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A B S T R A C T

Ion channels underlie electrical excitability in cells and are essential for a variety of functions, most notably
neuromuscular and sensory activity. They are also validated targets for a preponderance of approved anthel-
mintic compounds. Transient receptor potential (TRP) channels constitute an ion channel superfamily whose
members play important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and
other key cellular and organismal activities. Unlike most other ion channels, TRP channels are often polymodal,
gated by a variety of mechanisms. Furthermore, TRP channels fall into several classes or subtypes based on
sequence and structure. Until recently, there had been very little investigation of the properties and functions of
TRP channels from parasitic helminths, including schistosomes, but that situation has changed in the past few
years. Indeed, it is now clear that at least some schistosome TRP channels exhibit unusual pharmacological
properties, and, intriguingly, both a mammalian and a schistosome TRP channel are activated by praziquantel,
the current antischistosomal drug of choice. With the latest release of the Schistosoma mansoni genome database,
several changes in predicted TRP channel sequences appeared, some of which were significant. This review
updates and reassesses the TRP channel repertoire in S. mansoni, examines recent findings regarding these po-
tential therapeutic targets, and provides guideposts for some of the physiological functions that may be mediated
by these channels in schistosomes.

1. Introduction

Schistosomiasis is a water-borne neglected tropical disease caused
by blood flukes of the genus Schistosoma. Estimates of prevalence range
from approximately 140 million to over 250 million people globally,
with almost a billion at risk (Colley et al., 2014; McManus et al., 2018;
LoVerde, 2019). The three main species infecting humans are S. man-
soni, S. haematobium, and the zoonotic S. japonicum, which also infects
water buffalo and other bovines.
Schistosome infection occurs through contact with free-swimming

larval cercariae released into fresh water by intermediate host snails.
Cercariae infect the definitive host percutaneously, losing their tails
upon penetration of the skin and transforming into schistosomula.
Within the definitive host, worms migrate and mature over the next
several weeks, eventually establishing residence within the mesenteric
venules that drain the intestine (S. mansoni, S. japonicum) or the venous
plexus of the bladder (S. haematobium). There, they deposit large
numbers of eggs, which are either excreted from the host, continuing
the parasite life cycle and disease transmission, or remain within the
host, triggering an immunopathological response that includes pro-
duction of granulomas around the eggs and associated fibrosis.

Schistosomiasis is associated with morbidity that can result in
compromised childhood development, damage to tissues (eg, liver,
bladder), greater susceptibility to other infectious agents such as HIV,
and, in some cases, death (van der Werf et al., 2003; King and
Dangerfield-Cha, 2008; Hotez and Fenwick, 2009; King, 2010; Ndeffo
Mbah et al., 2013; Colley et al., 2014; Brodish and Singh, 2016). Ad-
ditionally, S. haematobium is associated with increased incidence of
bladder cancer and, like the liver flukes Clonorchis sinensis and Opis-
torchis verrini, is classified as a Group I carcinogen by the International
Agency for Research on Cancer (Oh and Wilderpass, 2014). A recent
report even suggests that malignant transformation of a cestode, Hy-
menolepis nana, can produce abnormal, proliferating tapeworm cells
that invade human tissue and resemble human cancer (Muehlenbachs
et al., 2015).
Though there are potential candidates (reviewed by Tebeje et al.,

2016; LoVerde, 2019), there is as yet no vaccine for schistosomiasis,
and as a disease of poverty, infrastructural improvements that might
reduce or eliminate disease transmission are difficult to implement.
Chemotherapy therefore remains the principal strategy for treating the
disease and controlling its spread. Praziquantel (PZQ), the drug of
choice, is effective against all schistosome species but is also essentially
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the only antischistosomal drug currently available (Danso-Appiah et al.,
2013; Kramer et al., 2013; Bergquist et al., 2017; Greenberg and
Doenhoff, 2017). Reliance on this single drug for a disease affecting
hundreds of millions, combined with reports of PZQ-resistance (Day
and Botros, 2006; Doenhoff and Pica-Mattoccia, 2006; Wang et al.,
2012; Greenberg, 2013) and the well-known limitations of PZQ (Cioli
et al., 2014; Greenberg and Doenhoff, 2017) makes the search for al-
ternative therapeutics especially pressing.
Several strategies have been used and various targets interrogated in

the search for new or repurposed antischistosomal drugs. Ion channels,
which underlie electrical excitability in cells, are validated targets for
many current anthelmintic drugs, and as such represent potentially
fertile ground for exploration. Some of the anthelmintics that disrupt
normal parasite ion channel activity include ivermectin and other
macrocyclic lactones, pyrantel, levamisole, monepantel, emodepside,
piperazine, derquantel, tribendimidine, and probably PZQ itself
(Wolstenholme, 2011; Epe and Kaminsky, 2013; Greenberg, 2014; Park
et al., 2019). Indeed, there is no other class of helminth targets that has
been exploited as extensively by current anthelmintics.
Ion channels, protein complexes embedded in plasma and orga-

nellar membranes, form gated, ion-selective pores through those
membranes. Ions flow down their electrochemical gradients through
these pores in a regulated manner, into or out of the cell (or organelle).
Ion channels can be activated (or inactivated) by changes in membrane
potential (voltage-gated), specific neurotransmitters (ligand-gated), or
a variety of factors such as pH, mechanical stress, intracellular mes-
sengers and ions, and temperature, among others (Zheng and Trudeau,
2015; Alexander et al., 2017a, 2017b, 2017c). Channel function can
also be modulated by toxins, drugs, and intracellular and extracellular
signals. Dysfunctional ion channel activity can generate major disrup-
tion of an organism's neuromuscular system (as well as of other cells
and tissues), a feature exploited by the many pesticides and anthel-
mintics that target ion channels. Furthermore, a hugely diverse array of
some of the most potent natural toxins in existence target ion channels
(Kalia et al., 2015). Ion channels are also widely exploited targets in
human medicine, particularly for anesthesia and cardiovascular and
neurological conditions (Bagal et al., 2013), and dysfunctional ion
channels (channelopathies) are associated with several genetic and
acquired diseases in humans (Ashcroft, 2006; Imbrici et al., 2016).
Despite the fact that ion channels are validated anthelmintic targets,

only a few helminth ion channels have been subjected to any detailed
study. One group of helminth ion channels that has recently come
under scrutiny, particularly in the platyhelminths, is the transient re-
ceptor potential (TRP) channel superfamily. TRP channels form a large,
highly diverse branch within the voltage-gated-like “chanome” (Yu and
Catterall, 2004). TRP channels are categorized into subfamilies (TRPC,
TRPV, TRPA, TRPM, TRPP, TRPN, TRPML) based on structural
homology (Venkatachalam and Montell, 2007; Nilius and Owsianik,
2011; Peng et al., 2015). TRP channels are typically non-selective ca-
tion channels, and thus permeable to Ca2+, though some mammalian
TRP channels (eg, Ca2+-activated TRPM4 and TRPM5) are notably
Ca2+-impermeable (Launay et al., 2002; Liman, 2014).
Mammals have 25–30 TRP channel isoforms that fall within 6

subfamilies (TRPC, TRPV, TRPA, TRPM, TRPP, TRPML). The different
subfamilies contain variable numbers of subtypes. Thus, humans have a
single TRPA subtype, but 8 TRPM subtypes. S. mansoni contains 15
predicted TRP channel genes representing 5 subfamilies (TRPC, TRPA,
TRPM, TRPP, TRPML). Interestingly, neither schistosomes nor other
parasitic platyhelminths appear to have genes encoding TRPV channels.
In contrast, the genomes of free-living platyhelminths do contain genes
predicted to encode TRPV channels (Prole and Taylor, 2011;
Wolstenholme et al., 2011; Bais and Greenberg, 2016, 2018). The sig-
nificance of this difference between the parasitic and free-living pla-
tyhelminths is unknown, and whether this disparity is absolute or
elastic remains to be determined as more platyhelminth genomes be-
come available.

TRP channels play key physiological roles in a wide variety of cri-
tical functions, most notably sensory signaling. Thus, they act as
transducers for a broad range of cellular and environmental cues. These
include cellular messengers (Ca2+, cyclic nucleotides, membrane lipids,
osmotic pressure, phosphorylation) and environmental signals such as
heat, light, stretch, and chemical compounds, including nociceptive and
inflammatory compounds (Venkatachalam and Montell, 2007; Gees
et al., 2010; Zheng, 2013; Hoffstaetter et al., 2018). Unlike most other
ion channels, TRP channels are often polymodal, meaning that they are
activated by a diverse set of different, seemingly unrelated inputs. Ac-
cordingly, a single TRP channel can sense and respond to temperature,
stretch, pH, voltage, and specific chemical signals, either directly or
indirectly (Hilton et al., 2015).
Interestingly, changes in TRP channel expression are associated

with cancer and some TRP channels appear to have oncogenic prop-
erties when expression or function is dysregulated (Lehhen'kyi and
Prevarskaya, 2011; Nilius and Szallasi, 2014; Shapovalov et al., 2016;
Prevarskaya et al., 2018; Canales et al., 2019; Wong et al., 2019). Thus,
in addition to some TRP channels exhibiting altered expression in
cancer cells (and perhaps being able to serve as markers of the trans-
formed state), there is accumulating evidence that aberrant Ca2+ sig-
naling through TRP channels or altered Ca2+-independent TRP channel
function (eg, interaction with cytoskeletal components), can modify cell
survival, proliferation, and migration, and may influence tumor in-
itiation and progression (Vrenken et al., 2016; Fliniaux et al., 2018;
Canales et al., 2019; Petho et al., 2019). Furthermore, various studies
have revealed an association between TRP channel expression levels
and clinical outcomes of various cancers (Park et al., 2016; Fels et al.,
2018), and several miRNA/TRP channel pairs appear to play important
roles in tumor biology (reviewed by Santoni et al., 2020).
Schistosomes and other helminth parasites themselves exhibit

properties in common with cancer cells (Ashall, 1986; Doenhoff et al.,
1990; Oliveira, 2014; Narasimhan et al., 2018). Thus, like cancer cells,
schistosomes and other parasites act as “selfish” entities, hijacking and
manipulating the regulatory signaling mechanisms of their hosts. They
evade host immune responses, rely on simple methods of energy up-
take, are dependent on proteases to facilitate migration, survival, and
growth, and exploit host machinery for their own growth and devel-
opment. Indeed, drugs developed against cancer can show antiparasitic
activities, and vice-versa (Oliveira, 2014). It is tempting to speculate
that parasite TRP channels may have unusual characteristics that could
provide insights into the role of these channels in cancer cells and
perhaps normal development as well.
TRP channels are also considered promising targets for treatment of

several other diseases and syndromes (Nilius and Szallasi, 2014). These
include pain and inflammation, itch, cough, asthma, pulmonary edema,
central nervous system disorders, and cardiovascular disorders (Yue
et al., 2014; Moran, 2018). TRP channels have also been proposed as
candidate targets for drugs that act against helminth and other parasitic
infections (Wolstenholme et al., 2011; Prole and Taylor, 2013; Bais and
Greenberg, 2016, 2018). Indeed, a S. mansoni TRP channel
(SmTRPMPZQ) has recently been shown (Park et al., 2019) to be acti-
vated stereoselectively by PZQ (see below).
The release of an updated version (v.7) of the S. mansoni genome

database (https://parasite.wormbase.org) improved the assembly and
annotation of the genome over previous versions. In so doing, it also
generated many changes in predicted S. mansoni genes and gene pro-
ducts, including TRP channel genes. Some of these changes were minor
or relatively trivial, but others produced major alterations in TRP
channel amino acid sequences, new TRP channel variants, and revised
accession numbers. As a consequence, the lists and phylogenetic ana-
lyses of predicted S. mansoni TRP channels in previous reviews (Prole
and Taylor, 2011; Wolstenholme et al., 2011; Bais and Greenberg,
2016, 2018) are no longer accurate. Furthermore, published conclu-
sions based on functional studies of then-current predicted sequences
(Bais et al., 2018) need to be reassessed.
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2. Changes in predicted TRP channel representatives and TRP
channel sequences in Schistosoma mansoni

An updated examination of S. mansoni genes predicted to encode
TRP channels is presented in Fig. 1. These results were obtained by
interrogating the current S. mansoni database (https://parasite.
wormbase.org/Schistosoma_mansoni_prjea36577/Info/Index/; https://
www.genedb.org/#/species/Smansoni) with text terms (“TRP” and
“transient receptor potential”) and by using BLAST searches with either
mammalian TRP channel sequences or previous versions of predicted S.
mansoni TRP channel sequences as queries. In order to assign the S.
mansoni TRP-like sequences into sub-families and subtypes, hits were
used as queries against the protein databases of mammals, and speci-
fically Homo sapiens, with the designation for the S. mansoni sequences
based on the highest scoring hits. Although the predicted S. mansoni
TRP channel sequences separate clearly into TRP channel sub-family
designations (eg., TRPC, TRPA, etc.), subtype designations within each
sub-family (eg., TRPM1, TRPM2, etc.) are less robust, and should be
viewed with circumspection. Indeed, the only functional studies re-
ported for schistosome TRP channels are for two TRPA1-like sequences
(Bais et al., 2018), one from S. mansoni (SmTRPA; Smp_342190, pre-
viously known as Smp_125690, KT266713) and one from S. haemato-
bium (ShTRPA; KGB35426.1), and for the S. mansoni PZQ-responsive
SmTRPMPZQ (Smp_246790) sequence (Park et al., 2019). Nonetheless,
as the phylogenetic analysis of the S. mansoni TRP channel sequences
shows (Fig. 1), those channels designated as particular subtypes largely
tend to cluster together.
As Fig. 1 and Table 1 show, we again identified 15 predicted S.

mansoni TRP channel genes in the revised genome database. Though the
number of genes is the same as previously reported (Bais and
Greenberg, 2016), two former TRPM2-like genes (Smp_161630,
Smp_161640) are now consolidated into the single SmTRPMPZQ gene
(Smp_246790), which appears to cluster with TRPM1-and TRPM2-like
genes (Fig. 1). That net loss of one gene is offset by the identification of
a second, previously unreported, SmTRPP3 (polycystic kidney disease
2-like 1 protein)-like sequence (Smp_334610), which brings the total

back up to 15.
Prior to the release of version 7 of the S. mansoni genome, we

reported that SmTRPA exhibits novel pharmacological sensitivities that
appear to be a mixture of those found for mammalian TRPA and TRPV1
channels (Bais et al., 2018; Bais and Greenberg, 2018). Given that
schistosomes and other parasitic platyhelminths lack genes for
TRPV-like channels, which are found in free-living platyhelminths, we
speculated that schistosome TRPA channels may have coopted func-
tional and pharmacological properties normally associated with TRPV
channels. The SmTRPA sequence predicted in the newer version of the
genome (Smp_342190) adds ~200 amino acids to the N-terminus of the
sequence we characterized previously (Bais et al., 2018); otherwise it is
identical. Using RT-PCR, we have confirmed that a mRNA with this new
sequence information is indeed expressed in S. mansoni adults (though
that does not preclude the possibility that the shorter version is also
expressed). As a consequence, we have reassessed the functional and
pharmacological properties of the revised, longer SmTRPA channel
cDNA sequence (Bais and Greenberg, unpublished) and find that it
retains the pharmacological sensitivities found in our experiments using
the original cDNA we isolated (NCBI accession number KT266713).
Thus, when expressed in CHO cells, it responds robustly to the TRPV1
activator capsaicin as well as to mammalian TRPA1 activators such as
allyl isothiocyanate (AITC) and the inflammatory compound 4-hydro-
xynonenal (4-HNE), which is known to be produced in host organisms
in response to oxidative stress.

3. Praziquantel

PZQ has been the drug of choice against schistosomiasis since the
1980s. The many advantages of PZQ over other antischistosomals are
significant enough for it to have become the only antischistosomal
available commercially. The molecular target(s) and mode of PZQ ac-
tion remained undefined decades following the introduction of the
drug, limiting rational design of new antischistosomals and obscuring
strategies for overcoming resistance should it emerge (Greenberg and
Doenhoff, 2017; Thomson and Timson, 2018). Recent results, however,
point to TRP channels perhaps playing a key role in PZQ action (Park
and Marchant, 2020).
Shortly following its discovery, PZQ was shown to produce a con-

tractile paralysis of schistosomes and disruption of the worm's tegu-
ment, both of which are Ca2+-dependent (reviewed by Doenhoff et al.,
2008; Cioli et al., 2014; Greenberg and Doenhoff, 2017). These effects
on the worms provided clues to a mode of action, and several molecular
targets for PZQ have been proposed over the years, with uneven degrees
of validation (Angelucci et al., 2011). Multiple lines of evidence point to
a key role for components of parasite voltage gated Ca2+ (Cav) channels
(Greenberg, 2005; Chan et al., 2013), which would be consistent with
the clinical effects of the drug. Nonetheless, rigorous proof for schis-
tosome Cav channels as direct, primary targets of PZQ is lacking.
More recently, Chan et al. (2017) showed that the (R)-enantiomer of

PZQ can act as a partial agonist of a host serotonergic G protein-coupled
mammalian 5-HT2B receptor to elicit constriction of mesenteric vessels,
which are the predilection site for adult S. mansoni and S. japonicum
parasites. PZQ may therefore depend in part on a combination of effects
on the host that promote parasite clearance, along with the more “se-
lective” deleterious effects (paralysis, tegumental disruption) on the
parasite (Chan et al., 2017). Thus, paradoxically, part of what may
make PZQ (and perhaps other successful antiparasitics) particularly
effective is its lack of specificity; rational design to achieve maximal
selectivity against parasite receptors may in some cases be counter-
productive (Chan et al., 2018).

4. Praziquantel and TRP channels

In line with this demonstration of PZQ effects on a host receptor,
two independent groups subsequently found that PZQ acts as a partial

Fig. 1. Phylogenetic tree of predicted S. mansoni TRP channels. Neighbor-
joining tree of predicted S. mansoni TRP channel protein sequences, shown with
closest human TRP channel subtype (color coded by subfamily). As in previous
analyses, there are no predicted TRPV-like sequences. Smp_246790
(Sm.TRPMPZQ) clusters more closely with TRPM1 channels, although it has
been shown to be homologous to TRPM2 channels (Park et al., 2019), high-
lighting the uncertainty of the subtype classifications. For the sake of simplicity,
only a single predicted splice variant is shown for genes predicted to contain
multiple variants (see Table 1). Tree was derived using alignment and tree
building software as implemented in MEGA X (Kumar et al., 2018). (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)
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agonist of the human TRPM8 channel at micromolar concentrations
(Babes et al., 2017; Gunaratne et al., 2018). As with the 5-HT2B re-
ceptor, the effect is stereoselective, but surprisingly, it is the (S)-en-
antiomer, which is the less active enantiomer against schistosomes
themselves, that primarily elicits the response (Gunaratne et al., 2018).
The (S)-enantiomer also relaxes precontracted mesenteric arteries, si-
milar to the effects of known TRPM8 agonists (Gunaratne et al., 2018),
and TRPM8-knockout mice had fewer dorsal root ganglion cells that
responded to racemic PZQ, though the responses were not eliminated
(Babes et al., 2017). On the other hand, (S)-PZQ and TRPM8 agonist-
elicited vessel relaxation persist in TRPM8-knockout tissues, suggesting
that TRPM8 is not mediating this effect (Gunaratne et al., 2018). In-
terestingly, the (S)-enantiomer of PZQ is associated with the bitter taste
of PZQ (Meyer et al., 2009), a challenge in mass administration of the
drug, especially to children. Although TRPM8 is not associated directly
with taste reception (Roper, 2014), perhaps indirect interactions be-
tween it and other host sensory channels contribute to this adverse
effect of PZQ.
The discovery that PZQ activates a mammalian TRPM8 channel led

the Marchant group to extend these findings by assessing whether PZQ
also interacts with any schistosome TRP channels. A recent, particularly
exciting report has indeed established that PZQ interacts with a schis-
tosome TRP channel, Sm.TRPMPZQ (Smp_246790.5), a member of the S.
mansoni TRPM channel subfamily (Park et al., 2019). Thus, Ca2+

imaging assays revealed a sustained PZQ-elicited Ca2+ signal in
HEK293 cells expressing Sm.TRPMPZQ. The Ca2+ signal required ex-
tracellular Ca2+, indicating Ca2+ influx, lasted as long as PZQ was
present, and decreased to baseline upon washout of PZQ. The effect of
PZQ was also stereoselective, with the (R)-enantiomer (EC50 ≅ 600 nM)
showing ~45-fold higher potency than the (S)-enantiomer
(EC50 ≅ 28 μM) at room temperature. Raising the assay temperature to
37 °C resulted in an approximately four-fold decrease in the EC50
(154 nM) for (R)-PZQ. Electrophysiological experiments using whole-
cell recording confirmed these results, showing a PZQ-evoked, rapidly
activating inward current in cells expressing Sm.TRPMPZQ. The gene
encoding Sm.TRPMPZQ (Smp_246790) predicts 7 splice variants, of
which the longest (Smp_246790.5) was tested; it will be useful to de-
termine the expression patterns and pharmacology of other splice var-
iants, as well as their physiological roles. Sm.TRPMPZQ homologs are
also found in other platyhelminth genomes, and it will be interesting to
compare pharmacological responses (Park et al., 2019).
Rigorously defining Sm.TRPMPZQ as the PZQ receptor (as opposed to

a PZQ receptor), will require experiments to determine whether dis-
ruption of Sm.TRPMPZQ expression (eg, by RNA interference) or func-
tion alters schistosome sensitivity to PZQ ex vivo and, more persua-
sively, in vivo. Such experiments may not be trivial in schistosomes but
may have better feasibility in a more experimentally amenable platy-
helminth, assuming it is also sensitive to PZQ and its Sm.TRPMPZQ
homolog is PZQ-activated. Regardless, this clear demonstration of a
PZQ receptor with characteristics consistent with the clinical properties
of the drug is a major tour-de-force and, further, supports schistosome
TRP channels as viable therapeutic targets. More details about the path
defining TRPMPZQ as a target of PZQ can be found in a recent review
(Park and Marchant, 2020).

5. Known and potential physiological roles of TRP channels in
schistosomes and other platyhelminths

In addition to their potential as candidate drug targets, TRP chan-
nels almost certainly play important roles in platyhelminth biology. For
example, our results show that schistosome TRP channels are important
for regulation of normal parasite neuromuscular activity. Thus, a
variety of TRPV1 and TRPA1 activators stimulate motor activity in
larval and adult schistosomes, an effect which can be eliminated by
knockdown of SmTRPA expression (Bais et al., 2015). Compounds that
selectively activate other mammalian TRP channels also affect schis-
tosome motility in a similar manner (our unpublished data). Similarly,
icilin, an agonist of mammalian TRPM8 (and TRPA1) evokes a dose-
related increase in motility in the free-living planarian Dugesia dor-
otocephala (Rawls et al., 2007).
Platyhelminth TRP channels also appear to play important sensory

roles in free-living planarians. A TRPM-like channel transduces thermal
signaling in Dugesia japonica (Inoue et al., 2014), and knockdown of a
Schmidtea mediterranea TRPA1-like channel by RNAi disrupts
extraocular avoidance responses to near-ultraviolet light, which may in
fact be due to channel interaction with reactive oxygen species (ROS)
that are byproducts of UV-light exposure (Birkholz and Beane, 2017).
The S. mediterranea TRPA1 channel rescues noxious heat avoidance in
TRPA1-deficient Drosophila. However, the S. mediterranea TRPA1
channel is not itself activated directly by heat when expressed in a
heterologous system, but instead appears to be responding to ROS (and
H2O2), in this case produced from heat-generated tissue damage. This
response to ROS has been hypothesized to represent an early nocicep-
tive TRPA1-mediated signaling system (Arenas et al., 2017). Whether

Table 1
Comparison of predicted TRP channels in current and previous S. mansoni genome databases.

Subtype Previous accession number Current accession number Changes from prior version and other notes

C3 Smp_169150 Smp_169150 Two predicted splice variants; no change in predicted protein sequence of Smp_169150.1.
C7 Smp_163160 Smp_163160 No change in predicted protein sequence.
C5 Smp_147860 Smp_344020* Major changes in predicted protein sequence.
C5 Smp_151880 Smp_336170* Major changes in predicted protein sequence.
P3 Smp_165660 Smp_165660 ~75 amino acid insert at N-terminus.
P3 none Smp_334610** Not previously reported.
A1 Smp_125690 Smp_342190* Major changes from previous genomic sequence at 3 ́ and 5 ́ ends; additional ~200 amino acids at N-terminus

compared to cDNA sequence reported by Bais et al. (2018).
ML Smp_198800 Smp_198800 Two predicted splice variants that differ by a 12 amino acid insert (in Smp_198800.2), plus a K335E change

immediately following the insert. Previous sequence was the same as Smp_198800.1, which was used for
phylogenetic analysis here.

M1 Smp_130890 Smp_130890 Two predicted splice variants that vary at the 3 ́ end (the larger Smp_130890.1 was used in this analysis).
Changes throughout the sequence from previous version.

MPZQ Smp_161630, Smp_161640 Smp_246790 Shown by Park et al. (2019) to respond to PZQ; 7 predicted splice variants; Smp_246790.5 was analyzed by
Park et al. (2019) and used in the phylogenetic analysis here.

M2 Smp_000050 Smp_000050 Two predicted splice variants that differ by a single amino acid insert. Changes from previous sequence
throughout.

M7 Smp_035140 Smp_333650* Approximately 250 amino acid addition to N-terminus.
M7 Smp_147140 Smp_147140 Previously classified as M3 (Bais and Greenberg, 2016).
M3 Smp_165170 Smp_165170 Small insert at N-terminus.
M3 Smp_199590 Smp_347080* Large insert (238 amino acids) at start of transmembrane domains.

Subtype assignments are based on BLAST searches against human and mammalian genomes. * = new accession number. ** = not previously reported.
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and how these types of TRPA1 channel functions exploited by free-
living planarians might manifest in schistosome free-living (miracidia,
cercariae) and parasitic (intramolluscan, intramammalian) stages re-
mains to be determined.
Other than these few examples, much remains unknown about the

authentic functions of TRP channels in schistosomes and other platy-
helminths. Nonetheless, findings from other organisms can provide
important guideposts and predictions. We highlight some persuasive
and interesting possibilities below.
TRP channels are known to be widely expressed in male and female

reproductive organs and may play important roles in reproductive
biology. Thus, several TRP channel types, including TRPV1, TRPM8,
TRPC2, TRPM7, and TRPA1, are expressed in and appear to serve key
functions in reproductive organs and germ cells of mammals and other
vertebrates (reviewed byDorr and Fecher-Trost, 2011; Shukla et al.,
2012; DeClercq and Vriens, 2018). Furthermore, along with a voltage
gated Ca2+ channel (Cav3.2), two TRP channels (TRPV3 and TRPM7)
appear to be essential for generation of Ca2+ oscillations required for
activating embryonic development in mice (Carvacho et al., 2013;
Bernhardt et al., 2018). TRP channels also play important roles in
mammalian gonadotrope cells in the anterior pituitary, which secrete
gonadotropins regulating gonadal function (Beck et al., 2017).
Perhaps more relevant to schistosomes are analogous studies in

other invertebrates, most notably Caenorhabditis elegans and Drosophila
melanogaster. The cell divisions required for gonadal development in C.
elegans require GON-2, a TRPM6/7-like channel (West et al., 2001) and
a C. elegans TRPC homolog is required for sperm-egg interactions during
fertilization (Xu and Sternberg, 2003). In Drosophila, a TRPP2-like
channel (Amo) is required for sperm storage and fertilization in females
and modulates flagellar beating in sperm (Gao et al., 2003; Watnick
et al., 2003; Kottgen et al., 2011), and, as in vertebrates, a TRPM
channel mediates Ca2+ influx required for egg activation (Hu and
Wolfner, 2019). As egg production is key to pathogenesis and disease
transmission in schistosomiasis, identifying the roles of TRP channels in
platyhelminth reproductive processes could provide insights into stra-
tegies for interfering with this essential parasite function.
TRP channels also appear to play key roles in embryonic develop-

ment. Notably, TRPM7, a ubiquitously expressed TRP channel that also
includes a kinase domain, is required for embryonic development in
mice (Jin et al., 2012), zebrafish (Elizondo et al., 2005), and the African
clawed frog Xenopus laevis (Liu et al., 2011), with apparent roles in
development of multiple organ systems (Jin et al., 2012). Other TRP
channels function in early vertebrate development (Komiya and
Runnels, 2015; Dong et al., 2018), and a TRPA1 channel is involved in
regulation of C. elegans aging (Xiao et al., 2013). TRP channels are also
implicated in stem cell biology, including differentiation of neuronal
cells (Weick et al., 2009) and mechanical regulation of stem cell activity
(He et al., 2019). These results could have special relevance to schis-
tosomes, given the extensive developmental changes they undergo in
vastly disparate environmental milieus, the ability of the parasites to
survive in their human hosts for decades (Chabasse et al., 1985), and
the importance of parasite stem cells in schistosome and platyhelminth
biology and pathogenesis (Wendt and Collins, 2016; Wang et al., 2018).
A critical interaction in schistosomes is that between male and fe-

male worms in the intramammalian host. Unlike the great majority of
trematodes, schistosomes are sexually dioecious. Female physical and
reproductive maturation depends on pairing with a male worm. A
mature, egg-laying female separated from her male partner will cease
laying eggs and regress to an immature state. Thus, physical interaction
with a male worm is essential to development and maintenance of fe-
male reproductive and physical maturity. When paired, females reside
within a ventral groove, the gynecophoric canal, of the male worm. A S.
mansoni gynecophoral canal protein (SmGCP) localizes to the surface of
the male gynecophoric canal and to the entire surface of interacting
females, but not to non-mated males or immature females (reviewed by
LoVerde et al., 2004).

SmGCP appears to be regulated by transforming growth factor β
(TGF-β); human TGF-β ligands upregulate expression of SmGCP, an
effect that can be suppressed by RNAi knockdown of a S. mansoni TGF-β
receptor (Osman et al., 2006). The TGF-β signaling pathway plays key
roles in a variety of cellular processes that include cell proliferation,
lineage determination, differentiation, and adhesion, and several com-
ponents of the TGF-β signaling system, including receptors and TGF-β-
like ligands, have been identified in schistosomes (reviewed by LoVerde
et al., 2009; Doenhoff et al., 2019). Human TGF-β alters gene expres-
sion in adult worms (Oliveira et al., 2012) and TGF-β signaling appears
to play a key role in S. mansoni embryonic development (Freitas et al.,
2007).
In vertebrates, several reports indicate that various types of TRP

channels, including TRPA1, are required for, contribute to, and are
regulated by TGF-β signaling (Davis et al., 2012; Okada et al., 2015;
Sharma et al., 2017; Falcon et al., 2019). For example, TRPA1 is re-
quired for TGF-β signaling in mouse corneal stroma and loss or
blockade of TRPA1 reduces inflammatory fibrosis in corneal wound
healing (Okada et al., 2014). It is tempting to speculate that TRP
channels also play key roles host- and parasite-induced TGF-β-like
signaling pathways in schistosomes.
Insights into the authentic physiological functions of TRP channels

in schistosomes and other platyhelminths will accrue through a variety
of approaches used in both free-living and parasitic worms. These will
include survival and behavioral studies on whole worms, both ex vivo
and in vivo, within the host, characterization of the channels themselves
using imaging and electrophysiological assays, biochemical analyses,
and molecular genetic dissection (eg, RNAi). One approach that can
provide important clues to function is to determine where and when
particular TRP channels are expressed within the worm. For example,
according to the S. mansoni genome database, SmTRPA RNA, though
expressed in all tested life cycle stages, is found most abundantly in
larval and juvenile stages, perhaps indicating a role in host finding and
migration within the definitive host. Localization of SmTRPA expres-
sion could provide key insights into host-parasite interactions and
sensory biology.

6. Conclusions

It was only a few years ago that parasite TRP channels were first
proposed as potential targets for anthelmintic and antischistosomal
therapeutics (Prole and Taylor, 2011; Wolstenholme et al., 2011; Bais
and Greenberg, 2016, 2018). In that short period, however, progress
has been extensive. Schistosome TRP channels characterized to date
have clearly been shown to exhibit pharmacology that differs from that
of host TRP channels, and a schistosome TRP channel is now implicated
in the mode of action of PZQ. The fact that these findings have appeared
so shortly following the onset of investigation of these channels sug-
gests that TRP channels in schistosomes and other parasites may serve
as fertile ground for future novel drug targets. Additionally, these
channels may provide important insights into parasite physiology and
the types of host-parasite interactions that have been discussed in detail
elsewhere (Bais and Greenberg, 2018). The results so far suggest a long,
productive road ahead.
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