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A B S T R A C T   

Gastric cancer (GC) poses a significant health challenge worldwide, necessitating the identification of predictive 
biomarkers to improve prognosis. Dysregulated lipid metabolism is a well-recognized hallmark of tumorigenesis, 
prompting investigation into apolipoproteins (APOs). In this study, we focused on apolipoprotein D (APOD) 
following comprehensive analyses of APOs in pan-cancer. Utilizing data from the TCGA-STAD and GSE62254 
cohorts, we elucidated associations between APOD expression and multiple facets of GC, including prognosis, 
tumor microenvironment (TME), cancer biomarkers, mutations, and immunotherapy response, and identified 
potential anti-GC drugs. Single-cell analyses and immunohistochemical staining confirmed APOD expression in 
fibroblasts within the GC microenvironment. Additionally, we independently validated the prognostic signifi-
cance of APOD in the ZN-GC cohort. Our comprehensive analyses revealed that high APOD expression in GC 
patients was notably associated with unfavorable clinical outcomes, reduced microsatellite instability and tumor 
mutation burden, alterations in the TME, and diminished response to immunotherapy. These findings provide 
valuable insights into the potential prognostic and therapeutic implications of APOD in GC.   

1. Introduction 

Gastric cancer (GC) represents a highly heterogeneous malignancy at 
the molecular, tissue, and immune microenvironment levels, ranking 
fifth and third in incidence and mortality, respectively, among all can-
cers [1]. For patients with early-stage GC, surgical resection of the tumor 
is the primary treatment, and the corresponding prognosis is relatively 
good. However, the early symptoms of GC are often atypical, leading to 
diagnosis at advanced stages where surgical radical treatment is no 
longer feasible, resulting in a median overall survival (OS) limited to 12 
months [2]. While surgical treatment can significantly improve survival 
rates, postoperative recurrence is common, leading to a poor prognosis 
for patients upon GC recurrence [3]. Recently, the introduction of new 
approaches including human epidermal growth factor receptor 2 

(HER2) inhibitors and vascular endothelial growth factor receptor 2 
(VEGFR2) inhibitors in combination with chemotherapy, has substan-
tially improved the long-term survival of GC patients. However, drug 
resistance and side effects of chemotherapy remain a challenge for GC 
patients [4]. Consequently, developing novel biomarkers for early GC 
screening, predicting therapy response, detecting disease recurrence, 
and assessing OS is crucial for enhancing clinical outcomes and 
extending survival. 

High-throughput sequencing technologies have revolutionized 
various clinical and biomedical research fields, including studies on 
malignant tumors [5]. These technologies have significantly enhanced 
the capability to investigate the causes, pathogenesis, progression, and 
targeted therapies of various diseases [6]. 

Human apolipoproteins (APOs), comprising 22 members consisting 
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of APOA1, APOA2, APOA4, APOA5, APOB-48, APOB-100, APOC1, 
APOC2, APOC3, APOC4, APOD, APOE, APOH, APOL1, APOL2, APOL3, 
APOL4, APOL5, APOL6, APOM, APOO, and APOJ, play critical roles in 
lipid metabolism and inflammatory responses [7]. Studies have shown 
that APOs are associated with GC prognosis. For instance, the ratio of 
preoperative serum APOB to APOA1 has been used as a prognostic in-
dicator for GC [8], and tumor-associated macrophage-derived exosomes 
promote migration of GC cells through the transfer of functional APOE 
[9]. Therefore, APOs represent promising targets and markers for tumor 
treatment and prevention. 

Apolipoprotein D (APOD), a 25–30 kDa glycosylated protein 
belonging to the APO family, has multifunctional roles in lipid transport, 
food intake, inflammation, antioxidant response, and development, and 
is implicated in several cancers [10]. Previous research indicates that 
increased levels of tumor APOD expression are associated with poor 
clinical outcomes in breast cancer patients[11]. In hepatocellular car-
cinoma tissues, APOD expression is significantly downregulated 
compared to that in the corresponding normal tissues and serves as an 
independent predictive biomarker [12]. Similarly, in colorectal tumors, 
APOD expression is significantly downregulated and correlated with 
advanced stage, lymphatic metastasis, and worse OS [13]. However, in 
malignant melanoma, APOD is highly expressed and may be a prog-
nostic marker [14]. However, the characteristics and roles of APOD in 
GC remain elusive, warranting further investigation of its potential as a 
biomarker for GC diagnosis, prognosis, and management. 

In the present study, we comprehensively investigated the charac-
teristics of APOs at the pan-cancer level, examined the immune profiles 
of APOD in pan-cancer and its associations with genomic heterogeneity, 
and finally, systematically evaluated the correlations between APOD 
and GC and validated the findings in independent cohorts. Our results 
indicated that APOs, particularly APOD, was significantly associated 
with various cancers, including GC. Moreover, APOD emerged as a po-
tential independent prognostic factor and therapeutic target for GC, 
providing novel avenues for its clinical management. 

2. Material and methods 

2.1. GC gene expression studies 

The Cancer Genome Atlas (TCGA) pan-cancer RNA sequencing 
(RNA-Seq) data in transcripts per million (TPM) values, clinical infor-
mation, and gene-level copy number variation (CNV) assessed using 
GISTIC2 were obtained from UCSC Xena (https://xenabrowser.net/) 
[15]. The somatic mutation annotation file (MAF) for GC was obtained 
through the R package “TCGAmutations” [16]. A total of 348 GC sam-
ples from TCGA-STAD project [17] and 300 samples from the Gene 
Expression Omnibus (GEO) dataset GSE62254 [18] were obtained from 
the R package “CuratedCancerPrognosisData” [19]. 

2.2. Exploring the pan-cancer characteristics of APOs 

We initially calculated the expression patterns of APO family be-
tween tumor tissues and adjacent normal controls in the pan-cancer 
atlas from TCGA, represented as log2(Fold Change). Subsequently, we 
utilized the univariate Cox proportional hazards regression models 
(CoxPHs) to estimate the survival relevance of the expression levels of 
APOs in each cancer type. Furthermore, we employed the Gene Set 
Cancer Analysis (GSCA) platform [20] to assess the associations between 
the Gene Set Variation Analysis (GSVA) scores of APOs and levels of 
immune infiltration, as well as the associations between APOs and 
subtypes of nine cancers (HNSC, LUSC, COAD, STAD, LUAD, GBM, 
BRCA, KIRC, BLCA) using data from TCGA. Additionally, using 
pan-cancer RNA-seq and CNV data in TCGA, we calculated the ampli-
fication and deletion rates of APOs in pan-cancer, with a threshold of 
0.05. Finally, we constructed the protein-protein interaction network of 
APOs using the STRING database (Version 11.5) (https://string-db. 

org/). 

2.3. Investigating the pan-cancer characteristics of APOD 

The expression profiles of APOD were obtained from the Pan-Cancer 
dataset of TCGA. High-quality prognostic data, retrieved from previous 
studies [21], was used after excluding samples with a follow-up time less 
than 30 days. CoxPHs were applied to evaluate the prognostic correla-
tions between APOD expression and the OS of patients at pan-cancer 
level, with significance evaluated using Log-rank tests. Wilcoxon Rank 
Sum and Signed Rank Tests were employed for unpaired analyses of 
differences of APOD expression among different T stages and grades in 
each tumor, and Kruskal-Wallis tests were used for multi-group com-
parisons. We retrieved the level 4 single-nucleotide variant data of all 
samples in the TCGA project preprocessed by MuTect2 [22] from GDC 
(https://portal.gdc.cancer.gov/), integrated the mutation data of the 
samples, used the R package "maftools" [23] to obtain the structural 
domain information of the proteins, and plotted the lollipop plot of 
APOD mutations in pan-cancer. We applied the "Immune" module of 
TIMER2.0 [24] that integrates multiple approaches for estimating tumor 
immune microenvironment to evaluate the associations between APOD 
expression in pan-cancer and the infiltration levels of 19 immune cell 
types using Spearman’s correlations. In addition, we integrated 
pan-cancer APOD expression data with microsatellite instability (MSI) 
[25], purity [26], and tumor mutation burden (TMB) scores of samples, 
and calculated the Spearman’s correlations between APOD expression 
and these three scores in different types of cancers. We also extracted 
150 marker genes of immune pathways, including chemokines, re-
ceptors, MHCs, immunoinhibitors and immunostimulators, from the 
TISIDB database [27], and calculated the Spearman’s correlations be-
tween APOD expression and these immune-regulatory genes at 
pan-cancer level using the Sangerbox platform [28]. Subsequently, we 
further utilized the R package "ESTIMATE" [29] to estimate the stromal 
score, immune score, and ESTIMATE score of each patient in each tumor 
based on the gene expression profiles, and calculated the Spearman’s 
correlations between APOD expression and these three scores. 

2.4. Characterization of the correlation between APOD expression and 
clinicopathological information of patients with GC 

Firstly, we divided GC patients into high and low APOD expression 
groups based on the median of APOD expression level. Using R package 
"table1", we compared the differences between patients in different 
groups in terms of age, gender, pathological classification, grade, stage, 
etc. Additionally, Kaplan-Meier (KM) curve analysis was applied to 
evaluate the survival differences between high and low APOD expres-
sion groups, and then the restricted mean survival time (RMST) was 
calculated and estimated between the two groups. We then used step-
wise regressions to select the most relevant variables and performed 
both univariate and multivariate CoxPHs based on APOD expression 
groups and clinicopathologic information. Based on the inclusion of 
variables in the CoxPHs, we calculated the concordance indexes (C-in-
dexes) with and without APOD expression groups, and compared the 
two. To increase the reliability of our results, we divided the TCGA- 
STAD and GSE62254 cohorts into three groups based on APOD expres-
sion tertiles for trend analysis. We selected the median value of each 
group as the representative value, included APOD grouping, survival 
status and follow-up time in models, and calculated the p-value for trend 
of each cohort. We further utilized KM curves to visually demonstrate 
the prognostic characteristics of the tertile groups. 

2.5. Investigating the possible functions of APOD in GC 

Differentially expressed genes (DEGs) between different expression 
groups of APOD were identified using the R package "DESeq2" in TCGA- 
STAD. We considered genes with |log2(FC)| > 2 and an adjusted p-value 
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< 0.05 as significant DEGs. Based on the DEGs, we performed Gene 
Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analysis, and Gene Set Enrichment Analysis (GSEA). For the 
GSEA, we employed the c5.all.v7.0.entrez.gmt dataset from the MSigDB 
database, utilizing the R package "clusterProfiler". A p-value < 0.05 from 
Fisher’s test was considered indicative of significance. 

2.6. Investigating the relationship between APOD expression and GC 
tumor microenvironment (TME) 

We employed multiple algorithms to assess the relationship between 
APOD expression and TME in GC. Firstly, we downloaded the 22 im-
mune cell subtypes (LM22) files and estimated the infiltration levels of 
these immune cells in GC based on the R CIBERSORT script (Version 
1.03) [30]. Next, we used the R "ESTIMATE" package to calculate stro-
mal, immune and ESTIMATE scores. Finally, we utilized the R package 
"ConsensusTME" [31] to estimate the contribution of 18 immune cell 
types to the GC TME and performed Wilcoxon tests to compare infil-
tration levels between different groups. 

2.7. Exploring the correlations between APOD expression and cancer 
biomarkers 

We systematically collected biomarkers related to cancer, including 
IFN-γ signature [32], onco-pathways [33], metabolism pathways [34], 
and cancer hallmark pathways [35]. In addition, we also collected key 
genes for lipid metabolism from previous study [36]. Then, we applied 
single sample gene set enrichment analysis (ssGSEA) using the R pack-
age “GSVA” to obtain scores for each sample based on the expression 
matrices of TCGA-STAD and GSE62254. Finally, we explored the cor-
relations between the expression of APOD and these biomarkers. 

2.8. Exploring the correlations between APOD expression and GC tumor 
mutations and immune therapy 

Somatic mutation data of TCGA-STAD were downloaded from the R 
package “TCGAmutations” and the TMB for each sample was calculated 
using the R package “maftools”. Additionally, we used the Tumor Im-
mune Dysfunction and Exclusion (TIDE) database to predict the 
responsiveness of TCGA-STAD and GSE62254 samples to immune 
checkpoint inhibitors [37] with gene expression data standardized ac-
cording to the requirements. Subsequently, TIDE scores were obtained 
for each sample. In addition, we compared the levels of APOD expres-
sion in two groups, the immunotherapy responsive and non-responsive 
groups, consisting of 45 metastatic GC samples treated with the PD-1 
inhibitor pembrolizumab [38], with normalized RNA-seq data ob-
tained from the TIDE database. 

2.9. Expression of APOD in single cells 

Using the TISCH2 database [39], we analyzed the cell clustering 
patterns in two single-cell datasets, GSE134520 [40] and GSE167297 
[41], and investigated the expression patterns of APOD in single cells, as 
well as the relationships among different cell clusters. 

2.10. Exploring the association of APOD with drug treatment in GC 
patients 

We utilized the CellMiner database [42] to obtain processed RNA 
expression data and drug data (DTP NCI-60) for further analysis. For the 
drug data, we imputed missing values using the R package "impute" with 
K-nearest neighbor (KNN) method. In addition, we also employed the R 
package "pRRophetic" [43] to construct ridge regression models using 
gene expression profiles from the Genomics of Drug Sensitivity in Cancer 
(GDSC) database and RNA-seq data from TCGA-STAD and GSE62254 to 
predict drug IC50 values. Afterwards, Spearman’s correlations were 

used to assess the associations between APOD expression and different 
drugs. 

2.11. Investigation of the interactions between APOD and other proteins 

We used the ComPPI database (Version 2.1.1) to retrieve the inter-
actome of human APOD protein with other proteins [44]. We extracted 
six types of targets, including Cytosol, Secretory-pathway, Extracellular, 
Membrane, Mitochondrion, and Nucleus. Subsequently, we calculated 
interaction scores using the formulas provided at the website (http://co 
mppi.linkgroup.hu/help/scores). Finally, we visualized the 
protein-protein interaction network using the R package “igraph”. 

2.12. Tissue microarray constructing and immunohistochemistry (IHC) 
staining 

We retrospectively collected 108 samples of patients with GC and 
their corresponding clinicopathological information from the Zhongnan 
Hospital of Wuhan University, which were named ZN-GC cohort, under 
Institutional Review Board approval (2020133) with a waiver of 
informed consent. A tissue microarray was constructed using the GC 
samples we collected. The tissue microarray was baked at 75 ◦C for 2 h, 
then deparaffinized and rehydrated, followed by high-pressure cooking 
with EDTA for 2.5 min, incubated with hydrogen peroxide at room 
temperature for 10 min, and then rinsed with PBS. The microarray was 
blocked with goat serum for 1 h, and then washed with PBS. APOD 
primary antibody (1:150, Proteintech) was added and incubated over-
night at 4 ◦C. The microarray was then taken out, reheated, and sec-
ondary antibody was added and incubated at room temperature for 40 
min, followed by PBS rinsing. DAB staining was performed, and then the 
microarray was counterstained with hematoxylin, dehydrated with 
ethanol and air-dried before sealing the slides. We utilized the Hama-
matsu NanoZoomer XR slide scanner to scan corresponding 40 ×
magnification tissue microarray images. Afterwards, we employed 
QuPath-0.4.3 [45] to recognize images and measure positively stained 
cells. We classified the patients into high and low expression groups 
according to the median of APOD positivity rates, used R package 
"table1" to analyze the clinicopathological information of the patients, 
and then used KM curves, RMST, univariate and multivariate CoxPHs, 
and C-indexes with and without APOD to validate the prognostic role of 
APOD. We also conducted staining for α-SMA, a marker of fibroblasts, 
and compared the results with APOD staining at the same tissue location 
to investigate the relationship between APOD expression and 
fibroblasts. 

2.13. Statistical analysis 

All statistical analyses and plotting were performed in R software 
(Version 4.2.1, https://www.r-project.org/). Wilcoxon test was used for 
comparisons between two groups, while Kruskal-Wallis test was used for 
comparisons among multiple groups. Spearman’s correlation was used 
for correlation analysis. Chi-square analysis was used to reveal clinico-
pathological information of patients. Survival curves were plotted using 
the KM method, and differences in OS were analyzed using Log-rank 
tests and RMST method. Univariate and multivariate CoxPHs were 
constructed to characterize the prognostic roles of genes, with 95% 
confidence intervals (CI). A p-value < 0.05 was considered statistically 
significant (* p < 0.05, ** p < 0.01, *** p < 0.001). 

3. Results 

3.1. Differential expression of APOs in pan-cancer and their associations 
with clinical features 

To investigate the expression patterns of APOs in pan-cancer, we 
utilized the pan-cancer data from TCGA to calculate the differential 
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expressions of APOs between tumor tissues and adjacent normal tissues. 
The heatmap analysis revealed varying expression levels of APOs, with 
genes such as APOA1, APOD, and APOH commonly downregulated 
across most cancers, while others like APOC1 and APOC2 exhibited 
upregulation in many cancers. Even within the same cancer type, such as 
COAD, KICH, and STAD, the expression trends of APOs varied consid-
erably (Fig. 1A). Subsequently, we performed CoxPHs to analyze the 
relationships between APOs expressions and pan-cancer prognosis, and 
the results showed that there was a highly variable impacts of APOs 
expressions on prognosis in pan-cancer was also highly variable, with 
the effect of a particular gene on prognosis being opposite in different 
tumors (Fig. 1B). Additionally, correlation analyses identified signifi-
cant associations between specific APOs and distinct cancer subtypes, 
including STAD, LUAD, BRCA, KIRC, LUSC, and GBM (Supplementary 
Figure 1A). 

3.2. The relationships between APOs and TME and CNV, and 
construction of APOs protein interaction network 

To evaluate the associations between APOs expression and pan- 
cancer immune infiltration, we calculated the GSVA scores of APOs 
and generated a heatmap to show the correlations between GSVA scores 
of APOs and pan-cancer immune infiltration indicators. Our analysis 
revealed that immune cells such as dendritic cells (DC) and natural killer 
(NK) cells were positively correlated with GSVA scores in most cancers, 
while neutrophils showed a negative correlation. Particularly, in almost 
all cancers, GSVA scores of APOs showed a significant positive corre-
lation with overall immune infiltration levels, suggesting active partic-
ipation of APOs in the TME (Fig. 1C). Further investigation into CNV can 
provide insights into the composition of the tumor genome, inter- 
individual genetic differences, and genetic pathogenic factors. There-
fore, we examined the CNV percentages of APOs in pan-cancer, and the 
results showed that APOD, APOA2 and APOH were more likely to be 
amplified, while APOA1, APOC3, APOA5 and APOL5 were more likely 
to be deleted in pan-cancer (Fig. 1D). Finally, we leveraged the STRING 
database to construct a comprehensive protein-protein interaction 
network for APOs (Supplementary Figure 1B). This network provides a 
valuable resource for exploring downstream functional interactions and 
regulatory pathways involving APOs. 

3.3. Prognostic, immunological, tumor heterogeneity and mutation 
features of APOD in Pan-Cancer 

Our findings identified significant characteristics of APOD among 
APOs in pan-cancer, including its expression, prognostic role, immune 
infiltration, and CNV patterns. To further explore its intricacies, we 
investigated the characteristics of APOD in various cancers. We found 
that high expression of APOD was associated with poor prognosis in six 
tumor types (STAD, STES, KIPAN, COADREAD, THCA, READ), while 
low expression of APOD was associated with poor prognosis in six tumor 
types (GBMLGG, BRCA, THYM, MESO, SKCM-M, SKCM) (Supplemen-
tary Figure 2). Pathological stage can evaluate the severity and extent of 
tumors. Based on integrated data of APOD expression and tumor stage 
information in pan-cancer, we found that APOD expression was signif-
icantly correlated with pathological stages in various cancers. For 
example, in STAD, the expression of APOD gradually increased with the 
progression of the T stages and the grades (Supplementary Figure 3 A, 
B). By integrating mutation data and protein structural domain infor-
mation, we found that APOD had a high incidence of missense mutations 
in the structural domains of 189aa and particularly Lipocalin in various 
cancers (Supplementary Figure 3 C). Through analyses of 150 immune- 
related genes categorized as chemokines, receptors, MHC, immu-
noinhibitors, and immunostimulators, we found significant correlations 
between APOD expression and various immune regulators in pan-cancer 
(Supplementary Figure 4 A). Additionally, we utilized the TIMER 2.0 
database with multiple algorithms to calculate the correlations between 

APOD expression and immune cell infiltration levels in pan-cancer. The 
results showed that APOD expression was positively associated with 
cancer-associated fibroblasts (CAFs), endothelial cells and hematopoi-
etic stem cells in most cancers, while negatively correlated with 
myeloid-derived suppressor cells (MDSCs), suggesting that APOD played 
a role in the process of immune infiltration in pan-cancer (Fig. 2A). 
Subsequently, we used the ESTIMATE algorithm to evaluate the rela-
tionship between APOD expression and TME in pan-cancer. The results 
of stromal scores, immune scores, and ESTIMATE scores suggested an 
association between APOD and the TME of various tumors (Supple-
mentary Figure 4B-D). Due to the potential impact of tumor heteroge-
neity on various factors such as tumor growth rate, invasiveness, drug 
sensitivity, prognosis, etc., we evaluated three indicators of tumor het-
erogeneity, including MSI, purity, and TMB. We found that the trend of 
APOD expression with these three indicators was not consistent in 
different cancers. Specifically, the expression of APOD showed a 
strongly negative correlation with MSI, purity, and TMB in GC (Fig. 2B). 

3.4. APOD indicates poor prognosis in GC patients 

Our pan-cancer analysis identified APOD as a detrimental prognostic 
biomarker in GC patients, associated with the GC microenvironment. 
APOD expression displayed a significantly negative correlation with 
MSI, purity, and TMB in GC, prompting us to delve deeper into its role in 
this specific cancer. First, we analyzed clinicopathologic data of GC 
patients in TCGA-STAD and GSE62254 (Supplementary Table 1, 2). 
Consistent with our initial findings, high APOD expression correlated 
with shorter OS time, supported by KM curves and confirmed by RMST 
analyses (Fig. 3A, C & Supplementary Table 3, 4). By employing uni-
variate and multivariate CoxPHs, we further confirmed that High APOD 
expression was an independent prognostic risk factor for GC patients 
(Fig. 3B, D). To investigate the contribution of APOD to the prognostic 
model, we compared models with and without APOD expression groups. 
The models including APOD demonstrated higher C-indexes compared 
to the models without APOD, suggesting that APOD expression 
improved the predictive performance of the models and that APOD 
played an important role in GC prognosis (Supplementary Figure 5 A, B). 
To strengthen our findings, we divided TCGA-STAD and GSE62254 into 
three groups based on APOD expression tertiles. Including APOD 
grouping, survival status, and follow-up time in the model, we calcu-
lated a p-value for trend of 0.013 in TCGA-STAD and 4.65 × 10–6 in 
GSE62254, confirming a significant correlation between APOD expres-
sion and patient survival. KM curves stratified by APOD expression 
tertiles further illustrated that patients with high APOD expression had a 
worse prognosis (Supplementary Figure 5D, E). 

3.5. APOD participates in multiple biological functions in GC and is 
associated with TME 

To investigate the potential functions of APOD in GC, we performed 
enrichment analyses on DEGs between high and low APOD expression 
groups in TCGA-STAD. We conducted GO enrichment analysis to explore 
the cellular component (CC), molecular function (MF) and biological 
process (BP) that APOD might be involved in, and the results revealed 
associations with myofibril, metal ion transmembrane transporter ac-
tivity, muscle cell development, etc. (Fig. 3E & Supplementary Table 5). 
KEGG pathway enrichment analysis suggested that APOD was primarily 
enriched in protein digestion and absorption, chemical carcinogenesis - 
receptor activation and other signaling pathways (Fig. 3F & Supple-
mentary Table 6). GSEA based on the MsigDB database revealed sig-
nificant enrichment of APOD in actomyosin structure organization, 
regulation of hormone secretion and other functions (Supplementary 
Figure 6 A). Collectively, the results of the three enrichment analyses 
suggested that APOD might be involved in ion transport, digestion and 
absorption, secretion, hormone regulation, and other signaling path-
ways in GC. The TME plays a crucial role in tumor initiation and 
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Fig. 1. The pan-cancer analyses of APOs. (A) Expression trends of APOs in pan-cancer, where FC represents the fold change in gene expressions relative to normal in 
tumor samples. The white color filling indicates a p-value > 0.05. (B) CoxPHs were employed to calculate the associations between gene expressions and prognosis, 
where HR> 1 represents an unfavorable association, HR< 1 indicates a favorable association, and the remaining are those with p-values > 0.05. (C) Correlations 
between the GSVA scores of APOs and immune infiltration indicators (*: P value ≤ 0.05; #: FDR ≤ 0.05). (D) Amplification and deletion rates of APOs in pan-cancer, 
calculated using CNV data (the threshold for amplification and deletion was set at 0.05). 
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Fig. 2. The pan-cancer analyses of APOD. (A) Spearman’s correlation analyses between the expression of APOD and 19 types of immune cells in pan-cancer. (B) 
Spearman’s correlation analyses between the expression of APOD and MSI, purity, and TMB in pan-cancer. 
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Fig. 3. The prognostic features and functional enrichment analyses of APOD in GC. (A) KM curves for high and low APOD expression groups in TCGA-STAD; (B) 
Univariate and multivariate CoxPHs were used to calculate the HR values of APOD expression levels and other clinicopathologic indicators in TCGA-STAD. (SIA, 
Stomach, Intestinal Adenocarcinoma; SA, Stomach, Adenocarcinoma; NOS, Not Otherwise Specified); (C) KM curves for high and low APOD expression groups in 
GSE62254. (D) Univariate and multivariate CoxPHs were used to calculate the HR values of APOD expression levels and other clinicopathologic indicators in 
GSE62254; (E) GO analysis was employed for functional enrichment analysis in TCGA-STAD using CC, MF, and BP categories. (F) KEGG database was used for 
functional enrichment analysis in TCGA-STAD with the results classified into four categories. 
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development. We then analyzed the association between APOD 
expression and GC TME using multiple algorithms. CIBERSORT analyses 
revealed the proportions of immune cells in GC (Supplementary 
Figure 6B, C), and the high APOD expression group showed lower levels 
of T cells CD4 memory activated, T cells follicular helper and Mast cells 
activated (Supplementary Figure 6D, E). ESTIMATE analyses indicated 
that the high APOD expression group was more likely to have higher 
stromal score, immune score and ESTIMATE score (Supplementary 
Figure 7 A, B). We also used the ConsensusTME method, and the results 
showed higher scores of B cells, endothelial cells, fibroblasts and plasma 
cells in the high APOD expression group (Supplementary Figure 7 C, D). 

3.6. Significant correlations of APOD with multiple cancer biomarkers in 
GC 

Biomarkers can serve as indicators for the onset and progression of 
diseases, and serve as references for risk stratification and targeted 
therapy by clinicians. Therefore, we curated gene signatures related to 
IFN-γ signature, onco-pathways, metabolism pathways and cancer 
hallmark pathways, and conducted ssGSEA to explore the associations of 
APOD expression with these biomarkers in GC. Our analyses revealed 
that the high APOD expression group had lower scores in Interferon-γ, 
G2M checkpoint, P53 pathway, and higher scores in Metabolism, Apical 
junction, Myogenesis (Fig. 4A). Scatter plots and violin plots were used 
to illustrate the correlations of APOD expression with all the biomarkers 
we collected in GC (Supplementary Figure 8–21). 

3.7. High APOD expression in GC indicates lower TMB and poorer 
immune therapeutic response 

In order to evaluate the relationship between APOD expression and 
immune therapeutic response, a comparison between the gene muta-
tions of high and low APOD expression groups were conducted (Fig. 4B 
& Supplementary Figure 22 A). Furthermore, based on the grouping of 
APOD expression levels, we found that patients with high APOD 
expression had a significantly lower TMB, suggesting that they might 
have a reduced likelihood of benefiting from immune therapy (Fig. 4C). 
This finding was supported by the analysis using the TIDE database, 
which showed that GC patients with high APOD expression had higher 
TIDE scores, indicating a poorer response to immune therapy compared 
to those with low APOD expression (Fig. 4D, E). In our analysis of 
metastatic GC patients treated with pembrolizumab, we observed 
elevated APOD expression levels in patients who did not respond to 
immunotherapy (Supplementary Figure 22B), suggesting a potential 
association between high APOD expression and decreased responsive-
ness to PD-1 inhibitor therapy. 

3.8. High APOD expression in fibroblasts in GC tissues 

To investigate the expression patterns of APOD in different cell 
clusters within GC tissues, we performed analyses using the TISCH2 
database on two single-cell datasets, GSE134520 and GSE167297. The 
results showed that APOD was predominantly expressed in the popu-
lation of fibroblasts within GC tissues in both cohorts (Fig. 5A-D & 
Supplementary Figure 23 A, B). The interactions among different cell 
clusters were shown in heatmaps (Supplementary Figure 23 C, D). 
Additionally, we performed staining for the fibroblast marker α-SMA 
and confirmed the expression of APOD in GC fibroblasts (Supplementary 
Figure 23E-M). 

3.9. Interactions between APOD and other proteins 

By searching the ComPPI database and calculating interaction 
scores, we identified additional proteins associated with APOD protein 
across six types of targets: cytosol, secretory-pathway, extracellular, 
membrane, mitochondrion, and nucleus, which were represented in an 

association network (Supplementary Figure 24). 

3.10. Identification of potential anti-gc drugs based on APOD expression 

We performed drug screening using the NCI-60 cancer cell line panel 
in the CellMiner database, and the results indicated that APOD expres-
sion was negatively correlated with the activity levels of BMS-690514, 
umbralisib, and others, while positively correlated with PD-98059, 
Refametinib, and others (Fig. 6A). Analyses through the GDSC data-
base revealed that APOD expression was negatively correlated with the 
IC50 values of PFI-1, XMD11–85 h, and others, while positively corre-
lated with the IC50 values of rTRAIL, Methotrexate, and others (Fig. 6B, 
C). 

3.11. Immunohistochemical (IHC) staining confirms that high APOD 
expression is an independent prognostic factor for GC patients 

To further support our conclusion, we collected 108 human GC 
samples along with corresponding clinicopathologic information, 
forming the ZN-GC cohort. We conducted IHC staining on the tissue 
microarray (Fig. 7A) and estimated the protein levels of APOD. Chi- 
square analysis revealed clinicopathological information of the pa-
tients in ZN-GC (Supplementary Table 7). KM curves indicated that 
patients with elevated APOD expression had worse OS (Fig. 7B & Sup-
plementary Figure 5 F), a finding confirmed by RMST analysis (Sup-
plementary Table 8). Univariate and multivariate CoxPHs demonstrated 
that high APOD expression was an independent prognostic risk factor for 
GC patients (Fig. 7C). Then we found the model incorporating APOD 
groups achieved a higher C-index compared to the model without it, 
suggesting that APOD expression improves the predictive performance 
of the model and APOD played a significant role in GC prognosis (Sup-
plementary Figure 5 C). 

4. Discussion 

GC is a prevalent and fatal malignancy with limited treatment op-
tions for advanced stages [1, 3, 4]. While anti-PD-L1 and PD-1 inhibitors 
have shown promise in various cancers, their efficacy in GC remains 
limited [46,47]. This underscores the urgent need for novel therapeutic 
targets. 

Dysregulated lipid metabolism is a recognized feature of cancer, with 
tumor cells often relying on it for energy, survival, proliferation, and 
metastasis [48]. APOs play a crucial role in lipid metabolism and in-
fluence various cancer-related processes, making them promising ther-
apeutic targets and biomarkers [7,49]. Among APOs, APOD is 
recognized as a multi-ligand, multifunctional protein involved in lipid 
transport, inflammation, and various cancers GC [10]. Its complex 
regulation suggests potential involvement in multiple biological pro-
cesses [50–53]. 

We conducted a comprehensive analysis of APOD in GC using bio-
informatics and experimental approaches. Pan-cancer analyses revealed 
that APOD expression was differentially regulated and correlated with 
prognosis, immune infiltration, and CNV. We also established a protein- 
protein interaction network for APOs, highlighting their interconnected 
roles. 

Specifically in GC, APOD expression was negatively correlated with 
MSI, purity, and TMB, suggesting its potential as a prognostic and 
immunotherapy response biomarker. High APOD expression was asso-
ciated with poor prognosis, lower IFN-γ scores, higher metabolic scores, 
and potentially poorer response to immunotherapy. Single-cell analyses 
and IHC staining further confirmed high APOD expression in fibroblasts, 
known to promote tumor progression and immune evasion [54,55], 
within the GC microenvironment. In addition to utilizing publicly 
available datasets of GC samples, we also collected 108 tissue samples of 
GC patients to construct a tissue microarray. By employing IHC staining 
and corresponding survival analyses, we confirmed that high APOD 
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expression was an independent prognostic risk factor for GC patients. 
Our findings revealed that APOD was downregulated in GC tissues 

compared to adjacent normal tissues. Analyses suggested that high 
expression of APOD served as an independent risk prognostic factor for 
GC. While numerous studies have demonstrated a correlation between 
elevated expression of certain genes in tumors and a poorer prognosis, it 
is essential to note that this is not universally applicable. For example, 
previous study found that CHAC1 was downregulated compared to 
normal samples, while upregulation of CHAC1 expression was identified 
as an independent risk factor for poor prognosis in these patients [56]. 
Therefore, the low expression of APOD in GC tumors is not contradictory 
to its role as an unfavorable prognostic factor. 

Multiple studies have revealed a positive association between MSI 
and enhanced survival rates in GC [18, 57, 58]. The hypermutated trait 
of MSI tumors results in the prolific expression of diverse peptides with 
potential to function as neoantigens. These neopeptides trigger robust 
recruitment and activation of T-cells [59], a phenomenon potentially 
contributing to the favorable response to immunotherapy observed in 
MSI-high GC patients [60–62]. This enhanced immune recognition is 
mirrored by the association between high TMB and improved clinical 
response to immunotherapy [63], and several studies have suggested 
that GC patients with high TMB may have a better prognosis [64–66]. 
Therefore, the significant negative correlation between APOD expres-
sion and both MSI and TMB in GC suggested its potential as a biomarker 

for predicting immunotherapy response and patient prognosis, inform-
ing crucial clinical treatment decisions. Furthermore, we found that 
patients with high APOD expression had higher TIDE scores and meta-
static GC patients who responded to pembrolizumab treatment had 
lower APOD expression. These findings suggested that high APOD 
expression might be associated with a poorer response to 
immunotherapy. 

The TME is a bustling neighborhood surrounding tumors, inhabited 
by diverse non-cancer cells such as immune sentinels, supportive fi-
broblasts, and blood vessel builders. These cellular cohabitants are 
increasingly recognized as potent forces shaping cancer growth and 
development [67]. We found that APOD expression was negatively 
correlated with tumor purity and showed significant associations with 
multiple components within different TME scoring algorithms. Further 
investigation into this relationship, our single-cell analysis and IHC 
staining showed that APOD was expressed not only in GC tumor cells but 
also in fibroblasts within the TME. Fibroblasts are a predominant cell 
type within the TME and are responsible for the majority of extracellular 
components within the tumor, such as extracellular matrix and soluble 
factors. When quiescent fibroblasts switch to CAFs, they induce a variety 
of pro-tumorigenic processes, including remodeling of tissue architec-
ture and suppression of the local immune response [54,55]. CAFs have 
been found to have diverse functions, including matrix deposition and 
remodeling, extensive reciprocal signaling interactions with cancer 

Fig. 5. The expression characteristics of APOD at the single-cell level. (A) Single-cell clustering for GSE134520. (B) Single-cell expression profiles of APOD in cell 
clusters for GSE134520. (C) Single-cell clustering from GSE167297. (D) Single-cell expression profiles of APOD in cell clusters from GSE167297. 
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cells, and crosstalk with infiltrating immune cells [68]. They also play a 
pivotal role in tumor progression, therapeutic resistance, and immune 
evasion through secretion of effective molecules and remodeling of the 
extracellular matrix [69]. This may partly explain why high APOD 
expression was associated with poorer prognosis and worse response to 
immunotherapy. 

Our study has several limitations. Further experimental evidence is 
required to elucidate the mechanisms by which APOD functions in GC. 
Moreover, to further validate the efficacy of the anti-GC drugs identified 
in our study, additional cellular and animal experiments are needed. 

Overall, our study uncovers the potential of APOD as a valuable 
prognostic, therapeutic, and immune response biomarker in GC. Further 
research is warranted to fully translate these findings into clinical ap-
plications for improved GC management. 

5. Conclusions 

In conclusion, by comprehensively analyzing the pan-cancer features 
of APOs, with a specific focus on APOD in GC, our study has identified 
APOD as a potentially promising therapeutic target. We found a signif-
icant association between high APOD expression and worse prognosis in 

GC patients. Moreover, APOD was associated with TME and multiple 
cancer biomarkers in GC. Notably, high APOD expression in GC patients 
was correlated with lower TMB and MSI, suggesting a decreased 
response to immunotherapy. Additionally, potential anti-GC drugs were 
identified based on APOD expression, providing valuable insights into 
alternative therapeutic options. Overall, our study not only sheds light 
on the critical roles of APOD in GC progression but also underscores its 
potential as a therapeutic target, paving the way for the development of 
personalized medicine approaches for GC patients. 
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