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Abstract

Questionnaires for the assessment of attitudes and other psychological traits are crucial in edu-
cational and psychological research, and item response theory (IRT) has become a viable tool
for scaling such data. Many international large-scale assessments aim at comparing these con-
structs across countries, and the invariance of measures across countries is thus required. In its
most recent cycle, the Programme for International Student Assessment (PISA 2015) imple-
mented an innovative approach for testing the invariance of IRT-scaled constructs in the context
questionnaires administered to students, parents, school principals, and teachers. On the basis
of a concurrent calibration with equal item parameters across all groups (i.e., languages within
countries), a group-specific item-fit statistic (root mean square deviance [RMSD]) was used as a
measure for the invariance of item parameters for individual groups. The present simulation
study examines the statistic’s distribution under different types and extents of (non)invariance
in polytomous items. Responses to five 4-point Likert-type items were generated under the
generalized partial credit model (GPCM) for 1,000 simulees in 50 groups each. For one of the
five items, either location or discrimination parameters were drawn from a normal distribution.
In addition to the type of noninvariance, the extent of noninvariance was varied by manipulating
the variation of these distributions. The results indicate that the RMSD statistic is better at
detecting noninvariance related to between-group differences in item location than in item dis-
crimination. The study’s findings may be used as a starting point to sensitivity analysis aiming to
define cutoff values for determining (non)invariance.
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Introduction

Many international large-scale assessments aim at comparisons of students in different educa-

tional systems (e.g., countries) with respect to psychological traits, both cognitive (e.g., reading
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competence) and noncognitive (e.g., beliefs, behaviors, and attitudes). Prominent examples for

such large-scale assessments are the Programme for International Student Assessment (PISA),

Trends in International Mathematics and Science Study (TIMSS), and Progress in International

Reading Literacy Study (PIRLS), and typical examples regarding the noncognitive characteris-

tics being assessed in these studies range from self-efficacy, motivation to learn, enjoyment of

reading, or test anxiety to measures of wealth and home educational resources. These latent

constructs are typically assessed by multiple observed indicators (e.g., questionnaire items), and

item response theory (IRT) has become a popular means for scaling such data and assigning

scores on these latent constructs to students. However, comparing the derived scale scores

across the participating countries not only requires a thorough process of translation and stan-

dardized administration but also it assumes that the construct is understood and measured in the

same way across all countries (Rutkowski & Svetina, 2014). This concept has been labeled

‘‘measurement invariance’’ (e.g., Meredith, 1993), ‘‘measurement equivalence’’ (e.g., Byrne,

Shavelson, & Muthén, 1989), ‘‘lack of item bias’’ (e.g., Mellenbergh, 1989), and ‘‘absence of

differential item functioning’’ (DIF; for example, Swaminathan & Rogers, 1990). The term

‘‘measurement invariance’’ will be used in the following. Measuring traits across distinct

groups (e.g., gender, time points, educational levels, cultural background) is central to psychol-

ogy so that a lot of discussion has been devoted to the topic of measurement invariance (Reise,

Widaman, & Pugh, 1993), and several techniques have been proposed to analyze the extent of

measurement invariance.

Different Approaches to Testing Measurement Invariance

Measurement invariance is a necessary prerequisite for valid comparisons across two or more

groups and it concerns the question whether ‘‘the numerical values under consideration are on

the same measurement scale’’ (Reise et al., 1993, p. 552). The question of measurement invar-

iance occurs whenever a measure of several items is used to represent a latent construct, thus

measurement invariance is related to the measurement model itself. Accordingly, tests of mea-

surement invariance exist in the context of confirmatory factor analysis (CFA) and IRT, and

measurement invariance refers to the question whether equal model parameters can be assumed

for all groups. Measurement invariance holds when the empirical relations between the trait

indicators (e.g., test items) and the trait of interest do not depend on group membership or mea-

surement occasion (i.e., time; Meredith, 1993; Reise et al., 1993).

Multigroup confirmatory factor analysis (MGCFA; Jöreskog, 1971) represents the most

common approach to testing measurement invariance across distinct groups (Cieciuch,

Davidov, Schmidt, Algesheimer, & Schwartz, 2014). In a series of increasingly constrained

nested models, the magnitude of the difference in measures of model fit indicates whether con-

straining sets of parameters across groups can be assumed to be appropriate. Depending on the

set of equal parameters across groups, three levels of measurement invariance can be distin-

guished (Meredith, 1993): configural (equal loading pattern), metric (equal factor loadings),

and scalar (equal factor loadings and indicator intercepts), each being associated with different

comparisons that can be made across groups (e.g., Dimitrov, 2010). Also in the context of

MGCFA, Byrne et al. (1989) introduced the notion of partial invariance according to which

only subsets of indicator items with equal loadings across groups are sufficient for comparisons.

Until recently, the analysis of measurement invariance in this framework was restricted to few

groups and relatively small sample sizes. Rutkowski and Svetina (2014), therefore, suggested

the use of more lenient criteria when comparing a large number of groups, for example, in the

context of large-scale assessments where tested groups tend to be large in size and quantity.

242 Applied Psychological Measurement 43(3)



In IRT, parameter invariance across groups is studied in the framework of DIF (e.g., Holland

& Thayer, 1988). For each item of a test, two nested models are defined in which the item’s

parameters are either freely estimated or constrained to be equal across groups. The models are

compared with a chi-square test of model fit (i.e., likelihood), and the result of this likelihood

ratio test indicates whether the assumption of equal item parameters across groups holds (e.g.,

Zumbo, 2007). A related approach in the IRT context was presented by differential functioning

of items and tests (DFIT) (‘‘differential functioning of items and tests’’; Raju, van der Linden, &

Fleer, 1995), providing measures for invariance on both the item and the test level. The advan-

tage of this approach is that it does not assume that all the other indicator items are unbiased.

Approximate measurement invariance represents a rather recent development in research on

these methods. Whereas item parameters in the aforementioned techniques are tested for exact

equality, approximate measurement invariance allows for small differences across groups by

treating parameters as random (e.g., Fox & Verhagen, 2010). A thorough overview of the devel-

opments in this field is beyond the scope of this article, but more interested readers are referred

to van de Schoot, Schmidt, De Beuckelaer, Lek, and Zondervan-Zwijnenburg (2015).

The Root Mean Square Deviance (RMSD) Item-Fit Statistic

In the most recent PISA cycle in 2015 (Organisation for Economic Co-Operation and

Development [OECD], 2016), a new IRT-based approach to establishing measurement invar-

iance was implemented, enabling the cross-country comparability of the measured constructs.

Data from both the cognitive assessment and the context questionnaires administered to stu-

dents, parents, school principals, and teachers were scaled using the generalized partial credit

model (GPCM; Muraki, 1992) in mdltm (von Davier, 2008). In this model, three types of item

parameters are estimated for an m-category item: a discrimination or slope parameter, a, and

two parameters representing item difficulty: the location parameter, b, and m� 1 category-

specific threshold parameter, d (�d = 0).

P Xji = xjuj, bi, ai, di

� �
=

exp
Px
u = 0

ai uj � bi + dir

� �� �
Pm
u = 0

exp
Pu
r = 0

ai uj � bi + dir

� �� � , ð1Þ

where

X0

r = 0

ai uj � bi + dir

� �
[0: ð2Þ

This decomposition of the item difficulty in polytomous items has been referred to as

extended parameterization (Penfield, Myers, & Wolfe, 2008). In contrast, the reduced parame-

terization (Masters, 1982) consists of m� 1 step parameters, dir, representing the intersections

of two neighboring category response functions. both sets of item difficulty parameters can be

transferred to one another by dir = bi + dir. However, the choice of parameterization has impli-

cations for the interpretation of findings from invariance testing. Noninvariance with respect to

dir (reduced parameterization) pertains to between-group differences in advancing from one

category to the next. Noninvariance under the extended parameterization affects between-group

differences in an item’s overall difficulty (bi) and/or between-group differences with respect to

one or more category-specific difficulties (dir; Penfield et al., 2008). By disentangling the item
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difficulty, the extended parameterization provides useful insight into whether noninvariance is

systematic for the entire item or specific to the step of advancing from one category to another.

In PISA 2015, three steps were performed to establish cross-group comparability. In a first

step, a concurrent calibration using the GPCM was conducted in which all parameters were

constrained to be equal across groups (languages within countries). In a second step, a group-

specific item-fit statistic (RMSD) was calculated for each group and item and used as an indica-

tor for the invariance of item parameters of an individual group. For a given latent construct, u,

the RMSD statistic is calculated as

RMSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
Po uð Þ � Pe uð Þð Þ2f uð Þdu

s
, ð3Þ

quantifying the difference between the observed item characteristic curve (ICC; Po(u)) with the

model-based ICC (Pe(u)), weighted by the u distribution (OECD, in press). It is sensitive to

deviations of both the item difficulty and discrimination parameters (OECD, in press). RMSD

ranges from 0 to 1, with larger values representing poorer item fit, thus indicating that the joint

(‘‘international’’) parameters are not appropriate to describe the group’s data, that is, invariance

does not hold. Item misfit was defined by cutoff values on the respective statistic: RMSD.0:1
for the cognitive scales and RMSD.0:3 for questionnaire constructs (OECD, in press). In case

of item misfit for a given group, item constraints were released in a third step. Steps 1 to 3 were

repeated until none of the groups exhibited misfit on any of the indicator items. Estimating

group-specific (unique) item parameters in case of misfit resembles the concept of partial invar-

iance (see above), assuming that the construct remains comparable when only a subset of indi-

cator items receives unique item parameters.

In psychological research, attitudes are oftentimes assessed using a Likert-type response for-

mat. This study, therefore, examines the RMSD statistic’s behavior under known patterns of

(non)invariance in polytomous items. Empirical distributions of this statistic across groups will

provide insight into the appropriateness of different cutoff criteria for practical applications.

Method

Data Generation

In line with the scaling model used in PISA 2015, the GPCM (Equation 1) served as the true

data generating model (OECD, 2016). Response data were generated for 1,000 simulees in 50

groups responding to five 4-category items. For four items i, parameters were set to bi = 0,

ai = 1, di1 = � 1, di2 = 0, and di3 = 1. Each simulation condition (see below) was replicated 100

times. Within each replication, item parameters for Item 1 (b1, a1) as well as groups’ means

(ug) and standard deviations (sug
) were drawn from the following distributions:

b1;N 0, s2
b

� �
, ð4Þ

a1;N 1, s2
a

� �
, ð5Þ

ug;N 0, 0:5ð Þ, ð6Þ

sug
;U 0:8, 1:2ð Þ: ð7Þ
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Simulation Design

Both type and extent of noninvariance were manipulated between simulation conditions. The

type of noninvariance was operationalized by drawing either the item locations (b1) or the item

discriminations (a1) of Item 1 for the 50 groups from a normal distribution. As a result, one set

of conditions represents noninvariance with respect to item location and one refers to noninvar-

iance with respect to item discrimination. The extent of noninvariance was operationalized by

manipulating the variation of these distributions: For each of the two parameters, the standard

deviation was set to .25, .50, .75, and 1.0, respectively, while constraining the standard deviation

of the other parameter to 0, resulting in a total of 2 (type) 3 4 (extent) = 8 conditions. An addi-

tional baseline condition was simulated in which the parameters’ standard deviation was set to 0

for both parameters. This baseline condition represents the absence of cross-group parameter

deviation, that is, the presence of invariance. It can serve as the control condition, representing

the distribution that is expected under the null hypothesis (all groups have the same parameters).

Table 1 provides an overview of the resulting nine simulation conditions.

Estimation Model

Following the scaling procedure used in PISA 2015, the simulated response data were scaled in

a concurrent calibration with equal item parameters across all groups using the GPCM

(Equation 1) in mdltm (von Davier, 2008). The RMSD statistic (Equation 3) was calculated for

each group and item and aggregated across all 100 replications within each simulation condi-

tion. All analyses are based on these aggregated distributions of RMSD.

Results

For each simulation condition, histograms indicating the RMSD distribution for Item 1 across

all groups and replications are presented in the following. Figure 1 contains the respective dis-

tribution under the baseline condition (sb1
= 0, sa1

= 0). The resulting distribution is skewed to

the right, with the majority of values being very close to 0 (0:005 � RMSD � 0:047).

Table 2 contains the respective plots for the eight remaining simulation conditions represent-

ing the conditions with noninvariant parameters. The x axes were held constant, ranging from

RMSD values of .0 to .5. Tick mark labels on the x axes were omitted for simplicity, but vertical

bars representing RMSD values of 0, .1, .2, .3, and .4 were retained. Similar to the baseline con-

dition, all distributions are skewed to the right. However, within each type of noninvariance, the

width of the RMSD distribution increases with increasing levels of the extent of noninvariance.

In addition to the graphical display of findings, Table 3 provides descriptive statistics for the

empirical RMSD distributions, covering minimum and maximum, 20th, 50th (median) and

90th percentile, and the proportion of cases exhibiting RMSD values above .1 and .3, respec-

tively. Both minimum and maximum values increase as the extent of noninvariance increases.

Table 1. Simulation Conditions With Varying Types and Extents of Noninvariance of Item 1.

Condition

Baseline Noninvariance of item location Noninvariance of item discrimination

sb1
0.00 0.25 0.50 0.75 1.00 0.00 0.00 0.00 0.00

sa1
0.00 0.00 0.00 0.00 0.00 0.25 0.50 0.75 1.00
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Similarly, increasing extents of noninvariance are associated with higher values for 50th and

90th percentile. The value associated with the 90th percentile can be interpreted as the RMSD

value that separates the 10% of groups with the most extreme deviations from all other groups

under a given true extent of noninvariance across groups. For example, the 10% of groups with

the most extreme location parameters in the condition with the highest extent of noninvariance

(sb1
= 1:0) exhibit RMSD values of .188 or higher. The value with respect to the strongest var-

iation in item discrimination (sa1
= 1:0) is .126. Finally, the proportion of cases above RMSD

values of .1 and .3 refer to the thresholds that were used in PISA 2015 to identify noninvariant

items. The respective numbers in Table 3, therefore, may be interpreted as the proportion of

items for which item parameters would have been released for individual groups, given the

Table 2. Distribution of RMSD for Item 1 Across 50 Groups and 100 Replications in Each
Noninvariance Simulation Condition.

Extent

Type sb1
= 0:25 sb1

= 0:50 sb1
= 0:75 sb1

= 1:0

Item location (b)

sa1
= 0:25 sa1

= 0:50 sa1
= 0:75 sa1

= 1:0

Item discrimination (a)

Note. RMSD = root mean square deviance.

Figure 1. Distribution of RMSD for Item 1 across 50 groups and 100 replications in the baseline
condition (sb1

= 0, sa1
= 0).

Note. RMSD = root mean square deviance.
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criteria used in PISA 2015. For example, 45.1% of items in the condition with the highest

extent of noninvariance in item location (sb1
= 1:0) and 16.5% in the condition with the highest

extent of noninvariance in item discrimination (sa1
= 1:0) would have been flagged as exhibit-

ing noninvariance using the .1 criterion. It needs to be noted that in PISA 2015, this criterion

was used to identify noninvariance in cognitive scales. A cutoff value of .3 was used to define

noninvariance in the questionnaire constructs, thus corresponding to the data simulated in this

study. When using this criterion, only about 1% of items would have been flagged for both

types of noninvariance given the most extreme extents of noninvariance each.

With respect to the two types of noninvariance, findings indicate differential effects on

RMSD depending on the noninvariant parameter. The same amount of cross-group variation in

the location parameter is associated with larger RMSD values as compared with the discrimina-

tion parameter. This finding needs to be discussed in light of plausible ranges of location and

discrimination parameters.

Discussion

This study examined an item-fit statistic, RMSD, which has recently been introduced as a mea-

sure of cross-country comparability of psychological constructs in a large-scale assessment con-

text. The behavior of the statistic was investigated under known patterns of noninvariance

across a large number of groups. Empirical distributions of the statistic provided insight into

its range under specific conditions: either with respect to shifts in the general location of an

item in the latent space, b, or with respect to shifts in the item’s ability to discriminate between

cases, a.

Findings can be summarized according to three aspects: (a) RMSD is sensitive to between-

group variability in both the item location and the item discrimination; (b) for each of these two

parameters, RMSD is sensitive to the extent of between-group variability; and (c) the effect of

between-group variability, measured in standard deviations, is larger for item location than it is

for item discrimination. Care needs to be taken in the interpretation of the latter finding. In the

two most extreme conditions (either sb1
= 1 or sa1

= 1), the 61 SD interval represents about

68% of the items:

Table 3. Descriptive Statistics of RMSD for Item 1 Across 50 Groups and 100 Replications in Each
Simulation Condition.

Condition

Baseline

sb1
sa1

.25 .50 .75 1.00 .25 .50 .75 1.00

Minimum .005 .006 .007 .013 .019 .006 .007 .007 .009
Maximum .047 .148 .300 .334 .401 .101 .333 .396 .458
p20 .013 .020 .028 .040 .055 .016 .020 .028 .036
p50 .018 .030 .050 .073 .093 .021 .030 .045 .063
p90 .026 .060 .111 .153 .188 .033 .057 .091 .126
prop . .1 .000 .004 .136 .321 .451 .000 .025 .082 .165
prop . .3 .000 .000 .000 .001 .010 .000 .000 .003 .009

Note. RMSD = root mean square deviance; p20 = 20th percentile; p50 = 50th percentile (median); p90 = 90th

percentile; prop . .1 and .3 denote the proportion of cases above RMSD values of .1 and .3, respectively.
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� 1 � b1 � 1, ð8Þ

0 � a1 � 2: ð9Þ

However, these intervals are on different scales and therefore have differential meanings. In

this study, groups’ means and standard deviations were drawn, on average, from standard nor-

mal distributions (Equations 6 and 7). Therefore, the latent space where the majority of simu-

lees are located corresponds to the general difficulty of the majority of items (Equation 8). The

most extreme simulation condition relating to b1, therefore, denotes item difficulties that are

not too uncommon. In contrast, the interval in which the majority of discrimination parameters

are located given the most extreme simulation condition corresponds to discrimination para-

meters that are rather unusual in empirical applications (Equation 9). This simulation condition

also implies an additional 16% of groups (i.e., eight groups per replication) that were assigned

discrimination parameters of above 2. Moreover, another 16% (eight groups) received negative

discrimination parameters. Taken together, the most extreme simulation condition with nonin-

variant discrimination parameters produced parameter values across groups that are rather

unusual in practice while also demonstrating less of an impact on the RMSD distribution. Using

cutoff values on RMSD is therefore more likely to flag items that vary with respect to item loca-

tion than discrimination.

The present study can be used to inform setting a cut-score on RMSD, assuming that the dis-

tribution of parameters across groups corresponds to those implemented in this study. Table 3

contains the 20th percentile for each of the simulation conditions. For the noninvariance condi-

tions, the respective value can be interpreted in terms of power, representing the point at which

noninvariance is detected in 80% of cases. Referring to the most severe conditions for the two

types of noninvariance, the respective RMSD values are .055 (location) and .036 (discrimina-

tion). To be more conservative, one could select RMSD = .055 as a cut-score. Being above the

observed maximum in the baseline condition, this cut-score would also imply that no item or

group is incorrectly flagged when invariance holds. Yet, as discussed above, this cut-score

would detect noninvariance related to item discrimination (sa1
= 1:00) in only about 58% of

cases. It should be noted that these considerations are based on two rather extreme conditions

of noninvariance, implying that the power to detect smaller violations of measurement invar-

iance will be lower.

A strong assumption limiting the generalizability of findings is inherent in the simulation

design of this study and relates to the way in which noninvariancebetween groups was simu-

lated. When structuring traditional research on the topic, two branches can be differentiated,

viewing groups as either fixed or random modes of variation (Muthén & Asparouhov, 2013).

The first view assumes that the majority of parameters is the same across groups and relates to

the question whether individual groups differ from all remaining groups. The second view

assumes that parameters across groups are only approximately the same and focuses on the

magnitude of variation between groups. In this simulation study, the authors operationalized

noninvariance according to the second view, allowing parameters to show random variation.

They thereby implicitly assumed that no individual country differs systematically from all other

countries. However, such a situation may occur in the context of large-scale assessments, for

example, in the case of a systematic translation error for one country or a set of homogeneous

countries that changes the meaning of the measured construct from the one measured in all

other countries. An additional simulation study may therefore focus on examining the RMSD’s

capability to detect misfit that is systematic to a small subset of countries.

Going beyond the findings of this study, RMSD indicates between-group deviations in both

location and discrimination parameter, thus not informing about the actual cause of
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noninvariance. Possible causes could be group differences with respect to discrimination, gen-

eral item difficulty (location), the difficulty of individual response options (step parameters or

thresholds), or even a mixture of some or all of the above. As a result, both location and discrim-

ination parameters were released for a group’s item in PISA 2015 as soon as this item exhibited

misfit. A further development in IRT-based invariance testing could make use of the stepwise

approach in MGCFA in which sets of parameters are constrained and differences in model fit

are monitored. Similarly, the different parameters in an IRT model could be released one after

another and differences in item fit could be tracked using the RMSD statistic. Similar to

MGCFA, item difficulty parameters may be released before item discrimination. Such a proce-

dure promises a higher level of comparability across groups while revealing some information

about the cause of between-group differences. Such an approach could be subject to further

research, as well as the performance of RMSD for detecting differences in threshold parameters.

Disentangling cross-group differences in an item’s general difficulty from relative difficulties of

particular response options promises valuable insights in applied contexts.
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Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36, 109-133.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149-174.

Mellenbergh, G. J. (1989). Item bias and item response theory. International Journal of Educational

Research, 13, 127-143. doi:10.1016/0883-0355(89)90002-5

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58,

525-543. doi:10.1007/BF02294825

Muraki, E. (1992). A generalized partial credit model: Application of an EM algorithm. Applied

Psychological Measurement, 16, 159-176.

Buchholz and Hartig 249



Muthén, B., & Asparouhov, T. (2013). New methods for the study of measurement invariance with many

groups. Retrieved from http://statmodel2.com/download/PolAn.pdf

Organisation for Economic Co-Operation and Development. (2016). PISA 2015 results (volume I):

Excellence and equity in education. Paris, France: Author. doi:10.1787/9789264266490-en

Organisation for Economic Co-Operation and Development. (in press). PISA 2015 technical report.

Retrieved from http://www.oecd.org/pisa/data/2015-technical-report/

Penfield, R. D., Myers, N. D., & Wolfe, E. W. (2008). Methods for assessing item, step, and threshold

invariance in polytomous items following the partial credit model. Educational and Psychological

Measurement, 68, 717-733.

Raju, N. S., van der Linden, W. J., & Fleer, P. F. (1995). IRT-based internal measures of differential

functioning of items and tests. Applied Psychological Measurement, 19, 353-368.

Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response

theory: Two approaches for exploring measurement invariance. Psychological Bulletin, 114, 552-566.

Rutkowski, L., & Svetina, D. (2014). Assessing the hypothesis of measurement invariance in the context of

large-scale international surveys. Educational and Psychological Measurement, 74, 31-57.

Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression

procedures. Journal of Educational Measurement, 27, 361-370. doi:10.1111/j.1745-3984.1990

.tb00754.x

van de Schoot, R., Schmidt, P., De Beuckelaer, A., Lek, K., & Zondervan-Zwijnenburg, M. (2015).

Editorial: Measurement invariance. Frontiers in Psychology, 6, Article 1064. doi:10.3389/fpsyg.2015

.01064

von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of

Mathematical and Statistical Psychology, 61, 287-307.

Zumbo, B. D. (2007). Three generations of differential item functioning (DIF) analyses: Considering

where it has been, where it is now, and where it is going. Language Assessment Quarterly, 4, 223-233.

250 Applied Psychological Measurement 43(3)


