQ Tunnel Length Bottleneck	32 e G	E1135 F175
75 m 1 - 10QU, 1	JOH, HHH	Domeneek	1.0	
References: ⁷³		Role	O ₂ transport	

62	Rabbit 20a-Hydroxysteroid Dehydrogenase		1.1.1.149
Gate function GATE1 – Protects c	avity from the solvent in the absence of a steroid	Enzyme funct Dehydrogenat	tion ion of hydroxy steroid
Gate location	•		
GATE1 – Loops ma	king-up the active site cavity	-	
Gate structural bas	is	_	8
G F L	ATE1 lexible loop B (residues 223–230) lovement of the loop partly controlled by the nature of Q230 loops A and C mostly contribute in the pocket creation changing depth and size of the cavity		
Gate engineering E230P – changes in 1 K274R – increases fi reduction of xylose	he selectivity by reduced loop flexibility exibility of loop by and eliminating K274–E227 contact, high k _{cat} for NADPH-dependent	substr	ate
		PDB ID: 1Q13 Tunnel Length	
PDB: <i>WT</i> – 105M.	1013. WT (AKR5H1) – 2WZT 2WZM small loops	Bottleneck	
References: ^{37,205–208}		Role	Substrate steroid binding and orienting towards cofactor NADP(H)

63	Raucaffricine O-β-Dglucosidaseglucosidase		3.2.1.125
Gate function		Enzyme function	
GATE1 – Ccontrols t	he access of the substrate	Hydrolyses alkaloid raucaffric	ine to aglyconevomilenine
Gate location	ance to the active site covity		
GATEI - At the chura	s		A Mar
Gate engineering S390G – leads to mor F485W – results in mo	TE1 392 nformation of W392 is controlled by S390 e flexible conformation of W392 ore fixed conformation of W392		8
		PDB ID: 3U5U Tunnel Length	W392
PDB: $WT = 4A3Y, M$	lutants E186Q - 3050, 3057, 305Y	Bottleneck	
References: 209		Role	

Review

64	RNA-dependent RNA polymerase		2.7.7.48
Gate function GATE1 – Controls et	nzyme activity	Enzyme funct RNA replication	tion on
Gate location GATE1 – Surface loc Gate structural basi	ops	-	
G. A. La	ATE1 1-loop + L30 1-loop is involved in keeping the enzyme in a closed conformation, makes interaction with 30 (closed conformation is active, open is inactive)		
Gate engineering L30R and L30S – op R222E – exhibited 2- K151E – activity was tunnel entrance	en conformation -fold reduction in activity, positively charged residue inside the tunnel s 7–10-fold higher at 21 °C, and 2–3-fold higher at 37 °C, positively charged residue near the	PDB ID: 2XW	Al-loop + L30 H
		Length	19
PDB: <i>WT</i> – 2XWH,	2XXD, 3MWV	Bottleneck	
References: ²¹⁰		Role	NTP transport

65	RNA Polymerase		2.7.7.6
Gate function		Enzyme function	
GATE1 – Control	s the access to the DNA-binding tunnel	RNA synthesis	
Gate location			
GATE1 – Entrand	e to the DNA binding tunnel	4	
Gate structural b	asis	_	
Z	GATE1 Clamp domain may open to permit entry of promoter DNA during initiation, close to establish the tight grip on DNA during elongation and then open again to allow release of DNA during termination		
Gate engineering			RNA
		PDB ID: 116H	
		Tunnel	
		Length	
PDB: <i>WT</i> – 205J	116H, 116V	Bottleneck	
References: 66,211		Role	

66	Toluene - 4-Monooxygenase T4MO			1.14.13
Gate function GATE1 – Controls a GATE2 – Controls a GATE3 – Protects ca	ccess to the active site, controls selectivity ccess to the tunnel avity from access of the solvent	Enzyme funct Hydroxylates cresol	tion toluene primarily	v at the para position to
Gate location GATE1 – Boundary GATE2 – Tunnel en GATE3 – Cavity ent Gate structural basi II Si G G G G G G G G G G	between the active site pocket and the tunnel trance rance is ATE1 00 de chain rotation ATE2			
D Si	 285 eric blocking by negatively charged residue D285 ATE3 60, E64, E75, R69 teractions between E64 and R60 and between E75 and R69, ionic gate for the cavity 	S		D285
Gate engineering D2851, D285Q – imp D285S – improves o 1100A – improves o 1100G – improves o	proves oxidation of bulky substrates (11-fold) xidation of styrene (1.7-fold) xidation of bulky substrates (35-fold) xidation of methyl-p-tolyl sulphide (11-fold)	PDB ID: 3DH	1100 G	
		Tunnel		
	WT (TAmaC) = 1VM0 WT (TAmaD) = 1G10	Length		
References: 61,105	$m 1 (1+moC) = 1 v_1 v_1 2, m 1 (1+moD) = 1010$	Role	Substrate bind	ing cavity
iterefences.		Role	Substrate office	ing cavity

67	Toluene-Ortho-Xylene Monooxygenase ToMO			1.14
Gate function GATE1 – Controls access to the active site, controls selectivity GATE2 – Open pore allows access to the diiron centre for substrate (maybe also dioxygen or protons)		Enzyme function Catalyses hydroxylation of aromatics, oxidize benzene to phenol, catechol and trihydroxybenzene		
Gate location GATE1 – Border of 1 GATE2 – Entrance to Gate structural basi Gate structural basi Gate structural basi Gate structural basi (g (g (g (g (g (g (g (g (g (g (g (g (g	the pocket near Fe atoms – entrance to active site the pocket near Fe atoms – entrance to active site the tunnel s ATE1 00 2100 contributes to defining the hypothetical para site, but it is also at the boundary between a active site pocket and the tunnel which connects the pocket to the surface of the protein ATE2 202 202 202 202 203 204 205 205 206 207 208 209 209 209 209 200 209 200 200	PDB ID: 2INC		N202
		Length	30-35	
PDB: <i>WT</i> – 2INC, 17	Q07	Bottleneck		
References: 74,91,101,19	5,212,213	Role	Substrate and	product transport

68	Triosephophate Isomerase			5.3.1.1	
Gate function Enz GATE1 - Controls access of the water to the active site Cata to dit		Enzyme funct Catalyses ison to dihydroxyad	tion nerisation D-glyo cetone phosphato	eeraldehyde 3-phosphate	
Gate location GATE1 – Entrand	te to active site				
Gate structural h	asis				
\swarrow	GATE1 Loop 6 (residues 166 to 176). Residues 169 – 173 move as a rigid body, which position is controlled by flexible three residues N-terminal and C-terminal hinge regions In closed conformation loop sequesters the enzyme reaction from solvent. Closed conformation is stabilised by conserved anchoring residues from loop 7	loop6 open loop6 closed			
Gate engineering P(166)VW-AIGTG-KTA to P(166)GG-AIGTG-GGG mutant – k_{cat} decreases 2500-fold Y208F – k_{cat} decreases 2400-fold Y208T – k_{cat} decreases 200-fold		PDB ID: 1TIN PDB ID: 1TIPI Tunnel Leneth	A – blue H – light green	substrate	
PDB: <i>WT</i> – 1TIN	(open), 1TPH (closed)	Bottleneck			
References: ^{77,78,2}	4216	Role			

69	tRNA-Dependent Amidotransferase GatDE and GatCAB	B 6.3.5			
Gate function GATE1 – Protects active site from access of the solvent, avoids wasteful release of ammonia into solution ?GATE2 – Controls ammonia transport		Enzyme function Conversion of Glu-tRNA ^{Gln} into Gln-tRNA ^{Gln} or Asp- tRNA ^{Asn} into Asn-tRNA ^{Asn}			
Gate location GATE1 – β hairpin 1 ?GATE2 – Inside am Gate structural basi Gate structural basi Gate structural basi Gate structural basi	 bop surrounding asparaginase active site (in GatDE) monia tunnel (in GatCAB) s XTE1 GatDE hairpin loop Dβ7-Dβ8, residues 100–118 in GatD, G100, the first glycine in the strictly nserved GGT motif, active conformation substrate in contact with T102 XTE2 GatCAB in <i>A. aeolicus (S. aureus)</i> 29 (E125) 			β hairpin loop	
Gate engineering	28 (E125) side chain can blocks the tunnel via a salt bridge with K90 (K88)	EI K	128 90		
		PDB ID: 1ZQ1 PDB ID: 3H0L	ADP GatDE GatCAB		
		Tunnel	GatDE	GatCAB	
		Length		35	
PDB: WT (GatDE) -	1ZQ1, WT (GatCAB) - 3H0L, 3H0M, 3H0R	Bottleneck			
References: 155,217–219	References: ^{155,217–219}		Ammonia transport		

Table 3. continued

70	Tryptophan Synthase			4.2.1.20
Gate function GATE1 – Creates the tunnel and protects substrate binding cavity from the access of the solvent GATE2 – Controls transport of the indol GATE3 – Controls access to the subunit β and activates the β active site		Enzyme function Synthesis of L-tryptophan; subunit α cleavage of 3- indole-D-glycerol 3-phosphate; subunit β pyridoxal phosphate dependent condensation of indole with L- serine		
Gate location GATE1 – Surface loo GATE2 – Tunnel wa GATE3 – Subunit β Gate structural basi	pp from subunit <i>α</i> at the border between the subunits <i>β</i> and <i>α</i> II in subunit <i>β</i>			
G. Lo A do	ATE1 op L177 - A190 disordered surface loop in the subunit α after substrate binding becomes ordered and clamps wn over the active site, isolating this region from solvent		C.	- Contraction
• - • G. F2 Th it : loo	ATE2 80, Y279 ie residue F280 can adopt alternative conformations in closed interact with C170 in open one adopts Y279 position, Y279 moves toward the subunit α and interacts with part of the flexible sp-2 residues (54-61) of the subunit α	-	F280	substrate
G. Di In H-	ATE3 105 105 the closed conformation D305 creates the H-bonded salt bridge with R141 with the associated bonding network involving S197 and S199 s are initiated by binding IGP - the allosteric communication between the two sites that			6-925
Conformation changes are initiated by binding IGP - the allosteric communication between the two sites that results in full coupling of the reaction at the suburits α and β Gate engineering E49F, G51L, D60Y – decreases activity (2-fold) F280C, F280S – increases transport C170W, C170F – chemical modification of C170 (C170-NEM, C170-MMTS), obstructs the tunnel and accumulates indole intermediate		Ioop 177-190 PDB ID: 1BKS		
		Tunnel		
		Length	25 - 30	
PDB: <i>WT</i> – closed 3CEP, open conformations: 1BKS, 1KFK, 1KFJ, 1TTP, 2CLL, 2CLM, 2CLO		Bottleneck		_
References: 47,71,102,22	0,221	Role	Indol transport	t between two active sites

71	71 Undecaprenyl-Pyrophosphate Synthase			2.5.1.31
Gate function GATE1- Controls length of the final product		Enzyme function Condensation reactions of isopentenyl pyrophosphate with allylic pyrophosphate to generate linear isoprenyl polymers		pentenyl pyrophosphate generate linear isoprenyl
Gate location GATE1 - Loop clo Gate structural ba Gate structural ba t F Gate engineering *GATE2	sing the entrance to the tunnel sis GATE1 71 – 83 loop The helix $a3$ in open tunnel conformation is kinked by $\sim 30^{\circ}$ at E96, and the helix $a3$ in closed unnel conformation is kinked by $\sim 45^{\circ}$ at A92. Reaction starts with closed conformation \Rightarrow when the chain length reaches C55, the dimethyl end is stopped at the end of the tunnel $\Rightarrow a3$ helix move away from the closed position into the spen position (71 – 83 loop) \Rightarrow fully synthesized C55 long product can exit easily through the open gate			
 L13/A – removes the floor of the tunnel and allows formation of a longer chain length products (normal length C55), bulky side chain of L137 serves to block further elongation of undecaprenyl-pyrophosphate A69L – results in long lived accumulation of a short chain intermediate C30 final product C55 A143V – similar to wild type, rate 3-fold lower S71A, N74A, or R77A – decreases in k_{cut} values (25–200-fold) W75A – increases in K_m for farnesyl pyrophosphate (8-fold) E81A, S71A – increases in K_m for isopentenyl pyrophosphate (22–33-fold) 		loop 71-83		LI37
		PDB ID: 1JP3		
		Tunnel		
		Length	30	
PDB: $WT - 1JP3$		Bottleneck	Autorite	•,
References: 27		Role	Active site car	vity

substrate binding since it is believed to slow down product dissociation.^{22,97} Other gates of this type have been reported in 3-hydroxybenzoate hydroxylase,⁹⁸ 4-hydroxy-2-ketovalerate aldolase/acylating acetaldehyde dehydrogenase,⁹⁶ and choles-

terol oxidase type I⁵⁷ and type II.⁹⁹ Moreover, cofactors themselves can also function as gates. The FAD cofactor of digeranylgeranylglycerophospholipid reductase has two different conformations, referred to as the "in" and "out"

Figure 6. Locations of gates within a protein structure. Schematic representation of an enzyme with two active sites connected by a tunnel (I), a cofactor cavity (II), and multiple access tunnels. Gating residues in red may be located at the entrance to the active site (1), at the entrance or the bottleneck of the tunnel (2), and between the active site cavity and the cofactor cavity (3).

conformations. In the "in" conformation, the tunnel is blocked by FAD. To open the tunnel, FAD has to adopt the "out" conformation. 100

Gates are most commonly located at the tunnel entry and the tunnel bottleneck (51%). This is to be expected because the bottleneck represents the narrowest point of the tunnel, and its diameter often dictates the tunnel's permeability. Another common location is the entrance to the active site cavity (28%). Gates at the entrance of the cofactor cavity are less common (5%), which is not surprising since not all enzymes have a cofactor cavity. In 16% of the cases studied, the gate was not located within any of these functional regions (Figure 7).

5. ENGINEERING OF GATES

The average rate of evolution of the gating residues in the cytochrome P450 family is significantly greater than that for the protein sequence as a whole.⁵⁹ The high rate of evolution at the gating residues suggests that gate engineering may be an attractive alternative to other rational enzyme design strategies. This idea is supported by a few observations: (i) the gates are often spatially separated from the active site, and so mutations at the gating residues should not be deleterious to protein function, (ii) the opening and closing of the access pathways can affect ligand exchange and thus enzyme activity and selectivity, and (iii) gate modification can modulate the solvent's ability to access the active site, which in turn affects

solvation and stabilization of the transition state and also product release. In the following section, we describe selected cases in which an enzyme's catalytic properties have been successfully altered by modifying its gates.

5.1. Gate Modification

Gates can be modified by substitution of the gating residues, hinge residues, or anchoring residues depending on the nature of the gate in question. Modification of the gating residues has been shown to change the selectivity and activity of toluene-o-xylene monooxygenase, with the E214G mutation improving oxidation of *p*-nitrophenol by a factor of 15.¹⁰¹ A similar improvement in overall activity was achieved in a lipase from *Burkholderia cepacia* by the mutations L17S + L287I. This double mutant also exhibited a 10-fold increase in enantiose-lectivity compared to the wild-type enzyme.⁸⁶ The T78F or P76F mutations in imidazole glycerol phosphate synthase override some of the control exerted by the wild-type gate and block the passage of ammonia through the tunnel.³⁸ In NiFe hydrogenases, mutations of the V74 and V74 + L122 residues changes the rates of transport for H₂, CO, and O₂, thereby modulating the overall rate of reaction.²¹

Gates that incorporate secondary structure elements are dependent on hinge and anchoring regions. It has been demonstrated that modification of the hinge region can change an enzyme's activity and selectivity. Notably, the Q230P mutation in rabbit 20A-hydroxysteroid dehydrogenase decreases the flexibility of a key loop and thereby changes its selectivity.³⁷ Similarly, access to the active site in the HIV-1 protease is controlled by two β -turn flaps.⁸⁹ Results from Brownian dynamics simulations suggest that the G48V + V82A or I84V + L90M mutations in this enzyme reduce the likelihood that the active site will be exposed at any given point in time from 14% in the wild type to 2% in the mutants.⁸⁹ The importance of the anchoring residues in the HIV-1 protease was demonstrated by the F53L mutation, which generates a semiopen conformation due to removal of the stabilizing F53-I50 interaction.89

5.2. Gate Removal

Removing gates typically increases substrate and product exchange rates but also allows more extensive access of water molecules to protein tunnels and cavities. The overall effect of gate removal is therefore equal to the combined effects of these two processes. Gate deletion has been shown to increase the rate of substrate binding to tryptophan synthase.¹⁰² The F280C and F280S mutations both increased the rate of indole binding

Figure 7. Distribution of gate locations within protein structures based on analysis of 71 proteins with 129 gates. Detailed description of the analyzed proteins is provided in Table 3.

by a factor of 2. Similarly, the T78A mutation allowed ammonia to rapidly pass through the tunnel in imidazole glycerol phosphate synthase.³⁸ The R239A mutation in the cyclase caused a 1000-fold decrease in the enzyme's k_{cat}/K_m value and decoupling of the reaction.³⁸ This dramatic change in enzyme catalytic efficiency was attributed to creation of a new route for ammonia release. A similar leakage of ammonia was caused by the G359F and G359Y mutations in carbamoyl phosphate synthetase.^{103,104} Negative consequences of gate removal were also observed for the FabZ- β -hydroxyacyl-acyl carrier protein dehydratase (HpFabZ),⁵⁴ in which the Y100A mutation leaves the active site completely exposed to the bulk solvent. As a result, the acyl carrier protein binds to the HpFabZ Y100A mutant much more strongly than to the wild-type HpFabZ, decreasing the mutant enzyme's activity by more than 50% due to the very slow dissociation of the acyl carrier protein.

In some cases, gate removal enables bulky substrates to access the active site cavity. Mutations D285I and D285Q in toluene-4-monooxygenase improved its ability to oxidize the large and bulky substrates 2-phenylethanol and methyl *p*-tolyl sulfide by factors of 8 and 11, respectively, while the D285S mutation improved the rate of styrene oxidation 1.7-fold.¹⁰⁵ The L137A mutation in undecaprenyl-pyrophosphate synthase removed the bottom of the tunnel in this enzyme, allowing formation of products with longer chain lengths.²⁷ A similar situation was encountered in type III polyketide synthases from *Aloe arborescens* PCS, in which the M207 residue controls the number of condensations of malonyl-CoA.¹⁰⁶ The M207G mutation opened a connection between the tunnel and two hidden pockets located behind the active site, resulting in formation of extended products. Further product elongation was achieved with the triple mutant F80A + Y82A + M207G.

5.3. Gate Insertion

To best of our knowledge, there have been no reports of an intentional introduction of a new gate into an enzyme structure. However, there have been studies in which an access tunnel was systematically modified with multiple substitutions, and it is reasonable to expect that some of these mutations might have created new gates. More research will clearly be needed to confirm this expectation. To verify successful intentional insertion of a new gate into a protein structure, it would be necessary to confirm the existence of both the open and the closed conformations at a position where previously only a single conformation could be adopted.

Site-directed mutagenesis targeting specific residues at various positions along the access tunnel of *Candida rugosa* lipase has been used to alter the acceptable substrate chain length for this enzyme. The mutants for which this was observed were P246F, L413F, L410W, L410F + S300E, and L410F + S365L.¹⁰⁷ We note that the aromatic residues F and W, which are common in wing and swinging door gates, were introduced in each of these variants.

In another study, the residue L177 that is located near the entrance to the access tunnel of the haloalkane dehalogenase LinB from *Sphingobium japonicum* UT26 was substituted with all of the natural amino acids, yielding 19 mutants with significantly altered substrate specificity and activity.¹⁰⁸ Preliminary computational analyses of these variants using molecular dynamics revealed that the two residues possessing a single aromatic ring (F and Y) exhibited large fluctuations, as might be expected for gating.

Residue A217 is located at the entrance to the tunnel in the epoxide hydrolase EH from *Aspergillus niger* M200. This residue was substituted with C, E, G, L, P, Q, R, T, and V, and the effect of each mutation on the enzyme's activity and enantioselectivity was studied.²⁶ The mutants exhibited different enantioselectivity and activity relative to the wild type. For instance, the activity of the A217G mutation toward allyl glycidyl ether was lower than that of the wild type by a factor of 33, whereas the A217V mutation increased activity toward this substrate 6.6-fold.

Residues I135, W141, C176, V245, L246, and Y273 are positioned close to the entrance to the main and side tunnels of the haloalkane dehalogenase DhaA from *Rhodococcus rhodochrous* NCIMB 13064. These residues were simultaneously permuted in an attempt to improve this enzyme's activity against 1,2,3-trichloropropane. The most successful mutant, which featured the I135F, C176Y, V245F, L246I, and Y273F substitutions, showed 26-fold greater activity toward the target substrate than did the wild type.¹⁰⁹ In this mutant, three aromatic residues were introduced in place of aliphatic ones in the vicinity of the tunnels. Computational analysis of product release from the mutant suggests that substitutions introduced a transient rather than permanent structural feature and gating residues prevented access of water to the active site.¹¹⁰ Crystallographic analysis of the mutant revealed two distinct conformations for the Y176 side chain.¹¹⁰

6. CONCLUSIONS

This review highlights the importance of gates in enzymes. Gates play vital roles in controlling the catalytic activity and selectivity of enzymes and are more common in protein structures than is generally thought. In particular, gates control substrate access to the active site and product release, prevent or restrict solvent access to specific regions of the protein, and can synchronize processes occurring in distinct parts of the enzyme. Our literature survey of 129 gates in 71 enzymes revealed a large variety of systems with sophisticated structures. We presented a rigorous definition of gates and established a new scheme for their classification. The large number of inspected cases allowed us to build a catalogue of gates assigned to six distinct classes-wings, swinging doors, apertures, drawbridges, double drawbridges, and shells-with three different functions and three distinguishable locations. We also presented summary statistics that give a preliminary overview of the propensity of specific amino acid residues to occur in particular gate classes. The proposed classification scheme can be easily extended and updated but even in its present form can provide guidance for analysis and engineering of gates in biomolecular systems.

The biochemical relevance and specific location of gates within protein structures make them attractive targets for protein engineering. Attempts to rationally redesign gates typically involve computer-assisted gate identification followed by modification using focused directed evolution. This approach is compatible with a recent trend in protein engineering that stresses construction of small and smart libraries. Gate modification and deletion have been demonstrated in numerous cases, but the intentional insertion of new gates remains a challenge. Convenient methods for identifying gates in protein structures are essential prerequisites for their engineering. In silico, this can be achieved by coupling the software tools developed for describing pathways to tools developed for study of protein dynamics. Of the available

experimental techniques, NMR spectroscopy is particularly suitable for analysis of highly dynamic protein structures and can be expected to play an indispensable role in the study of gate dynamics at the atomic level. The field would also benefit from development of new experimental techniques for monitoring the passage of ligands through the protein pathways. One day it will be possible to control the catalytic properties of enzymes by rational engineering of their gates. To achieve this goal, we have to learn how gates evolved, how they interact with the other parts of the protein structure as well as with the ligand and solvent molecules, and how they fulfill their biological functions.

AUTHOR INFORMATION

Corresponding Author

*Phone +420-5-49493467. Fax +420-5-49496302. E-mail: jiri@ chemi.muni.cz.

Notes

The authors declare no competing financial interest.

Biographies

Artur Gora received his M.Sc. degree in Environmental Protection in 1998 and in Molecular Biology in 1999 and Ph.D. degree in Chemistry in 2002 from the Jagiellonian University in Poland. From 2002 to 2009 he carried out postdoctoral research at the Institute of Catalysis and Surface Chemistry of the Polish Academy of Sciences. In 2004 he was awarded a JSPS fellowship, and from 2004 to 2006 he was working at the National Institute of Advanced Industrial Science and Technology in Japan. Since 2010, he has been researcher at the Loschmidt Laboratories of the Masaryk University in Brno, Czech Republic. His recent research is focused on rational redesign of proteins.

Jan Brezovsky received his M.Sc. degree in Biophysics at Masaryk University, Brno, Czech Republic, in 2006. In 2011 he received his

Ph.D. degree in Environmental Chemistry with his thesis "Molecular Modeling of Enzymes" at the same university. Since then, he has been working as junior researcher at Loschmidt Laboratories of Masaryk University focusing on computational protein engineering and molecular modeling. His main research topics are ration redesign of dynamics and selectivity of enzymes.

Jiri Damborsky is the Loschmidt Chair Professor at the Department of Experimental Biology and the Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno, Czech Republic. He received his MSc. degree in 1993 and Ph.D. degree in Microbiology in 1997 at Masaryk University. His research interests lie in the field of protein engineering and synthetic biology. His research group develops new concepts and software tools for rational design of enzymes and bacteria. He is holder of the EMBO/HHMI Scientist award of the European Molecular Biology Organisation and the Howard Hughes Medical Institute.

ACKNOWLEDGMENTS

This work was supported by the Grant Agency of the Czech Republic (P207/12/0775 and P503/12/0572), the Grant Agency of the Czech Academy of Sciences (IAA401630901) and the European Regional Development Fund (CZ.1.05/2.1.00/01.0001). The work of A.G. was supported by SoMoPro programme No. SIGA762 and has received a financial contribution from the European Union within seventh FP (FP/2007-2013) under grant agreement No. 229603 and is cofinanced by the South Moravian Region. MetaCentrum is acknowledged for providing access to computing facilities, supported by the Czech Ministry of Education of the Czech Republic (LM2010005).

REFERENCES

(1) Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Röthlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoddard, B. L.; Baker, D. *Science* **2008**, *319*, 1387.

(2) Röthlisberger, D.; Khersonsky, O.; Wollacott, A. M.; Jiang, L.; DeChancie, J.; Betker, J.; Gallaher, J. L.; Althoff, E. A.; Zanghellini, A.; Dym, O.; Albeck, S.; Houk, K. N.; Tawfik, D. S.; Baker, D. *Nature* **2008**, 453, 190.

(3) Nanda, V.; Koder, R. L. Nat. Chem. 2010, 2, 15.

(4) Richter, F.; Leaver-Fay, A.; Khare, S. D.; Bjelic, S.; Baker, D. *PLoS One* **2011**, *6*, e19230.

- (5) Kamerlin, S. C. L.; Warshel, A. Proteins 2010, 78, 1339.
- (6) Schwartz, S. D.; Schramm, V. L. Nat. Chem. Biol. 2009, 5, 551.

(7) Henzler-Wildman, K.; Kern, D. Nature 2007, 450, 964.

(8) Henzler-Wildman, K. A.; Thai, V.; Lei, M.; Ott, M.; Wolf-Watz, M.; Fenn, T.; Pozharski, E.; Wilson, M. A.; Petsko, G. A.; Karplus, M.; Hübner, C. G.; Kern, D. *Nature* **2007**, *450*, 838.

5919

- (9) Lee, J.; Goodey, N. M. Chem. Rev. 2011, 111, 7595.
- (10) Lüdemann, S. K.; Lounnas, V.; Wade, R. C. J. Chem. Biol. 2000, 303, 797.
- (11) Csermely, P.; Palotai, R.; Nussinov, R. Trends Biochem. Sci. 2010, 35, 539.
- (12) McCammon, J. A.; Northrup, S. H. Nature 1981, 293, 316.

(13) Zhou, H.-X.; Wlodek, S. T.; McCammon, J. A. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9280.

- (14) Zhou, H. X.; McCammon, J. A. Trends Biochem. Sci. 2010, 35, 179.
- (15) McCammon, J. A. BMC Biophys. 2011, 4, 4.
- (16) Cojocaru, V.; Winn, P. J.; Wade, R. C. Biochim. Biophys. Acta 2007, 1770, 390.
- (17) Fischer, E. Ber. Dtsch. Chem. Ges. 1894, 27, 2985.
- (18) Koshland, D. E. Proc. Nat. Acad. Sci. U.S.A. 1958, 44, 98.
- (19) Tsai, C. J.; Kumar, S.; Ma, B.; Nussinov, R. Protein Sci. 1999, 8, 1181.
- (20) Prokop, Z.; Gora, A.; Brezovsky, J.; Chaloupkova, R.; Stepankova, V.; Damborsky, J. Engineering of protein tunnels: Keyhole-lock-key model for catalysis by the enzymes with buried active sites. In *Protein Engineering Handbook*; Lutz, S., Bornscheuer, U. T., Eds.; Wiley-VCH: Weinheim, 2012; p 421.
- (21) Liebgott, P. P.; Leroux, F.; Burlat, B.; Dementin, S.; Baffert, C.; Lautier, T.; Fourmond, V.; Ceccaldi, P.; Cavazza, C.; Meynial-Salles, I.; Soucaille, P.; Fontecilla-Camps, J. C.; Guigliarelli, B.; Bertrand, P.; Rousset, M.; Leger, C. *Nat. Chem. Biol.* **2010**, *6*, 63.

(22) Volbeda, A.; Martin, L.; Cavazza, C.; Matho, M.; Faber, B. W.; Roseboom, W.; Albracht, S. P.; Garcin, E.; Rousset, M.; Fontecilla-Camps, J. C. J. Biol. Inorg. Chem. **2005**, *10*, 239.

(23) Amara, P.; Andreoletti, P.; Jouve, H. M.; Field, M. J. *Protein Sci.* 2001, 10, 1927.

- (24) Kalko, S. G.; Gelpí, J. L.; Fita, I.; Orozco, M. J. Am. Chem. Soc. 2001, 123, 9665.
- (25) Winn, P. J.; Ludemann, S. K.; Gauges, R.; Lounnas, V.; Wade, R. C. Proc. Natl. Acad. Sci. U.S.A. **2002**, *99*, 5361.
- (26) Kotik, M.; Stepanek, V.; Kyslik, P.; Maresova, H. J. Biotechnol. 2007, 132, 8.
- (27) Ko, T. P.; Chen, Y. K.; Robinson, H.; Tsai, P. C.; Gao, Y. G.; Chen, A. P. C.; Liang, P. H.; Wang, A. H. J. *J. Biol. Chem.* **2001**, 276, 47474.
- (28) Szabo, A.; Shoup, D.; Northrup, S. H.; McCammon, J. A. J. Chem. Phys. **1982**, 77, 4484.
- (29) Zhou, H. X.; Szabo, A. Biophys. J. 1996, 71, 2440.
- (30) Zhou, H.-X. J. Chem. Phys. 1998, 108, 8146.
- (31) Xin, Y.; Gadda, G.; Hamelberg, D. Biochemistry 2009, 48, 9599.
- (32) Kramers, H. A. Physica 1940, 7, 284.
- (33) Case, D. Computer **1993**, 26, 47.
- (34) Smith, B. B. Biochem. Educ. 1989, 17, 220.
- (35) Bui, J. M.; Henchman, R. H.; McCammon, J. A. *Biophys. J.* **2003**, 85, 2267.
- (36) Fan, Y.; Lund, L.; Shao, Q.; Gao, Y. Q.; Raushel, F. M. J. Am. Chem. Soc. 2009, 131, 10211.
- (37) Couture, J.-F.; Legrand, P.; Cantin, L.; Labrie, F.; Luu-The, V.; Breton, R. J. Mol. Biol. **2004**, 339, 89.
- (38) Amaro, R. E.; Myers, R. S.; Davisson, V. J.; Luthey-Schulten, Z. A. *Biophys. J.* **2005**, *89*, 475.
- (39) Badet, B.; Vermoote, P.; Haumont, P. Y.; Lederer, F.; LeGoffic, F. *Biochemistry* **1987**, *26*, 1940.
- (40) Lund, L.; Fan, Y.; Shao, Q.; Gao, Y. Q.; Raushel, F. M. J. Am. Chem. Soc. 2010, 132, 3870.
- (41) Miles, B. W.; Raushel, F. M. Biochemistry 2000, 39, 5051.

(42) Li, K. K.; Beeson; Ghiviriga, I.; Richards, N. G. J. *Biochemistry* 2007, 46, 4840.

- (43) Myers, R. S.; Amaro, R. E.; Luthey-Schulten, Z. A.; Davisson, V. J. *Biochemistry* **2005**, *44*, 11974.
- (44) Meyer, M. E.; Gutierrez, J. A.; Raushel, F. M.; Richards, N. G. J. *Biochemistry* **2010**, *49*, 9391.
- (45) Floquet, N.; Mouilleron, S.; Daher, R.; Maigret, B.; Badet, B.; Badet-Denisot, M. A. FEBS Lett. 2007, 581, 2981.

- (46) Van den Heuvel, R. H. .; Svergun, D. I.; Petoukhov, M. V.; Coda, A.; Curti, B.; Ravasio, S.; Vanoni, M. A.; Mattevi, A. J. Chem. Biol. **2003**, 330, 113.
- (47) Brzovic, P. S.; Sawa, Y.; Hyde, C. C.; Miles, E. W.; Dunn, M. F. J. Biol. Chem. **1992**, 267, 13028.
- (48) Darnault, C.; Volbeda, A.; Kim, E. J.; Legrand, P.; Vernède, X.; Lindahl, P. A.; Fontecilla-Camps, J. C. *Nat. Struct. Mol. Biol.* **2003**, *10*, 271.
- (49) Von Ossowski, I.; Ståhlberg, J.; Koivula, A.; Piens, K.; Becker, D.; Boer, H.; Harle, R.; Harris, M.; Divne, C.; Mahdi, S.; Zhao, Y.; Driguez, H.; Claeyssens, M.; Sinnott, M. L.; Teeri, T. T. *J. Mol. Biol.* **2003**, 333, 817.
- (50) Mouilleron, S.; Badet-Denisot, M.-A.; Badet, B.; Golinelli-Pimpaneau, B. Arch. Biochem. Biophys. 2011, 505, 1.

(51) Doig, A. J. Biophys. Chem. 1996, 61, 131.

- (52) Endrizzi, J. A.; Kim, H.; Anderson, P. M.; Baldwin, E. P. Biochemistry 2005, 44, 13491.
- (53) Sazinsky, M. H.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127, 5814.
 (54) Zhang, L.; Liu, W.; Hu, T.; Du, L.; Luo, C.; Chen, K.; Shen, X.;

Jiang, H. J. Biol. Chem. 2008, 283, 5370.

- (55) Oprea, T. I.; Hummer, G.; García, A. E. Proc. Natl. Acad. Sci. U.S.A. **1997**, *94*, 2133.
- (56) Fishelovitch, D.; Shaik, S.; Wolfson, H. J.; Nussinov, R. J. Phys. Chem. B 2010, 114, 5964.
- (57) Lario, P. I.; Sampson, N.; Vrielink, A. J. Mol. Biol. 2003, 326, 1635.
- (58) Fishelovitch, D.; Shaik, S.; Wolfson, H. J.; Nussinov, R. J. Phys. Chem. B 2009, 113, 13018.
- (59) Zawaira, A.; Coulson, L.; Gallotta, M.; Karimanzira, O.; Blackburn, J. J. Struct. Biol. 2011, 173, 282.
- (60) Niu, C.; Xu, Y.; Xu, Y.; Luo, X.; Duan, W.; Silman, I.; Sussman, J. L.; Zhu, W.; Chen, K.; Shen, J.; Jiang, H. *J. Phys. Chem. B* **2005**, *109*, 23730.
- (61) Lountos, G. T.; Mitchell, K. H.; Studts, J. M.; Fox, B. G.; Orville, A. M. Biochemistry **2005**, *44*, 7131.
- (62) Vanoni, M. A.; Curti, B. Arch. Biochem. Biophys. 2005, 433, 193.
 (63) Xu, L.; Zhao, W.; Wang, X. Eur. Biophys. J. 2010, 39, 327.
- (64) Xu, Y.; Colletier, J.-P.; Weik, M.; Jiang, H.; Moult, J.; Silman, I.; Sussman, J. L. *Biophys. J.* **2008**, *95*, 2500.
- (65) Wester, M. R.; Johnson, E. F.; Marques-Soares, C.; Dansette, P. M.; Mansuy, D.; Stout, C. D. *Biochemistry* **2003**, *42*, 6370.
- (66) Sevostyanova, A.; Belogurov, G. A.; Mooney, R. A.; Landick, R.; Artsimovitch, I. *Mol. Cell.* **2011**, *43*, 253.
- (67) Tan, X.; Loke, H.-K.; Fitch, S.; Lindahl, P. A. J. Am. Chem. Soc. 2005, 127, 5833.
- (68) Biswal, B. K.; Morisseau, C.; Garen, G.; Cherney, M. M.; Garen, C.; Niu, C.; Hammock, B. D.; James, M. N. G. *J. Mol. Biol.* **2008**, *381*, 897.
- (69) Da Silva Giotto, M. T.; Garratt, R. C.; Oliva, G.; Mascarenhas, Y. P.; Giglio, J. R.; Cintra, A. C. O.; De Azevedo, W. F.; Arni, R. K.; Ward, R. J. *Proteins: Struct., Funct., Bioinf.* **1998**, *30*, 442.
- (70) Park, E.; Rho, Y. M.; Koh, O.-J.; Ahn, S. W.; Seong, I. S.; Song, J.-J.; Bang, O.; Seol, J. H.; Wang, J.; Eom, S. H.; Chung, C. H. *J. Biol. Chem.* **2005**, *280*, 22892.
- (71) Rhee, S.; Parris, K. D.; Ahmed, S. A.; Miles, E. W.; Davies, D. R. *Biochemistry* **1996**, *35*, 4211.
- (72) Oakley, A. J.; Klvana, M.; Otyepka, M.; Nagata, Y.; Wilce, M. C. J.; Damborsky, J. *Biochemistry* **2004**, *43*, 870.
- (73) Pawelek, P. D.; Cheah, J.; Coulombe, R.; Macheroux, P.; Ghisla, S.; Vrielink, A. *EMBO J.* **2000**, *19*, 4204.
- (74) Sazinsky, M. H.; Bard, J.; Di Donato, A.; Lippard, S. J. J. Biol. Chem. 2004, 279, 30600.
- (75) Fiorucci, S.; Golebiowski, J.; Cabrol-Bass, D.; Antonczak, S. *Proteins* **2006**, *64*, 845.
- (76) Eisenmesser, E. Z.; Bosco, D. A.; Akke, M.; Kern, D. Science 2002, 295, 1520.
- (77) Rozovsky, S.; Jogl, G.; Tong, L.; McDermott, A. E. J. Mol. Biol. 2001, 310, 271.

(78) Massi, F.; Wang, C.; Palmer, A. G., III *Biochemistry* **2006**, *45*, 10787.

- (79) Katoh, E.; Louis, J. M.; Yamazaki, T.; Gronenborn, A. M.; Torchia, D. A.; Ishima, R. *Protein Sci.* 2003, 12, 1376.
- (80) Osborne, M. J.; Schnell, J.; Benkovic, S. J.; Dyson, H. J.; Wright, P. E. *Biochemistry* **2001**, *40*, 9846.

(81) Boroujerdi, A. F. B.; Young, J. K. Biopolymers 2009, 91, 140.

(82) Brezovsky, J.; Chovancova, E.; Gora, A.; Pavelka, A.; Biedermannova, L.; Damborsky, J. *Biotechnol. Adv.* **2013**, *31*, 38.

(83) Chovancova, E.; Pavelka, A.; Benes, P.; Strnad, O.; Brezovsky, J.; Kozilkova, B.; Gora, A.; Sustr, V.; Klvana, M.; Medek, P.; Biedermannova, L.; Sochor, J.; Damborsky, J. *PLoS Comput. Biol.*

2012, *8*, e1002708. (84) Petrek, M.; Kosinova, P.; Koca, J.; Otyepka, M. Structure **200**7, 15, 1357.

(85) Yaffe, E.; Fishelovitch, D.; Wolfson, H. J.; Halperin, D.; Nussinov, R. Proteins 2008, 73, 72.

(86) Lafaquiere, V.; Barbe, S.; Puech-Guenot, S.; Guieysse, D.; Cortes, J.; Monsan, P.; Simeon, T.; Andre, I.; Remaud-Simeon, M. *ChemBioChem* **2009**, *10*, 2760.

(87) Tina, K. G.; Bhadra, R.; Srinivasan, N. Nucleic Acids Res. 2007, 35, W473.

(88) Arroyo-Mañez, P.; Bikiel, D. E.; Boechi, L.; Capece, L.; Di Lella,

S.; Estrin, D. A.; Martí, M. A.; Moreno, D. M.; Nadra, A. D.; Petruk, A.

A. Biochim. Biophys. Acta: Proteins Proteomics 2011, 1814, 1054.

(89) Chang, C.-E.; Shen, T.; Trylska, J.; Tozzini, V.; McCammon, J. A. *Biophys. J.* **2006**, *90*, 3880.

(90) Schleinkofer, K.; Sudarko; Winn, P. J.; Ludemann, S. K.; Wade, R. C. *EMBO Rep.* **2005**, *6*, 584.

(91) Murray, L. J.; García-Serres, R.; McCormick, M. S.; Davydov, R.; Naik, S. G.; Kim, S.-H.; Hoffman, B. M.; Huynh, B. H.; Lippard, S. J. *Biochemistry* **2007**, *46*, 14795.

(92) Sciara, G.; Kendrew, S. G.; Miele, A. E.; Marsh, N. G.; Federici, L.; Malatesta, F.; Schimperna, G.; Savino, C.; Vallone, B. *EMBO J.* **2003**, 22, 205.

(93) Rowlett, R. S. Biochim. Biophys. Acta 2010, 1804, 362.

- (94) Kohls, D.; Sulea, T.; Purisima, E. O.; MacKenzie, R. E.; Vrielink, A. Structure 2000. 8, 35.
- (95) Abe, I.; Morita, H. Nat. Prod. Rep. 2010, 27, 809.
- (96) Manjasetty, B. A.; Powlowski, J.; Vrielink, A. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 6992.
- (97) Toth, K.; Sedlak, E.; Sprinzl, M.; Zoldak, G. Biochim. Biophys. Acta 2008, 1784, 789.

(98) Hiromoto, T.; Fujiwara, S.; Hosokawa, K.; Yamaguchi, H. J. Chem. Biol. 2006, 364, 878.

(99) Vrielink, A.; Ghisla, S. FEBS J. 2009, 276, 6826.

- (100) Xu, Q.; Eguchi, T.; Mathews, I. I.; Rife, C. L.; Chiu, H.-J.; Farr,
- C. L.; Feuerhelm, J.; Jaroszewski, L.; Klock, H. E.; Knuth, M. W.; Miller, M. D.; Weekes, D.; Elsliger, M.-A.; Deacon, A. M.; Godzik, A.;

Lesley, S. A.; Wilson, I. A. J. Mol. Biol. 2010, 404, 403.

(101) Vardar, G.; Wood, T. K. J. Bacteriol. 2005, 187, 1511.

- (102) Ruvinov, S. B.; Yang, X. J.; Parris, K. D.; Banik, U.; Ahmed, S. A.; Miles, E. W.; Sackett, D. L. *J. Biol. Chem.* **1995**, *270*, 6357.
- (103) Thoden, J. B.; Huang, X.; Raushel, F. M.; Holden, H. M. J. Biol. Chem. 2002, 277, 39722.

(104) Huang, X.; Raushel, F. M. Biochemistry 2000, 39, 3240.

- (105) Brouk, M.; Derry, N. L.; Shainsky, J.; Zelas, Z. B. B.; Boyko, Y.; Dabush, K.; Fishman, A. J. Mol. Catal. B: Enzym. 2010, 66, 72.
- (106) Morita, H.; Kondo, S.; Oguro, S.; Noguchi, H.; Sugio, S.; Abe, I.; Kohno, T. *Chem. Biol.* **200**7, *14*, 359.

(107) Schmitt, J.; Brocca, S.; Schmid, R. D.; Pleiss, J. Protein Eng. 2002, 15, 595.

(108) Chaloupkova, R.; Sykorova, J.; Prokop, Z.; Jesenska, A.; Monincova, M.; Pavlova, M.; Tsuda, M.; Nagata, Y.; Damborsky, J. J. *Biol. Chem.* **2003**, *278*, 52622.

(109) Pavlova, M.; Klvana, M.; Prokop, Z.; Chaloupkova, R.; Banas, P.; Otyepka, M.; Wade, R. C.; Tsuda, M.; Nagata, Y.; Damborsky, J. *Nat. Chem. Biol.* **2009**, *5*, 727.

(110) Klvana, M.; Pavlova, M.; Koudelakova, T.; Chaloupkova, R.; Dvorak, P.; Prokop, Z.; Stsiapanava, A.; Kuty, M.; Kuta-Smatanova, I.; Dohnalek, J.; Kulhanek, P.; Wade, R. C.; Damborsky, J. *J. Mol. Biol.* **2009**, *392*, 1339.

(111) Li, Q.-A.; Mavrodi, D. V.; Thomashow, L. S.; Roessle, M.; Blankenfeldt, W. J. Biol. Chem. 2011, 286, 18213.

(112) Carere, J.; Baker, P.; Seah, S. Y. K. Biochemistry 2011, 50, 8407.
(113) Wang, J.; Ortiz-Maldonado, M.; Entsch, B.; Massey, V.; Ballou, D.; Gatti, D. L. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 608.

- (114) Faerman, C.; Ripoll, D.; Bon, S.; Le Feuvre, Y.; Morel, N.;
- Massoulie, J.; Sussman, J. L.; Silman, I. FEBS Lett. **1996**, 386, 65. (115) Alisaraie, L.; Fels, G. J. Mol. Model. **2006**, 12, 348.

(116) Wlodek, S. T.; Clark, T. W.; Scott, L. R.; McCammon, J. A. J. Am. Chem. Soc. **1997**, 119, 9513.

(117) Xu, Y.; Shen, J.; Luo, X.; Silman, I.; Sussman, J. L.; Chen, K.; Jiang, H. J. Am. Chem. Soc. 2003, 125, 11340.

(118) Rydberg, E. H.; Brumshtein, B.; Greenblatt, H. M.; Wong, D. M.; Shaya, D.; Williams, L. D.; Carlier, P. R.; Pang, Y.-P.; Silman, I.; Sussman, J. L. *J. Med. Chem.* **2006**, *49*, 5491.

(119) Tai, K.; Shen, T.; Börjesson, U.; Philippopoulos, M.; McCammon, J. A. *Biophys. J.* **2001**, *81*, 715.

(120) Sanson, B.; Colletier, J.-P.; Xu, Y.; Lang, P. T.; Jiang, H.; Silman, I.; Sussman, J. L.; Weik, M. Protein Sci. **2011**, 20, 1114.

(121) Greenblatt, H. M.; Guillou, C.; Guénard, D.; Argaman, A.; Botti, S.; Badet, B.; Thal, C.; Silman, I.; Sussman, J. L. J. Am. Chem. Soc. 2004, 126, 15405.

(122) Harel, M.; Schalk, I.; Ehret-Sabatier, L.; Bouet, F.; Goeldner, M.; Hirth, C.; Axelsen, P. H.; Silman, I.; Sussman, J. L. Proc. Natl. Acad. Sci. U.S.A. **1993**, 90, 9031.

(123) Dvir, H.; Jiang, H. L.; Wong, D. M.; Harel, M.; Chetrit, M.; He, X. C.; Jin, G. Y.; Yu, G. L.; Tang, X. C.; Silman, I.; Bai, D. L.; Sussman, J. L. *Biochemistry* **2002**, *41*, 10810.

(124) Harmat, V.; Domokos, K.; Menyhard, D. K.; Palló, A.; Szeltner, Z.; Szamosi, I.; Beke-Somfai, T.; Náray-Szabó, G.; Polgár, L. J. Biol. Chem. **2011**, 286, 1987.

(125) Papaleo, E.; Renzetti, G.; Tiberti, M. PLoS One 2012, 7, e35686.

(126) Santos, C. R.; Tonoli, C. C. C.; Trindade, D. M.; Betzel, C.; Takata, H.; Kuriki, T.; Kanai, T.; Imanaka, T.; Arni, R. K.; Murakami, M. T. Proteins: Struct., Funct., Bioinf. **2011**, *79*, 547.

(127) Tesson, A. R.; Soper, T. S.; Ciustea, M.; Richards, N. G. Arch. Biochem. Biophys. 2003, 413, 23.

(128) Larsen, T. M.; Boehlein, S. K.; Schuster, S. M.; Richards, N. G. J.; Thoden, J. B.; Holden, H. M.; Rayment, I. *Biochemistry* **1999**, *38*, 16146.

(129) Wang, J.; Song, J. J.; Franklin, M. C.; Kamtekar, S.; Im, Y. J.; Rho, S. H.; Seong, I. S.; Lee, C. S.; Chung, C. H.; Eom, S. H. *Structure* **2001**, *9*, 177.

(130) Wang, J.; Song, J. J.; Seong, I. S.; Franklin, M. C.; Kamtekar, S.; Eom, S. H.; Chung, C. H. *Structure* **2001**, *9*, 1107.

- (131) Kim, J.; Raushel, F. M. Biochemistry 2004, 43, 5334.
- (132) Kim, J.; Raushel, F. M. Arch. Biochem. Biophys. 2004, 425, 33.
- (133) Huang, X.; Raushel, F. M. Biochemistry 2000, 39, 3240.
- (134) Holden, H. M.; Thoden, J. B.; Raushel, F. M. Curr. Opin. Struct. Biol. **1998**, *8*, 679.

(135) Tan, X.; Volbeda, A.; Fontecilla-Camps, J. C.; Lindahl, P. A. J. Biol. Inorg. Chem. 2006, 11, 371.

- (136) Tan, X.; Lindahl, P. A. J. Biol. Inorg. Chem. 2008, 13, 771.
- (137) Volbeda, A.; Fontecilla-Camps, J. C. J. Biol. Inorg. Chem. 2004, 9, 525.

(138) Teng, Y.-B.; Jiang, Y.-L.; He, Y.-X.; He, W.-W.; Lian, F.-M.; Chen, Y.; Zhou, C.-Z. BMC Struct. Biol. 2009, 9, 67.

- (139) Wierdl, M.; Morton, C. L.; Nguyen, N. K.; Redinbo, M. R.; Potter, P. M. *Biochemistry* **2004**, *43*, 1874.
- (140) Yu, X.; Sigler, S. C.; Hossain, D.; Wierdl, M.; Gwaltney, S. R.; Potter, P. M.; Wadkins, R. M. J. Mol. Model. **2011**, *18*, 2869.

(141) Varrot, A.; Hastrup, S.; Schülein, M.; Davies, G. J. *Biochem. J.* **1999**, 337, 297.

(142) Schülein, M. Biochim. Biophys. Acta 2000, 1543, 239.

(143) Koivula, A.; Kinnari, T.; Harjunpää, V.; Ruohonen, L.; Teleman, A.; Drakenberg, T.; Rouvinen, J.; Jones, T. A.; Teeri, T. T. *FEBS Lett.* **1998**, 429, 341.

- (144) De Groeve, M. R. M.; Remmery, L.; Van Hoorebeke, A.; Stout, J.; Desmet, T.; Savvides, S. N.; Soetaert, W. *Biotechnol. Bioeng.* **2010**, 107, 413.
- (145) Fushinobu, S.; Mertz, B.; Hill, A. D.; Hidaka, M.; Kitaoka, M.; Reilly, P. J. *Carbohydr. Res.* **2008**, *343*, 1023.
- (146) Morita, H.; Wanibuchi, K.; Nii, H.; Kato, R.; Sugio, S.; Abe, I. *Proc. Natl. Acad. Sci. U.S.A.* **2010**, *107*, 19778.
- (147) Podzelinska, K.; Latimer, R.; Bhattacharya, A.; Vining, L. C.; Zechel, D. L.; Jia, Z. *J. Mol. Biol.* **2010**, 397, 316.
- (148) Chen, L.; Lyubimov, A. Y.; Brammer, L.; Vrielink, A.; Sampson, N. S. *Biochemistry* **2008**, *47*, 5368.
- (149) Coulombe, R.; Yue, K. Q.; Ghisla, S.; Vrielink, A. J. Biol. Chem. 2001, 276, 30435.
- (150) Piubelli, L.; Pedotti, M.; Molla, G.; Feindler-Boeckh, S.; Ghisla, S.; Pilone, M. S.; Pollegioni, L. J. Biol. Chem. **2008**, 283, 24738.
- (151) Huang, W.; Boju, L.; Tkalec, L.; Su, H.; Yang, H. O.; Gunay, N. S.; Linhardt, R. J.; Kim, Y. S.; Matte, A.; Cygler, M. *Biochemistry* **2001**, 40, 2359.
- (152) Johnson, B. J.; Cohen, J.; Welford, R. W.; Pearson, A. R.; Schulten, K.; Klinman, J. P.; Wilmot, C. M. J. Biol. Chem. 2007, 282, 17767.
- (153) Wilmot, C. M.; Saysell, C. G.; Blessington, A.; Conn, D. A.; Kurtis, C. R.; McPherson, M. J.; Knowles, P. F.; Phillips, S. E. V. *FEBS Lett.* **2004**, *576*, 301.
- (154) Wilmot, C. M.; Murray, J. M.; Alton, G.; Parsons, M. R.; Convery, M. A.; Blakeley, V.; Corner, A. S.; Palcic, M. M.; Knowles, P. F.; McPherson, M. J.; Phillips, S. E. *Biochemistry* **1997**, *36*, 1608.
- (155) Mouilleron, S.; Golinelli-Pimpaneau, B. Curr. Opin. Struct. Biol. 2007, 17, 653.
- (156) Endrizzi, J. A.; Kim, H.; Anderson, P. M.; Baldwin, E. P. Biochemistry 2004, 43, 6447.
- (157) Goto, M.; Omi, R.; Nakagawa, N.; Miyahara, I.; Hirotsu, K. Structure 2004, 12, 1413.
- (158) Khan, K. K.; He, Y. Q.; Domanski, T. L.; Halpert, J. R. Mol. Pharmacol. **2002**, *61*, 495.
- (159) Wade, R. C.; Winn, P. J.; Schlichting, I.; Sudarko. J. Inorg. Biochem. 2004, 98, 1175.
- (160) Bhabha, G.; Lee, J.; Ekiert, D. C.; Gam, J.; Wilson, I. A.; Dyson, H. J.; Benkovic, S. J.; Wright, P. E. *Science* **2011**, *332*, 234.
- (161) Luo, J.; Bruice, T. C. J. Biomol. Struct. Dyn. 2009, 27, 245.
- (162) Swanwick, R. S.; Shrimpton, P. J.; Allemann, R. K. *Biochemistry* 2004, 43, 4119.
- (163) Zou, J.; Hallberg, B. M.; Bergfors, T.; Oesch, F.; Arand, M.; Mowbray, S. L.; Jones, T. A. *Structure* **2000**, *8*, 111.
- (164) Kimber, M. S.; Martin, F.; Lu, Y.; Houston, S.; Vedadi, M.; Dharamsi, A.; Fiebig, K. M.; Schmid, M.; Rock, C. O. *J. Biol. Chem.* **2004**, *279*, 52593.
- (165) Swarnamukhi, P. L.; Sharma, S. K.; Bajaj, P.; Surolia, N.; Surolia, A.; Suguna, K. FEBS Lett. 2006, 580, 2653.
- (166) Mouilleron, S.; Badet-Denisot, M.-A.; Golinelli-Pimpaneau, B. J. Biol. Chem. **2006**, 281, 4404.
- (167) Teplyakov, A.; Obmolova, G.; Badet, B.; Badet-Denisot, M. A. J. Mol. Biol. **2001**, 313, 1093.
- (168) Dossena, L.; Curti, B.; Vanoni, M. A. *Biochemistry* **200**7, *46*, 4473.
- (169) Kim, J. H.; Krahn, J. M.; Tomchick, D. R.; Smith, J. L.; Zalkin, H. J. Biol. Chem. **1996**, 271, 15549.
- (170) Krahn, J. M.; Kim, J. H.; Burns, M. R.; Parry, R. J.; Zalkin, H.; Smith, J. L. *Biochemistry* **1997**, *36*, 11061.
- (171) Biedermannova, L.; Prokop, Z.; Gora, A.; Chovancova, E.; Kovacs, M.; Damborsky, J.; Wade, R. C. *J. Biol. Chem.* **2012**, *287*, 29062.
- (172) Kalyaanamoorthy, S.; Chen, Y.-P. P. J. Chem. Inf. Model. 2012, 52, 589.
- (173) Haider, S.; Joseph, C. G.; Neidle, S.; Fierke, C. A.; Fuchter, M. J. Bioorg. Med. Chem. Lett. **2011**, 21, 2129.

5922

- (174) Hornak, V.; Okur, A.; Rizzo, R. C.; Simmerling, C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 915.
- (175) Hornak, V.; Okur, A.; Rizzo, R. C.; Simmerling, C. J. Am. Chem. Soc. 2006, 128, 2812.
- (176) Liu, F.; Kovalevsky, A. Y.; Louis, J. M.; Boross, P. I.; Wang, Y.-F.; Harrison, R. W.; Weber, I. T. J. Chem. Biol. **2006**, 358, 1191.
- (177) Torbeev, V. Y.; Raghuraman, H.; Mandal, K.; Senapati, S.; Perozo, E.; Kent, S. B. H. *J. Am. Chem. Soc.* **2008**, *131*, 884.
- (178) Nicolet, Y.; Cavazza, C.; Fontecilla-Camps, J. C. J. Inorg. Biochem. 2002, 91, 1.
- (179) Cohen, J.; Kim, K.; King, P.; Seibert, M.; Schulten, K. Structure 2005, 13, 1321.
- (180) Cohen, J.; Kim, K.; Posewitz, M.; Ghirardi, M. L.; Schulten, K.; Seibert, M.; King, P. *Biochem. Soc. Trans.* **2005**, *33*, 80.
- (181) Omi, R.; Mizuguchi, H.; Goto, M.; Miyahara, I.; Hayashi, H.; Kagamiyama, H.; Hirotsu, K. J. Biochem. **2002**, 132, 759.
- (182) Chaudhuri, B. N.; Lange, S. C.; Myers, R. S.; Chittur, S. V.; Davisson, V. J.; Smith, J. L. Structure 2001, 9, 987.
- (183) Amaro, R.; Luthey-Schulten, Z. Chem. Phys. 2004, 307, 147.
- (184) Myers, R. S.; Jensen, J. R.; Deras, I. L.; Smith, J. L.; Davisson, V. J. Biochemistry **2003**, *42*, 7013.
- (185) Douangamath, A.; Walker, M.; Beismann-Driemeyer, S.; Vega-
- Fernandez, M. C.; Sterner, R.; Wilmanns, M. Structure 2002, 10, 185. (186) Chaudhuri, B. N.; Lange, S. C.; Myers, R. S.; Davisson, V. J.;
- Smith, J. L. *Biochemistry* **2003**, *42*, 7003.
- (187) Josephine, H. R.; Ravichandran, K. R.; Hedstrom, L. Biochemistry 2010, 49, 10674.
- (188) Johansson, P.; Wiltschi, B.; Kumari, P.; Kessler, B.; Vonrhein, C.; Vonck, J.; Oesterhelt, D.; Grininger, M. *Proc. Natl. Acad. Sci. U.S.A.* **2008**, *105*, 12803.
- (189) Moustafa, I. M.; Foster, S.; Lyubimov, A. Y.; Vrielink, A. J. Mol. Biol. 2006, 364, 991.
- (190) Qian, Z.; Horton, J. R.; Cheng, X.; Lutz, S. J. Mol. Biol. 2009, 393, 191.
- (191) Uppenberg, J.; Ohrner, N.; Norin, M.; Hult, K.; Kleywegt, G. J.; Patkar, S.; Waagen, V.; Anthonsen, T.; Jones, T. A. *Biochemistry* **1995**, *34*, 16838.
- (192) Magnusson, A. O.; Rotticci-Mulder, J. C.; Santagostino, A.; Hult, K. ChemBioChem 2005, 6, 1051.
- (193) Cha, S.-S.; An, Y. J.; Lee, C. R.; Lee, H. S.; Kim, Y.-G.; Kim, S. J.; Kwon, K. K.; De Donatis, G. M.; Lee, J.-H.; Maurizi, M. R.; Kang, S. G. *EMBO J.* **2010**, *29*, 3520.
- (194) Klimacek, M.; Brunsteiner, M.; Nidetzky, B. J. Biol. Chem. 2012, 287, 6655.
- (195) Murray, L. J.; Lippard, S. J. Acc. Chem. Res. 2007, 40, 466.
- (196) Son, S.-Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Proc. Natl. Acad. Sci. U.S.A. **2008**, 105, 5739.
- (197) Wang, J.; Harris, J.; Mousseau, D. D.; Edmondson, D. E. FEBS J. 2009, 276, 4569.
- (198) Milczek, E. M.; Binda, C.; Rovida, S.; Mattevi, A.; Edmondson, D. E. *FEBS J.* **2011**, *278*, 4860.
- (199) Hritz, J.; Zoldak, G.; Sedlak, E. Proteins 2006, 64, 465.
- (200) Feldman-Salit, A.; Wirtz, M.; Lenherr, E. D.; Throm, C.; Hothorn, M.; Scheffzek, K.; Hell, R.; Wade, R. C. *Structure* **2012**, *20*, 292.
- (201) Oliaro-Bosso, S.; Caron, G.; Taramino, S.; Ermondi, G.; Viola, F.; Balliano, G. *PLoS One* **2011**, *6*, e22134.
- (202) Arni, R. K.; Ward, R. J.; Gutierrez, J. M.; Tulinsky, A. Acta Crystallogr., Sect. D: Biol. Crystallogr. 1995, 51, 311.
- (203) Ullah, A.; Souza, T. A. C. B.; Betzel, C.; Murakami, M. T.; Arni, R. K. Int. J. Biol. Macromol. **2012**, *51*, 209.
- (204) Goldstein, R.; Cheng, J.; Stec, B.; Roberts, M. F. *Biochemistry* 2012, 51, 2579.
- (205) Scoble, J.; McAlister, A. D.; Fulton, Z.; Troy, S.; Byres, E.; Vivian, J. P.; Brammananth, R.; Wilce, M. C. J.; Le Nours, J.; Zaker-Tabrizi, L.; Coppel, R. L.; Crellin, P. K.; Rossjohn, J.; Beddoe, T. *J. Mol. Biol.* **2010**, 398, 26.
- (206) Jeudy, S.; Monchois, V.; Maza, C.; Claverie, J.-M.; Abergel, C. *Proteins* **2006**, *62*, 302.

(207) Leitgeb, S.; Petschacher, B.; Wilson, D. K.; Nidetzky, B. FEBS Lett. 2005, 579, 763.

- (208) Kozma, E.; Brown, E.; Ellis, E. M.; Lapthorn, A. J. J. Biol. Chem. 2002, 277, 16285.
- (209) Xia, L.; Ruppert, M.; Wang, M.; Panjikar, S.; Lin, H.; Rajendran, C.; Barleben, L.; Stöckigt, J. ACS Chem. Biol. 2012, 7, 226.

(210) Labonté, P.; Axelrod, V.; Agarwal, A.; Aulabaugh, A.; Amin, A.; Mak, P. J. Biol. Chem. 2002, 277, 38838.

(211) Tagami, S.; Sekine, S.; Kumarevel, T.; Hino, N.; Murayama, Y.; Kamegamori, S.; Yamamoto, M.; Sakamoto, K.; Yokoyama, S. *Nature* **2010**, *468*, 978.

(212) McCormick, M. S.; Sazinsky, M. H.; Condon, K. L.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 15108.

(213) Notomista, E.; Cafaro, V.; Bozza, G.; Di Donato, A. Appl. Environ. Microbiol. 2009, 75, 823.

(214) Wang, Y.; Berlow, R. B.; Loria, J. P. Biochemistry 2009, 48, 4548.

(215) Malabanan, M. M.; Amyes, T. L.; Richard, J. P. Curr. Opin. Struct. Biol. 2010, 20, 702.

(216) Wierenga, R. K.; Kapetaniou, E. G.; Venkatesan, R. Cell. Mol. Life Sci. 2010, 67, 3961.

(217) Schmitt, E.; Panvert, M.; Blanquet, S.; Mechulam, Y. Structure 2005, 13, 1421.

(218) Wu, J.; Bu, W.; Sheppard, K.; Kitabatake, M.; Kwon, S.-T.; Söll, D.; Smith, J. L. J. Mol. Biol. 2009, 391, 703.

(219) Oshikane, H.; Sheppard, K.; Fukai, S.; Nakamura, Y.; Ishitani, R.; Numata, T.; Sherrer, R. L.; Feng, L.; Schmitt, E.; Panvert, M.; Blanquet, S.; Mechulam, Y.; Söll, D.; Nureki, O. *Science* **2006**, *312*, 1950.

(220) Pompliano, D. L.; Peyman, A.; Knowles, J. R. *Biochemistry* **1990**, *29*, 3186.

(221) Dierkers, A. T.; Niks, D.; Schlichting, I.; Dunn, M. F. Biochemistry 2009, 48, 10997.