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Abstract  
Single-event completion times, such as are estimated in viral entry, offer both promise and 
challenge to kinetic interpretation.  The promise is that they are able to constrain underlying kinetic 
models much more efficiently than bulk kinetics, but the challenge is that completion times alone 
can incompletely determine complex reaction topologies.  Gamma distributions or mechanistic 
models have often been used to estimate kinetic parameters for such data, but the gamma 
distribution relies on homogenous processes contributing to the rate-limiting behavior of the 
system.  Here, we introduce hypoexponential analysis to estimate heterogeneous kinetic 
processes.  We demonstrate that hypoexponential fitting can indeed estimate rate constants 
separated by 2-3 orders of magnitude.  We then apply this approach to measurements of SARS-
CoV-2 entry, showing that ACE2 reduces the number of rate-limiting steps but does not change 
the rates of these kinetic processes.  We propose a kinetic model whereby SARS-CoV-2 entry is 
driven by a mixture of ACE2-accelerated and ACE2-independent spike protein activation events. 
Inferring such models requires the capability to detect heterogeneous kinetic processes, provided 
by robust estimation of hypoexponential distributions. 
 
Introduction 

Biophysical processes pass through one or more transitions or energetic barriers. Single 
molecule experiments measure fluctuations in these biophysical processes, giving potential to 
understand detailed mechanistic information in a way that traditional experimental techniques that 
average over molecules obscures. One single molecule experimental output is several 
measurements of time to reaction completion or dwell times (1). From this distribution of dwell 
times, we can better understand the molecules’ behavior by identifying a sequence of 
conformationally stable states and quantifying transitions between these states(2). But different 
underlying states can have the same experimental signal/output. Therefore, recovering the 
correct number of underlying states and the transitions between them remains an analysis 
challenge. In particular, we wish to use reaction kinetics to better understand how SARS-CoV-2 
and influenza enters cells. We conducted single-molecule fluorescence experiments to measure 
how long it takes for these virus membranes to fuse with model host membranes. Extracting 
kinetic parameters from these dwell times can facilitate development of mechanistic models of 
viral entry. 
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There exist several methods for quantifying kinetic states from experimental time domain 
data. Hidden Markov models (HMMs) (3-7) have long been applied for this purpose, and both 
HMMs and continuous time Markov models have been used to identify transitions between states 
from ion channel patch clamp experiments (8). Similarly, different HMM have been used to extract 
kinetic information from smFRET experiments (2,9-11). HMMs are a useful tool for analyzing 
experimental data where, in general, kinetic states have distinct experimental emissions. Here, 
we address a different problem: single-event kinetics where the readout is effectively a step 
function: θ(s-sN) such that the 
start state s0 and all 
intermediate states sN..sN-1 have 
emission 0 and the product sN 
has emission 1. HMMs tend to 
be highly degenerate for this 
class of problems, driving the 
development of other kinetic 
fitting approaches. 

Previous studies fit 
dwell times from single-
molecule fluorescence 
experimental data to a gamma 
function to extract reaction 
kinetic parameters (12,13). A 
gamma function describes a 
multi-step, linear process. Researchers have used gamma analysis to develop a model of 
influenza entry to host cells where each kinetic step is an independent binding event between the 
virus’s spike protein and the protein HA (12). However, since a dwell time distribution’s shape is 
mostly determined by the reaction’s slowest rate, the gamma distribution assumes that each 
transition’s rate constant is equal to the slowest rate. By assuming that each step in a reaction is 
equal to the slowest step, the gamma distribution potentially obscures the kinetics of a reaction, 
making it a limited tool for analyzing dwell time distributions. Cellular automaton models are 
another method for extracting kinetic information from dwell time distributions and have also been 
used for analysis of viral entry data from single-event experiments (14-17). These models require 
more detailed mechanistic knowledge of a reaction beyond the dwell time distribution and are 
thus not considered here. 

In this paper, we propose recovering reaction kinetics by fitting dwell times to the 
hypoexponential distribution. The hypoexponential distribution is in the same family of 
distributions as the gamma, but it estimates a different rate for each step in a sequential process. 
This distribution may be well suited for estimating both number of transitions and unique rates of 
transition for a multi-step reaction process. However, the hypoexponential distribution may have 
identifiability issues: as the number of states increases, the harder it becomes to estimate this 
parameter accurately (18,19). Despite this potential issue, the hypoexponential distribution may 
be a better analysis tool than the gamma for recovering kinetic information from dwell time 
distributions. 

In this article, we will do the following 3 things: 1) quantify the difference in performance 
between gamma and hypoexponential for estimating reaction kinetics, 2) explore the quantitative 
limits of the hypoexponential distribution, 3) apply hypoexponential analysis to single molecule 
fluorescence data on influenza and SARS-CoV-2 entry. We will show that for 2 and 3 step 
processes, a hypoexponential distribution more accurately recovers reaction kinetics in synthetic 
experiments. Additionally, we will explore the difficulty with estimating kinetics as the number of 
steps increases. Finally, we will apply hypoexponential analysis to dwell times collected via single-
molecule fluorescence experiments for both SARS-CoV-2 entry and influenza entry to host cells. 

 
Figure 1. Representative data showing a still from 
microscopy of influenza virus undergoing fusion (a), a single-
virus intensity trace with schematized unfused and fused 
membranes before and after the intensity jump (b) , the CDF 
compiled from these traces (c), and a linear reaction model 
with corresponding 0 and 1 emissions denoting pre- and 
post-jump intensity traces (d). 

0 300 0 300
Time(s)

0

1

Fr
ac

tio
n 

fu
se

d

Time (s)

In
te

ns
ity

Unfused→I1→I2→→IN→fused
   0     0      0    0  1

reaction model
emission

a. b. c.

d.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2025. ; https://doi.org/10.1101/2025.05.18.654751doi: bioRxiv preprint 

https://doi.org/10.1101/2025.05.18.654751
http://creativecommons.org/licenses/by-nc-nd/4.0/


We will demonstrate that while the hypoexponential distribution has limitations for reactions with 
higher numbers of steps, it does provide significant benefits over the gamma distribution in terms 
of information gained. 
 

 
Theory 
 

We extract kinetics of biophysical reactions by fitting chemical reaction models to 
observed single-event reaction dwell times. One way to generate such reaction models is to 
decompose a complex reaction into a network where each edge represents a quasi-first-order 
reaction. The cumulative distribution function for each edge is thus an exponential function 
parameterized by a rate k. Here, we consider linear processes, as shown in Equation 1.  

    (1) 
The biophysical rationale for this approach is that a single-barrier chemical process will 

display exponential kinetics of this form according to Eyring’s law. A sequential process, which 
models a multi-step biophysical reaction, thus becomes convolution of N exponential random 
variable. A handful of distributions arise from convolution and other aggregations of 2 exponential 
random variables. Here, we focus on the gamma and hypoexponential distributions. 

Previous studies fit reaction dwell times to the gamma distribution to extract kinetics. The 
gamma distribution is the convolution of N exponential random variables, each with identical rate 
parameter k (Equation 3). Thus, the gamma is parametrized by N, the number of transitions in 
the process, and k the rate of completion for any single step. In a biophysical reaction, N 
corresponds to the number of free-energy barriers that contribute rate-limiting steps in the 
reaction. Notably, the gamma distribution assumes that k is the same for each step. Because the 
slowest step contributes most to the shape of the dwell time distribution, k typically reflects the 
slowest step in a reaction <ref>. 

     (2) 
In this paper, we fit hypoexponential functions to observed reaction dwell times. Like the 

gamma function, a hypoexponential is the convolution of several exponential random variables. 
But in a hypoexponential, the number of exponential random variables convolved is specified 
rather than inferred. Equation 3 is a 2-parameter hypoexponential parameterized by k1, the rate 
of the first transition, and k2, the rate of the second transition. Unlike the gamma function, a 
hypoexponential function has an independent rate for each transition in the modeled process. But 
because the hypoexponential specifies the number of transitions, we cannot directly estimate the 
most-likely number of transitions in a reaction by fitting a single distribution to the data. To address 
this, we estimate hypoexponential distributions with increasing numbers of transitions, N=1,2,.... 
In this case, estimation is performed using Metropolis-Hastings Monte Carlo as described below.  
Then we select N by identifying the model with the lowest corrected Akaike Information Criterion 
(AICc) (20,21). 

      (3)  
 

 
Methods 
Single virus fluorescence experiments 
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Single-virus kinetics of influenza membrane fusion were performed according to previously 
published protocols (22) with the exception that the microfluidic flow cell was maintained at 32 ºC.  
X-31 (A/Aichi/1968 H3N2) influenza virus was bound to GD1a glycosphingolipid receptors 
displayed on liposomes immobilized in a microfluidic flow cell, and fusion was triggered by buffer 
exchange to pH 5.0.  Fusion is assessed by dequenching of Texas Red-DHPC dye loaded into 
the viral envelope at a quenching concentration.  Single-event dwell times were provided by 
Robert Rawle. 
 
Single-virus kinetics of SARS-CoV-2 virus-like-particle fusion were previously reported (23), and 
the data are re-analyzed here.  Kinetics were measured using fluorescently labeled pseudovirus 
fusing to liposomes, with attachment mediated by synthetic DNA-lipid attachment factors and 
fusion triggered using soluble protease.  Experiments were performed with and without soluble 
ACE2 receptor. These data take the form of single-virus dwell times: the interval between fusion 
triggering of bound virus using a soluble protease and the fluorescence dequenching that serves 
as a real-time fusion signal. 
 
Data simulation and modeling 
For initial validation, we generated synthetic data corresponding to known ground-truth values of 
N and ki using the Gillespie algorithm(24,25) implemented in the pysb and bionetgen Python 
packages and APIs. We simulated 300 dwell times for each set of ground-truth values. Plotted 
data were generated using a 1 s granularity, matching SARS-CoV-2 experimental parameters. 
We also performed sensitivity analyses with 1 ms granularity. 
 
Fitting of hypoexeponential distributions to both synthetic and experimental data was performed 
using a simple Metropolis-Hastings algorithm written in Python. The algorithm proposes a set of 
values for the rate parameters and then accepts or rejects the proposal based on its likelihood 
given the observed data. Code can be found on Github: 
https://github.com/kassonlab/hypoexponential-analysis. Gamma distributions were fit to the data 
using previously published code (26).   
 
Evaluating hypoexponential and gamma fits 
We evaluated the performance of both hypoexponential and gamma fits (k and N) using percent 
error: errork = abs(kground truth-kestimated)/kground truth*100 and errorN = abs(Nground truth-Nestimated)/Nground 

truth*100. 
 
Results 
Extracting kinetic parameters on viral entry process by fitting data from single virus fluorescence 
experiments to reaction models 
We briefly describe the experimental design and analytical goals, followed by validation on 
synthetic data and application to problems in viral entry. We use single-virus optical microscopy 
where fusion kinetics are measured using one of two readouts: either a fluorescent reporter of 
lipid mixing or a fluorescent reporter of content mixing.  In both cases, the unfused virus and all 
intermediates until the process of interest occurs have baseline fluorescence, and the fused 
conjugate has elevated fluorescence. The approach is schematized in Figure 1, and details on 
the experimental protocol have been given in a recent methods paper (27). Briefly, target 
liposomes are immobilized in a flow cell, and viral particles are added and bound to them. Binding 
occurs either via endogenous receptors or synthetic DNA tethers (26). Each viral particle that 
fuses generates an abrupt increase in fluorescence, which can be extracted as the waiting time 
to fusion. Collating these waiting times from many individual particles yield a distribution of dwell 
times that can be represented using an empirical cumulative density function (eCDF). We model 
this curve as a biophysical reaction that starts in an unfused state and traverses through a number 
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of intermediate states N before reaching the final fused state. We fit dwell times from single virus 
fluorescence experiments to the aforementioned reaction model to get estimates of N and rate 
constants ki for transitions between states. 
 
Hypoexponential fitting outperforms gamma analysis in reconstructing generative reaction 
models for synthetic data 
In evaluating the utility of hypoexponential fitting, we first asked whether it could outperform 
gamma analysis when the ground-truth reaction model was known.  To that end, we created 
synthetic data using reaction models consisting of 2 or 3 kinetic steps and where the ki values 
varied from identical to 100,000-fold different.  Rate values were chosen to cover the ranges 
anticipated for influenza and SARS-CoV-2 single-virus fusion kinetics.  Synthetic data was 
created by sampling dwell times using the Gillespie algorithm(24). We then compared the results 
of hypoexponential fitting and gamma analysis on these synthetic data. Figures 2 shows eCDFs 
for three synthetic data examples and the corresponding gamma and hypoexponential fits.  In 
general, both gamma and hypoexponential distributions produced near-equivalent fits when the 
ground-truth rate constants were identical or when they were so different that the fast step is no 
longer rate-limiting.  Both overall fit the CDFs through the entire range, but subtle differences were 
appreciable when the fast and slow rates differed by a moderate amount. In subsequent figures, 
we compare gamma and hypoexponential performance on individual rate estimates. 
 
Performance on two-step reactions 
 

 
Figure 2. Cumulative distribution functions and fits plotted for three scenarios, where k1 and k2 
are similar (a), where they differ substantially (b), and where they differ sufficiently that k2 is no 
longer rate-limiting.  Rate constants used were 5.92e-3 and 2.13e-2 s-1 (a), 4.59e-4 and 2.13e-2 
s-1 (b), and 1.28e-4 and 3.55 s-1 (c). 
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Figure 3. Performance comparison of gamma and hypoexponential fits for two-step reactions.  
Synthetic data from a range of k1 and k2 values were fit using either gamma or hypoexponential 
MCMC approaches.  Percent error in estimated k1 values (a), k2 values (b), and absolute error in 
estimated number of steps N are plotted.  Hypoexponential fits outperform gamma in all three 
recovery tasks except when the two rates are equal. 
 

As shown in Figure 2, hypoexponential fitting better recovers both rates and number of 
steps in the ground-truth reaction model than does gamma analysis. Interestingly, for the slower 
step, hypoexponential and gamma fitting recover rates with similar accuracy. Hypoexponential 
fitting recovers about 90% of rates with less than 20% error, while gamma fitting recovers about 
70% of the slower rates at the same error level. For the faster step, however, hypoexponential 
fitting substantially outperformed gamma analysis. While both methods display increased error 
as rates deviate from one another, hypoexponential fitting is less affected by this. For the 
hypoexponential fitting, percent error is consistently above 50% when rates are more than 100-
fold apart. For gamma recovery of the slower step, percent error is always above 50% when rates 
are not identical. This highlights the weakness of gamma fitting: because its underlying model 
assumes identical rates, it is fundamentally unable to recover rate constants that differ 
substantially from each other.  

Recovery of the number of steps (N) displays a similar trend: worse recovery as the rates 
deviate more but better performance with hypoexponential fitting than gamma. Hypoexponential 
fitting generally recovers N accurately for rates differing less than 1000-fold, while gamma fitting 
only recovers N when rates are within 100-fold. Interestingly, hypoexponential fitting seems to 
struggle to recover Ns for pairs with similar rates that are extremely fast or slow. Overall, 
hypoexponential fitting outperforms gamma fitting in recovering rates and number of kinetic steps 
(55% vs. 33%) in 2 step synthetic reaction schemes. These synthetic experiments establish 
hypoexponential fitting as a useful tool for extracting kinetics, particularly when rates differ within 
100- to 1000-fold. 

 
Performance on three-step reactions 
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Figure 4. Performance of gamma and hypoexponential fits on synthetic data from three-step 
reactions.  Percent error in recovery of the slowest, middle, and fastest rate constants is plotted 
in panels (a-c); absolute error in recovery of the number of steps is plotted in panel (d).  
Hypoexponential fits outperform gamma fits in cases where the rates are moderately different, 
substantially extending the range of accurate rate recovery. 
 

We also tested hypoexponential fitting versus gamma analysis on 3-step synthetic 
reaction schemes, and it again displayed better recovery of kinetic parameters. For the slowest 
step, hypoexponential fitting slightly outperforms gamma analysis: recall of 89% to ≤20% error 
versus 63% to ≤20% error. Similar to the 2-step analysis, as the rates deviate from one another, 
hypoexponential recovers the middle rate much better than gamma: 58% to within 50% error, 
versus 25% to within 50% error. For the third and fastest step, hypoexponential fitting recovers 
30% to ≤50% error, while gamma fails on all cases when the rates are non-identical.  These 
results accentuate the trends from the 2-step data: both approaches are challenged by multi-step 
reactions with highly differing rates, but hypoexponential fitting performs better in these scenarios.  
This is in line with the gamma function’s underlying model of identical rates: it consistently recalls 
the slowest step in a reaction but is not flexible enough to estimate differing rates.  Finally, 
hypoexponential fitting generally recovers N accurately when rates are within 100-fold of one 
another, whereas gamma only recovers N accurately when rates are within 10-fold, showing the 
same trend as the 2-step reactions but increased stringency due to the added kinetic complexity. 
While hypoexponential fitting recovers kinetics more accurately than gamma for 3 step kinetic 
systems, the reliability in recovering the fastest rate is low.  As discussed later, this may reflect a 
fundamental statistical limit in reconstructing diverse rates. 
 

For 2-step kinetic systems, the highest accuracy in recovering number of steps is achieved 
using the randomness parameter.  This measure is derived from the relative variance of single-
event waiting times and reports on the minimum number of steps in a linear scheme required to 
generate the observed waiting times (1,28). Not surprisingly, ceil(Nmin), where Nmin = 1/r, the 
randomness parameter, performed better than either AICc on the hypoexponential fit or the 
gamma N parameter on our synthetic data test set (Fig. 4). Interestingly, the failures for this 
estimator occurred on a number of equal or near-equal rates, suggesting that an optimal estimator 
might account for some stochastic noise and take the form ceil(Nmin - 𝜖) for some tolerance 
hyperparameter 𝜖.		The rationale for this formulation is that if stochastic error is excluded, a Nmin 
of 2.2 would require at least 3 steps, so ceil(Nmin) encodes this dependence.  The 𝜖	is introduced 
to account for stochastic error, in effect differentiating Nmin of 2.0±	𝜖 from Nmin of 2.2. 
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Figure 5.  The randomness parameter provides a robust estimate of the number of steps in a 
heterogeneous kinetic process.  Shown is the error in the number of steps using ceil(Nmin) for 2-
step processes with varying rates.  As can be seen, this estimator overall outperforms either AICc 
on hypoexponential fitting or gamma fitting but has some increased error along the “identical rate” 
diagonal.  We therefore conclude that ceil(Nmin - 𝜖) for 𝜖 ~ 0.1 is likely the optimal estimator for 
Nsteps, and this should be used to guide hyperparameter choice for hypoexponential fitting. Black 
points denote an error > 1.0, in this case produced by rates too fast for the 1s sampling interval. 
 
 
Estimating multi-step kinetics of influenza viral entry 
 
 

 
Figure 6. Hypoexponential fit to influenza lipid mixing data. Plotted in (a) are empirical CDFs for 
the observed lipid-mixing times (blue) and the hypoexponential fit (red).  Plotted in (b) are 
posterior probability density estimates for k1 and k2 in the hypoexponential fit. Maximum-
likelihood rate estimates are 0.022 s-1 and 0.020 s-1. 
 
 

Influenza virus undergoes a multi-step reaction to fuse its envelope with endosomal 
membranes in the cell and release the viral genome into the cytoplasm.  This fusion reaction has 
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been extensively studied using both bulk and single-virus kinetics experiments (12,14,26,29,30).  
Prior fitting of influenza fusion kinetics at the single-virus level has primarily utilized either gamma 
functions or more mechanistically detailed cellular automaton model (12,14,15,31); the 
randomness parameter has also been used as a means to determine the minimum number of 
sequential steps in the underlying kinetic scheme (32,33). Lipid mixing, or exchange of labeled 
lipids between the influenza virion and a target membrane, was modeled as 2-4 identical steps, 
with the greatest likelihood being 3 identical steps in most cases (12). Based on mutational 
experiments, the rate-limiting step was linked to pH-dependent release of the hemagglutinin 
fusion peptide (14).  

We applied hypoexponential fitting to better understand the kinetic steps leading to 
influenza entry. The maximum-likelihood parameters for influenza lipid mixing using the data in 
Fig. 6 were two steps, which agrees well with gamma fits and randomness-parameter analysis on 
this dataset.  

For a more detailed comparison, we leveraged the MCMC fitting process to examine 
posterior probability distributions and confidence intervals for rates rather than simple maximum 
likelihood estimates.  Those are plotted in Fig. <N> to correspond to the maximum-likelihood 
estimates in Fig. <M>.  For lipid-mixing data, posterior distributions corresponding to the number 
of kinetic steps predicted by the randomness parameter show N indistinguishable rate constants 
kN.  Models corresponding to N+1 kinetic steps show N rates slightly slower than kN and one rate 
much faster than kN. These results, as well as the synthetic data, demonstrate that 
hypoexponential fitting well captures two-step and typically three-step processes and that its 
failure modes involve over-reporting of differing rate constants ki ≠ kj rather than over-reporting of 
identical rate constants ki = kj. 

 
 

Hypoexponential fitting suggests an “asymmetric” model for ACE2 action in SARS-CoV-2 fusion 

 
Figure 7. Kinetics of SARS-CoV-2 entry with and without ACE2. Empirical CDFs and 
hypoexponential fits are plotted in (a), while posterior probability density estimates for the rates 
are plotted in (b).  Maximum-likelihood hypoexponential parameter fits are with ACE2: 
k=0.00338, N=1 and without ACE2: k1 = 0.00310, k2 = 0.00327, N=2. 
 

We next applied hypoexponential fitting to help understand the rate-limiting steps in 
SARS-CoV-2 fusion kinetics. Briefly, SARS-CoV-2 entry involves spike protein binding to cellular 
ACE2 receptors(34,35) and proteolytic activation of the spike to trigger fusion (36,37). ACE2 
facilitates a conformational change in the spike protein (38) that is linked to fusion. Surprisingly, 
however, single-virus fusion experiments found that ACE2 is not strictly required for SARS-CoV-
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2 fusion (23). This work measured fusion kinetics with and without ACE2, analyzing the data with 
fitted gamma distributions. This approach suggested that there were two rate-limiting steps in the 
absence of ACE2 and one in the presence of ACE2 but did not further illuminate the chemical 
nature of this difference.  Here, we fit hypoexponential functions to the previously measured 
single-virus fusion kinetics to generate testable mechanistic hypotheses regarding the rate-
limiting steps in SARS-CoV-2 entry. 

Hypoexponential analysis agrees with the fundamental finding from gamma analysis and 
provides additional information on SARS-CoV-2’s mechanism of entry. Both approaches predict 
the most-likely model to be one kinetic step with ACE2 and two kinetic steps without. Interestingly, 
the rates predicted from hypoexponential fitting where k1 and k2 can vary freely were 0.0031 and 
0.0033 s-1 without ACE2 and 0.00338 s-1 with ACE2 (Fig. 7).  These are highly similar both to 
each other and to the rates predicted from gamma fitting where k1 and k2 are constrained to be 
equal: 0.0030 s-1 either with or without ACE2.   

Based on this, we propose the following kinetic 
model for SARS-CoV-2 fusion kinetics (Fig. 8).  Similar 
to models for influenza discussed in our prior work (33), 
we formulate a variable-stoichiometry model for fusion 
protein activation, where docked, unfused virus has an 
activation free energy for fusion of ∆GF

‡. Each viral 
protein activation event occurs with a rate kS and lowers 
the activation barrier to fusion by ∆GS, with the 
corresponding kFi rate constants as schematized in the 
figure.  The relative probability of outbound transitions 
(and thus relative flux) from any given intermediate is 
thus given by the ratio of first-order rate constants.  
Hypoexponential fitting can reliably recover rates that 
differ by less than ~100x in a three-step process.  
Therefore, estimation of SARS-CoV-2 fusion as a two-
step process in the absence of ACE2 means that either 
1) the maximum-flux pathway from U to F in this model is 
U->US1->F or 2) that it is U->US1->US2->F and kF2 / kS ≥ 
100.  Since we estimate the two steps to have near-
identical rates in the absence of ACE2, U->US1->F is 
unlikely because kS ~ kF would an approximately 1:1 
mixture of flux through the U->US1->F pathway and the U->US1->US2->F pathway.  We therefore 
conclude the most likely pathway is U->US1->US2->F with kF2 / kS ≥ 100.  This implies that ∆GF

‡ = 
2∆GS + 𝜹, where 𝜹 < ∆GS, so that kF2 >> kS and kF1 < kS. 

We then consider the kinetic data in the presence of ACE2.  Structural and smFRET data 
suggest that ACE2 affects the activation of SARS-CoV-2 spikes but would be unlikely to alter ∆GF 
(36,38-40), the energetic contribution of these spikes to fusion. Therefore, our favored hypothesis 
is that ACE2 affects kS nonuniformly: the most probable pathway in our scenario is that one spike 
activation event is ACE2-accelerated and not detected as rate-limiting, whereas one spike 
activation event is not ACE2-accelerated and remains at the original rate kS. 

This seemingly counterintuitive “asymmetric” scenario could result from two key properties 
of ACE2-spike interactions: it may be that the number of ACE2 in the viral contact region is 
typically low and thus the encounter between a second spike and ACE2 may be slow compared 
to spontaneous activation of that spike.  Alternatively, ACE2 has been observed to drive 
spontaneous inactivation of spike trimers that do not immediately proceed to fusion (23).  This 
inactivation process would limit the time window for recruitment of a second spike, making it 
unlikely that two spikes remain active during the same time window.  We propose future 
experiments to resolve this by measuring SARS-CoV-2 fusion kinetics as a function of ACE2 

 
Figure 8. Kinetic scheme for fusion. U, 
USn, and F represent states in the 
scheme. ∆GF‡ is the activation energy 
for fusion, ∆Gs is the free energy 
contributed by each activated spike 
towards fusion, and kb is Boltzmann’s 
constant, and T is temperature. 
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membrane density. Such experiments should further constrain mechanistic models in 
combination with experimentally derived estimates of ACE2 inactivation timescales.  
 
Discussion 
In any biomolecular process, the rate-limiting steps could be singular, multiple and identical, or 
multiple and heterogeneous.  When available data consist of single-molecule dwell times 
(reporting only on reaction completion), pre-existing approaches often differentiate poorly 
between the last two cases.  We have shown that hypoexponential fits can reliably extract 
heterogeneous rate constants over a 2-3 order of magnitude range.  Since this corresponds to 
approximately 7-10 kbT, this permits a reasonable capability to probe different mechanistic steps. 
Even if inclusion of heterogeneous rates at the high end of this detection range contributes only 
slightly to recovering the measured dwell-time distribution, their detection can have important 
mechanistic consequences.   
 

In this work, we demonstrate a case where definitively ruling out heterogeneous rates 
within this range yields biological insight. Prior analysis of the role of ACE2 in promoting SARS-
CoV-2 fusion had identified a change in the number of rate-limiting steps but could not differentiate 
whether the component steps were all identical or involved different mechanistic processes.  The 
ability to detect heterogeneous rates, and in this case, the uniformity of rates detected, helps us 
assign all the identical rate-limiting steps to ACE2-mediated SARS-CoV-2 spike activation.  This 
yields a novel and experimentally testable hypothesis: that SARS-CoV-2 fusion involves one 
ACE2-accelerated activation event and one ACE2-independent activation event.  This seemingly 
counterintuitive prediction could result if the likelihood of two spikes being simultaneously 
activated by ACE2 molecules were small and if the rate of encounter between a second spike 
and a second ACE2 is slower than the rate of ACE2-independent activation (estimated here at 
0.003 s-1).  Such an event could also occur if one spike undergoes spontaneous activation prior 
to ACE2 encounter by the second spike.  This can be tested and compared to physiological virus-
cell encounters by experimentally tuning the virus-ACE2 encounter rate. 
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