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Abstract: Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently
bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in
photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation
of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers
and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not
only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally
important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the
energy-transforming processes in response to external and internal conditions. Thus, the wide variety
of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however,
common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative
explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems.

Keywords: bacteriochlorophylls; chlorophylls; carotenoids; excitation energy transfer; light-harvesting
complexes; photosynthesis; pigment-protein complexes; photosystems; photoprotection

1. Introduction

(Bacterio)chlorophylls, (B)Chls, being noncovalently bound to specific apoproteins,
are the major chromophores of most light-harvesting (antenna) complexes (LHCs). More-
over, together with metal-free (bacterio)pheophytins, (B)Pheo, (B)Chls are the principle
photochemically active pigments in photosynthetic organisms. Excitation arriving at the
lowest singlet excited state (S1) of special (B)Chls in the photochemical reaction centers
(RCs) eventually leads to primary charge separation, thus converting light energy into
electrochemical energy, ultimately providing the driving force for all processes in photo-
synthetic (and also heterotrophic) organisms [1]. The vast majority of (B)Chls, however,
act as (accessory) light-harvesting pigments, increasing the optical cross sections of the
photochemical RCs by about two orders of magnitude and more [2].

(B)Chls are essential constituents of the RCs and account for the majority of the
antenna pigments in nonoxygen-evolving (anoxygenic) photosynthetic bacteria. In all
oxygen-evolving photosynthetic organisms, Chls a functions as a primary electron donor in
the RCs of both photosystems I and II (PSI and PSII). Moreover, a Chl a is also the primary
electron acceptor in PSI. An exception may be the cyanobacterium Acaryochloris (A.) marina,
in which Chl d also appears to be involved in electron transfer [3]. In higher plants and
green algae, Chls a and b serve as the major antenna pigments in the LHCs. Chl b is found
only in the LHCs of higher plants and green algae, with most Chl b bound to the main light-
harvesting complex (LHCII). Chls a and b, and in some species also divinyl-Chls a and b, are
bound to the “prochlorophyte” (certain clades of the cyanobacterial radiation now better
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termed oxychlorobacteria) Chl-binding antenna complexes (Pcbs) [4]. Chls c are found in
LHCs of different algal clades [5]. Chl d and the recently discovered Chl f [6] are found only
in certain cyanobacteria. Chl d is the dominant pigment in A. marina [7,8]. The considerably
redshifted-absorbing Chl f was first discovered in stromatolite-forming cyanobacteria [6].
The synthesis of Chl f and alternative Chl-binding proteins seems to be a specific response
of certain cyanobacteria to grow under far-red light conditions [9]. Whether Chl f is also
involved in electron transfer, or only serves as an accessory light-harvesting pigment, is
currently debated (e.g., [10,11]).

In addition to (B)Chls, most photosynthetic LHCs also bind carotenoids. In plants and
algae, LHCs exclusively bind xanthophylls (oxygen-containing derivatives of carotenes).
Bacterial LHCs and cyanobacterial, algal and plant core-antenna complexes of both PSI and
II can contain both carotenes and their oxygen derivatives. The functions and photophysics
of carotenoids (also when bound to LHCs) have been covered extensively in a previous
review [12]. Carotenoids have unique photophysical features that render their spectroscopic
investigation, in particular in LHCs, rather difficult. Conventionally, carotenoid excited
states are assigned due to an assumed C2h symmetry (in analogy to linear polyenes).
However, very recent studies have suggested that the underlying assumptions may not
apply to carotenoids, in particular to the optically “dark” first excited singlet state (S1) [13].

Structures of Chl a and violaxanthin (as representatives of their molecule classes), as
well as the corresponding absorption spectra and energy levels, are shown in Figure 1. In
spite of the vast taxonomic diversity of photosynthetic organisms, the mechanisms of the
primary photochemical reactions performed by (B)Chls and the other associated cofactors
in the RCs are very similar, while—in marked contrast—both the structures of LHCs and
the bound pigments exhibit a remarkable variety.
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Figure 1. Molecular structures and absorption spectra of chlorophyll a (left) and the carotenoid (xanthophyll) violaxanthin
(right) as representatives of their respective molecule classes, as well as the corresponding energy level schemes.

This article reviews the functional similarities and structural diversity of photosyn-
thetic LHCs. We will also explore how computational modeling of LHC functions benefits
from the availability of high-resolution structures.

2. The Photosynthetic Apparatus of Plants (and Algae)

Photosynthetic electron transport in all oxygenic photosynthetic organisms is driven
by two light reactions, each taking place in two membrane-integral multimeric pigment-
protein super complexes referred to as PSI and PSII. Higher plant thylakoid membranes
are characterized by distinct regions: (i) the loose lamellar stroma thylakoids and (ii) the
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tightly stacked grana. The grana stacks are highly enriched in PSII. PSI super complexes are
mainly found in the stroma-thylakoid regions [14]. These structures are, however, highly
dynamic and undergo changes on different time scales, see, e.g., [15].

Pigment-protein complexes acting as LHCs absorb photons and effectively transfer
the electronic excitation energy in a series of ultrafast steps (on the order of less than
100 femtoseconds up to several picoseconds [16]), with the excitons eventually arriving at
the RCs.

Two basic modes of excitation energy transfer (EET) can be distinguished: in the case of
weak coupling of the interacting pigments due to distance or less favorable orientation, EET
occurs as an incoherent “hopping”-like Förster-type transfer. However, if the chromophores
are in close contact and in favorable orientation, strong excitonic coupling may result. The
interacting molecules will share their electronic ground and excited state manifolds, and
splitting (in case of identical chromophores) or shifting of the resultant excited state energy
levels may occur. The energies and oscillator strengths of the coupled excited states can be
used to determine the orientation of the involved transition dipole moments (or vice versa,
in case of computational predictions) since the oscillator strengths of the coupled states
are redistributed according to the orientation of the involved transition dipole moments
and the orientation of the coupled chromophores. Excitations may be delocalized among
the strongly coupled pigment molecules. Interestingly, both modes of pigment-pigment
coupling occur in most LHCs.

(B)Chls of RCs, usually characterized by redshifted, i.e., lower energy absorption
maxima as compared to antenna pigments, act as traps for the excitation energy and are the
photochemically active pigments in the subsequent charge separation processes (cf. [17]).
Based on structural and functional similarities of the RCs of anoxygenic photosynthetic
bacteria, “special pairs” of Chls were inferred to act as primary electron donors (termed
according to their specific absorption maxima, P680 in PSII or P700 in PSI). This conven-
tional view has to be revised due to recent spectroscopic studies [18–21]. In fact, four Chl a
molecules in PSII appear to be strongly excitonically coupled, with the lowest exciton state
being predominantly localized on the monomeric ChlD1, which probably functions as the
primary electron donor to PheoD1 as the acceptor. This step is followed by rapid electron

transfer from the “special pair” PD1PD2 to Chl
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[22]. Alternative and complementary path-
ways are being discussed for the primary charge separation in PSII [23]. Analogously, also
in PSI, Chl a was shown to act as the primary electron donor, which transfers an electron
onto another Chl a (denoted A0) as the acceptor. Subsequently, the “special pair” P700
(actually being a heterodimer of Chl a and Chl a’, its C13 epimer) is rapidly oxidized [19,24].

Electron transport from PSII to PSI is coupled with proton translocation from the
stroma into the thylakoid inner (luminal) space which gives rise to a difference of the
proton electrochemical potential across the membrane. The resulting proton motive force
is used to synthesize ATP [25,26]; for a review, see, e.g., [27]. Moreover, the acidification
of the thylakoidal lumen, i.e., ∆pH formation, is also important for the regulation of light
harvesting in PSII and interphotosystem electron transport (see below).

Chloroplasts are semiautonomous organelles, i.e., they contain genetic information in
their plastome. The plastome encodes for some core polypeptides of PSI (~5) and PSII (~14),
particularly those binding cofactors for light-induced charge separation. The majority of
the up to 3000 thylakoid proteins, including the LHCs, are, however, encoded by nuclear
genes [28].

2.1. Plant (and Algal) Peripheral Light-Harvesting Complexes

In plants and green algae, the peripheral antenna systems of both PSI and PSII are
made up from a large family of light-harvesting Chl a/b-binding LHC proteins encoded by
the lhca and lhcb gene families, respectively. Three major types of peripheral Chl a/b-binding
LHCs can be distinguished in higher plants [28].

LHCII is the main antenna complex comprising about half of the thylakoid protein and
binding roughly 50% of the Chls. LHCII forms homo- and heterotrimers of three members
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of the protein superfamily, Lhcb1, Lhcb2 and Lhcb3. LHCII can also be associated with PSI.
This would be the case, in particular, following so-called state 1-state 2 transitions [29].

The monomeric minor LHCs of PSII are formed by the Lhcb4–6 proteins (also termed
CP29, CP26 and CP24, respectively, according to their apparent molecular weights), with
one copy of each located proximal to the PSII core complex. Recently, structures of PSII
mega complexes, including a part of the more tightly associated proximal LHCs, have
become available [30].

The peripheral antenna proteins of PSI are designated Lhca1–4. One copy of each of
these proteins is arranged in a single layer around the PSI core under all physiological
conditions. Lhca1 and Lhca4 apparently form a heterodimer, which gives rise to the charac-
teristic long-wavelength fluorescence emission of plant PSI at low temperatures [31–33].

The structure of LHCII (Figure 2) has been obtained to atomic (2.72 and 2.5 Å) resolu-
tion by X-ray crystallography [34,35].
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Figure 2. (A) Structure of trimeric main light-harvesting complex (LHC II) of plants at 2.5 Å resolution, PDB entry
2BHW [35]. Top view with regard to the thylakoid membrane plane, from the stromal side. (B) Monomeric subunit.
The protein backbone consisting of three transmembrane α-helical domains is shown in grey. The monomeric subunit
noncovalently binds 8 chlorophylls a and 6 chlorophylls b (shown in cyan and green, respectively) as well as two luteins
(yellow), one neoxanthin (orange) and one violaxanthin (red). The binding site of the latter may also be occupied by its
de-epoxidation products, antheraxanthin or zeaxanthin.

The LHCII monomeric subunit is thought to provide a general structural model for all
Chl a/b-binding proteins and the Chl a/c-binding proteins of certain chromophyte algae,
as well as the PSI-LHCs of rhodophytes, due to substantial protein sequence homologies.
Homologous LHC proteins from different plant species exhibit high (up to 90%) similarity,
in particular among angiosperms. Differences among the various members of this protein
family can be more substantial (up to 65% identity). All LHCs feature three membrane-
spanning α-helices, see Figures 2 and 3. The evolutionary-related first and the third helices
and their N-terminal regions exhibit particularly significant homologies.
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Figure 3. Structure of the monomeric minor light-harvesting complex CP29 of plants at 2.80 Å
resolution, PDB entry 3PL9 [36]. Side view with regard to the thylakoid membrane plane. The
protein backbone consisting of three transmembrane α-helical domains is shown in grey. CP29
binds 8 chlorophylls a and 4 chlorophylls b (shown in cyan and green, respectively) and has one
possible mixed Chl-binding site. Three xanthophylls are bound, one lutein (yellow), one neoxanthin
(orange) and one violaxanthin (red). The binding site of the latter may possibly also be occupied by
its de-epoxidation products, antheraxanthin or zeaxanthin.

Fourteen Chl molecules (eight Chls a and six Chls b) and four xanthophylls (two
luteins, one neoxanthin and one xanthophyll-cycle pigment; either violaxanthin, antherax-
anthin or zeaxanthin), are noncovalently bound to each monomeric subunit of LHCII, see
Figure 2 [34,35]. The Chl molecules are positioned to optimize EET within one subunit as
well as between the complexes [37]. Their chlorin rings are arranged roughly perpendicular
to the membrane plane in two layers, close to each surface of the membrane. Some Chl a
molecules are in intimate contact with xanthophylls providing photoprotection, see also
below [35,38]. EET between LHCII trimers is facilitated by strongly excitonically coupled
Chls, constituting the so-called long(est) wavelength-absorbing terminal emitter(s) at the
periphery [37], thus facilitating rapid migration of excitons in the antenna systems(s).

These observations are in agreement with in vitro reconstitution studies with het-
erologously overexpressed mutant LHCII-apoproteins, in which putative Chl-binding
amino acids had been replaced by nonbinding ones (e.g., Rogl et al. [39]). The latter study
suggested that a Chl a (termed Chl a2 in the nomenclature of Kühlbrandt et al. [38] or Chla
612 according to Liu et al. [34]) is strongly coupled to a nearby Chl (originally tentatively
assigned to Chl “b2”), apparently forming the “terminal emitter” or lowest energy state at
about 680 nm in the LHCII EET chain. The higher-resolution X-ray structural analyses of
spinach and pea LHCII [34,35] show that Chl “b2” is actually also a Chl a (termed Chl a 611
by Liu et al. [34]). However, a nearby Chl b is apparently closely coupled to this cluster [40].
At low temperatures (77 K and below), however, the lowest state may be associated with
other Chls, as suggested earlier [38]. This is also corroborated by a recent re-evaluation of
spectral hole-burning data [41].

The degree of (macro-)aggregation of LHCII may vary in vitro as well as in planta.
Aggregation strongly determines the photophysical properties of LHCII, i.e., excited state
dynamics, including ultra-fast EET and excitonic interactions between certain individual
chromophores [42,43].

The structure of the minor PSII antenna complex CP29 (Figure 3) has been solved by
X-ray crystallography [36]. This achievement revealed marked differences to structural
models derived on the basis of the LHCII structure and two-dimensional electronic spec-
troscopy, 2DES [44]. In particular, the number of pigments bound to CP29 significantly
deviates from previous estimates. The recent structure shows that 13 Chls are bound (8 Chls
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a and 4 Chls b; a tentative “mixed site” is also assumed to exist, but not supported by other
data). An ab initio computational study provides insight into the optical properties and
EET processes in CP29 [45].

Thus far, much theoretical research on LHCs has been focused on quantification of
site energies and excitonic couplings of the chromophores [46,47], as well as determination
of the molecular mechanism(s) of photoprotection. Computational studies of photosyn-
thetic pigment-protein complexes strongly rely on the (crystal) structures and subsequent
“ensemble” generation using classical dynamics. However, it was shown that the chro-
mophore geometry still requires careful treatment before use for in silico-excited state
calculations [48]. Especially for the carotenoids, these features need to be computed with
appropriate methods [49]. Moreover, due to the size of the involved complexes, most high-
accuracy studies focusing on structure/spectrum relationships employ gas-phase model
systems of isolated chromophores and/or chromophore pairs. A comprehensive review of
these studies is beyond the scope of the current work. However, several recent reviews
cover a large portion of the computational research on photosynthetic pigment-protein
assemblies, especially those including the protein matrix [50–53]. Moreover, a more general
“bottom-up” perspective of photosynthetic light-harvesting has also been published [54].

More recent work, however, has gone beyond those limitations, introducing full-scale
pigment couplings constructing excitonic states from the properties of the individual chro-
mophores [55]. These studies are assumed to shape the future of the field: the full dynamics
of EET can only be assessed by a more holistic approach, including all components of the
system, despite the necessarily involved (computational) costs.

2.2. Core Antenna Complexes

The PSII of all oxygenic photosynthetic organisms contains two core antenna com-
plexes (Figure 4), designated as CP43 and CP47, due to their apparent molecular weights.
These proteins are members of an extended protein family [4]. All members of this protein
family are characterized by six membrane-spanning α-helical domains (Figure 4). Further-
more, both CP43 and CP47 exhibit large loops at the lumenal side, which are essential for
the stabilization of a functional water oxidizing complex (WOC) [56]. CP43 apparently
binds 13 Chls a and ~3–5 β-carotenes, and CP47 binds 16 Chls a and ~4 β-carotenes. The
D1 and D2 polypeptides, each forming five transmembrane helices, provide the matrix for
noncovalent binding of all cofactors related to light induced charge separation and electron
transport in the proper RC of PSII. Thus, the complex CP43/D1/D2/CP47 has a total of
22 membrane-spanning helices (cf. Figure 4).
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Figure 4. Structure of the photosystem II core with the core-antenna complexes CP43 and CP47 from the thermophilic
cyanobacterium Thermosynecchococcus vulcanus at 1.9 Å resolution, PDB entry 3ARC [57]. (A) Top view with regard to the
thylakoid membrane plane, seen from the stromal side. (B) Side view with regard to the thylakoid membrane plane. The
protein backbone of CP43 (CP47) is shown in red (yellow); other protein subunits are shown in grey. Chlorophylls a are
shown in cyan, β-carotenes in orange, pheophytin in brown, heme groups in dark red and benzoquinones in grey. The
oxygen–manganese cluster of the water splitting apparatus is also shown (violet).

The situation is different in PSI, where both antenna pigments and all cofactors for
electron transport are bound to a heterodimer of the polypeptides PsaA and PsaB, each
having 11 membrane spanning helices (Figure 5). In PSI, the core antenna(e) can be
considered to be “fused” to the RC. A monomer of the PSI core binds 96 Chls a (and 22
carotenoids) [58]. Previously it was assumed that all the carotenoids in the cores of PSI and
PSII are β-carotenes; however, recent data indicate that other carotenoids (the xanthophylls
zeaxanthin, canthaxanthin, echinenone) also occur, possibly with specific functions [59].
Interestingly, carotenoids in PSI are close to clusters of Chls a which may constitute as
the so called “red Chls”, due to their redshifted absorption as compared to P700 (some of
which have been assigned to specific sites in the structure, see, e.g., [60]).
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Figure 5. Structure of photosystem I. (A): from the thermophilic cyanobacterium Thermosynecchococcus elongatus at 2.5 Å
resolution, PDB entry 1JB0 [61]. Top view with regard to the thylakoid membrane plane, seen from the stromal side. The
protein backbone is shown in grey. Chlorophylls a are shown in cyan, β-carotenes in orange and phylloquinones in grey.
(B): Structure of monomeric plant photosystem I from Pisum sativum with attached LHCI units (Lhca1–4, separated by color)
at 2.6 Å resolution, PDB entry 5L8R [32]. Top view with regard to the thylakoid membrane plane, seen from the stromal side.
Chlorophylls a and b are shown in cyan and green, respectively, β-carotenes in orange; the xanthophylls are color-coded as
in Figure 1.

2.3. Peridinin-Chlorophyll a-Protein (PCP)

Another peripheral light-harvesting complex—which is not even remotely evolution-
ary nor structurally related to the extended LHC superfamily—is the water-soluble (not
membrane integral) peridinin-Chl a-protein (PCP) found in dinoflagellates. PCP is unique
among all known antenna complexes: it uses peridinin (an unusual, highly modified
carotenoid) as its main light-harvesting pigment. An X-ray structure was obtained for PCP
from Amphidinium carterae [62] (Figure 6). Interestingly, PCP also forms trimers in vivo.
Each monomeric subunit of the PCP from Amphidinium carterae binds eight peridinins per
two Chls a [62].
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a are shown in cyan, peridinins in orange.
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Within each monomeric PCP subunit, pigments are organized in two clusters related
by a pseudo-twofold symmetry (Figure 6). Each of these clusters contains one Chl a
surrounded by four peridinins within Van der Waals distance. The closest distances
between peridinins and Chls a, as well as between peridinins in one cluster, are about
4 Å. The distance between the two Chls a in a PCP monomer is rather large (about 17 Å).
Thus, excitonic interactions between the two Chls in one subunit appear to be negligible
in PCP. However, pronounced peridinin–peridinin as well as peridinin–Chl a interactions
occur [63].

Amino acid sequences of the C- and N-terminal regions of the PCP apoprotein are
~56% identical [62]. Hence, it can be presumed that the site energies of the attached
chromophores (peridinins as well as Chls a) in the two regions may differ. The arrangement
of pigments in PCP renders the complex suitable to disentangle various pigment–pigment
interactions (cf. also [63,64]). Peridinins are assumed not to contribute to absorption in the
Chl a Qy region in PCP. However, the energetic location as well as the dipole strength of the
S0 → S1 (11Ag

− → 21Ag
−) transition of peridinin—in particular in its protein environment

in PCP- is still a matter of controversy [63,65–70].
Interpretation of the carotenoid photophysical properties requires an understanding of

the nature of the “optically dark” excited singlet state (S1), which has also been addressed in
a critical review covering in vitro and in vivo phenomena (and a discussion of the various
experimental approaches to detect them) [71].

Two sub-bands (related to the two Chls in one PCP monomer) have been partly
resolved in the Qy band at cryogenic temperatures [72,73]. However, both studies state
that the two Chls may be spectrally indistinguishable at RT.

Nonlinear polarization spectroscopy in the frequency domain (NLPF) was used to
disentangle pigment–pigment interactions in PCP at RT [63]. NLPF is a nonlinear four-
wave mixing laser-spectroscopic technique (thus relying on similar principles as 2DES, but
predating it) that also has a quadratic excitation intensity dependence. Saturation effects
can be used to detect minor spectral components. NLPF spectra showed a remarkable sub-
structure in the peridinin 1 1Bu

+ absorption region as well as direct evidence for energetic
nonequivalence of the two Chls that is not obvious in the RT absorption spectra. The NLPF
spectra also suggested that one of the Chls interacts with the “dark” S1 (21Ag

−)/ICT state
of certain peridinins, and/or the S1/ICT state must have a small, but non-negligible, transi-
tion dipole moment in the 650 and/or 670 nm region [63]. Single-molecule spectroscopy
studies with native and reconstituted PCP further corroborated these results [74].

A significant blueshift of the NLPF spectra of PCP at high pump beam intensities can
obviously not be explained by the abovementioned energetic nonequivalence of the Chls a.
An emerging sub-band centered at ~660 nm was assigned to a low-dipole moment S1/ICT
state of peridinin molecules with a blueshifted 11Bu

+ state (absorbing at ~495 nm).
Dinoflagellates also contain membrane-intrinsic antenna complexes belonging to

the LHC family, e.g., the Chl a-Chl c2-peridinin protein complex (apcPC). Currently, no
high-resolution structure of these complexes is available. However, these complexes are
presumed to be structurally and functionally, also in terms of photoprotection, similar to
LHCII [75].

Computational studies on peridinin and PCP also result in similar explanations for
EET mechanisms [76,77]. Namely, the relaxation of the allowed 11Bu

+ state of peridinin
into S1 (21Ag

−) is not trivial, likely resulting in a mixed state of at least partial ICT character.
Depending on the computational methods used, this mixed state may even be initially
populated via direct absorption close to the typical xanthophyll allowed state. From this
state, which apparently cannot be labeled as pure S2 or S1, Förster-type EET to the closest
Chls a may occur. These results, however, are very sensitive to the employed computational
approach, since the lowest excited state of carotenoids is very difficult to assess [78]. Still,
experimental evidence for the theoretically modelled type of mixed EET (with S2 preference)
exists [79].
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3. Antenna Systems of Photosynthetic Prokaryotes

Two fundamentally different types of photosynthetic prokaryotes can be distinguished:
anoxygenic phototrophic bacteria, containing just one photosystem of either PSI or PSII
type [80] and the oxygenic cyanobacteria. Cyanobacteria contain both PSI and PSII [81]
and are assumed to be the evolutionary precursors of chloroplasts in plants (and algae).

3.1. Purple Bacterial Antenna Complexes

Photosynthetic purple bacteria are among the best studied phototrophic organisms [82–85].
Much insight into the mechanisms of the primary reactions of photosynthesis has been
gained using purple bacteria as model systems (cf. [83,85]).

The core and peripheral antenna complexes (designated LH1 and LH2, respectively)
of purple bacteria are membrane-intrinsic oligomeric ring-shaped structures consisting
of small one-helix α and β subunits, forming heterodimers as basic building blocks [82].
These subunits bind (B)Chl a or b and carotenoids [85]. The LH1 ring directly surrounds the
RCs [86] (cf. Figure 7), while LH2 forms separate, adjacent entities. LH1 features just one
(B)Chl ring, giving rise to a single Qy absorption band at ~875 nm for (B)Chl a-containing
species or up to 1050 nm for (B)Chl b-containing ones.
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Figure 7. Structure of the purple-bacterial core-antenna reaction center complex (LH1-RC) from Rhodopseudomonas palustris at
4.8 Å resolution, PDB entry 1PYH [86]. (A) Top view with regard to the bacterial membrane plane, seen from the cytoplasm.
(B) Side view with regard to the bacterial membrane plane. The protein backbone is shown in grey. Bacteriochlorophyll a is
shown in light cyan, bacteriopheophytin a in brown.

The number of LH2 per RC may vary, and they are not found in all purple bacteria
under all conditions. The structural and functional properties have been described in great
detail, e.g., [82,84] and are thus considered only briefly in this review.

The (peripheral) antennae, LH2, comprise of two distinct circular (B)Chl a aggregates
bound to the apoproteins (Figure 8), termed (B)Chl-B800 and (B)Chl-B850, according to
their Qy absorption maxima (reviewed in, e.g., [64]).
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Figure 8. Structure of the purple-bacterial peripheral antenna complex (LH2) from Rhodoblastus acidophilus at 2.45 Å
resolution, PDB entry 2FKW [87]. (A) Top view with regard to the bacterial membrane plane, seen from the cytoplasm.
(B) Side view with regard to the bacterial membrane plane. The protein backbone is shown in grey. Bacteriochlorophyll a is
shown in cyan, rhodopin glucosides (carotenoids) in purple.

Nonlinear absorption spectroscopy and NLPF of LH2 from Rhodobacter sphaeroides has
suggested that the (B)Chls a of the B850 ring are strongly excitonically coupled and that
the excitation energy is delocalized over 16 ± 4 (B)Chl molecules [88,89]. Moreover, NLPF
also indicated that an upper excitonic component of (B)Chl-B850 is located in the B800
absorption region [90]. Notably, certain sulfur purple bacterial species (e.g., Allochromatium
minutissimum) form relatively stable LH2 complexes even in the absence of carotenoids.
The comparison of carotenoid-less LH2 with native carotenoid-containing LH2 can provide
unique insight into the functions of carotenoids in light harvesting [40,91–93].

Due to the highly symmetric arrangements of apoproteins and pigments in LH2, it
is a very attractive target for modeling, although the overall size of the system calls for
simplifications. A recent theoretical study was able to find specific properties of vibrational
modes to be involved in B800/B800 and B800/B850 EET processes [94]. It is also subject of
a series of publications concerning both the development and application of a polarizable
QM/MM approach, investigating the nature of the involved transitions and couplings and
the role of CT states [95–97].

3.2. Chlorosomes and Other Antenna System Components of Photosynthetic Green Bacteria

A very peculiar construction principle for LHCs is used in the chlorosomes—the pe-
ripheral antenna complexes of photosynthetic green sulfur bacteria and green filamentous
bacteria, which are not phylogenetically related. Chlorosomes are very large assemblies of
well-ordered rod-like aggregates of several 10.000 (B)Chl c, d or e molecules [98]. Only a
very few small proteins of yet unknown function are peripherally associated with chloro-
somes. Indeed, chlorosomes devoid of these proteins or artificial aggregates of (B)Chls
exhibit very similar structural arrangements and spectroscopic features [99].

Chlorosomes are connected to the RCs by the baseplate proteins [100] and the Fenna–
Matthews–Olson (FMO) protein [101–103]. The FMO protein was the first (B)Chl-binding
protein of which a high-resolution X-ray structure was obtained [101,103] (Figure 9). In-
triguingly, the FMO protein, too, forms trimers in vivo. FMO binds seven or eight (B)Chls
a per monomeric subunit [104].
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Figure 9. Structure of the water-soluble Fenna–Matthews–Olsen protein complex (FMO) from Prosthecochloris aestuarii at
1.3 Å resolution, PDB entry 3EOJ [104]. (A) Top view of the trimer with regard to the bacterial membrane plane, seen from
the cytoplasm/chlorosome. (B) Side view of a single monomer with regard to the bacterial membrane plane. The protein
backbone is shown in grey. Bacteriochlorophyll a is shown in blue.

Despite the chlorosomal baseplate being structurally highly ordered, the inner re-
gions of the chlorosome prevent proper atomistic modeling. Few theoretical studies are
available [105]. However, due to the well-known structure of FMO, detailed theoreti-
cal analyses were performed on the mode of EET in the FMO complex [106,107]. FMO
has actually turned into some test and validation systems for various computational
approaches [108–110]. These approaches are complemented by advanced experimental
techniques: recently, the EET flow through the entire photosynthetic apparatus of the green
sulfur bacterium Chlorobaculum tepidum was monitored using 2DES, integrating previous
observations with isolated antenna complexes into a holistic picture [111].

3.3. Cyanobacterial Antenna Systems

Cyanobacteria are generally considered to be to be the evolutionary ancestors of plant
and algal chloroplasts; however, they do not possess the LHC-type protein (complexes).
Cyanobacteria, however, contain functionally analogous peripheral antenna complexes.
These employ very different structural construction principles. Instead of membrane-
integral LHCs, water-soluble (membrane-extrinsic) phycobilisomes are the typical periph-
eral antenna systems of cyanobacteria and red algae and also occur in the appropriately
named, rather obscure clade cryptophyta [112–114]. Phycobilisomes are composed of mul-
tiple phycobiliproteins that form rod-like structures and contain phycobilin chromophores
(open-chain tetrapyrroles related to bile and phytochrome pigments). In contrast to Chls
and carotenoids in other LHCs, phycobilins are covalently bound (via thio-ether bonds) to
the respective apoproteins. Binding constrains the phycobilin chromophores in an extended
(linear) conformation and thus strongly modulates their photophysical properties, i.e., their
excited-state energies are shifted and absorption strengths and lifetimes are increased, in
particular those of the lowest singlet excited state. Hence, the photophysical properties
of phycobiliproteins are not only determined by the type of the bound chromophores—
phycoerythrobilin, phycocyanobilin or phycourobilin (possessing strong absorption bands
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between 450 and 670 nm)—but decisively so also by covalent binding to the apoproteins
(Figures 10 and 11).
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Certain cyanobacteria can adapt their light-harvesting antenna system to changing
ambient light qualities by altering the phycoerythrin to phycocyanin ratio—a phenomenon
which is referred to as complementary chromatic adaptation [116].

Interestingly, cyanobacteria possess membrane-spanning one and two α-helix-forming
proteins (so called high-light inducible proteins, HLIPs) [117–119], of not yet fully estab-
lished functions, with considerable sequence homology to the α-helical stretches of typical
plant LHC proteins (cf. Figures 2 and 3). Moreover, related one-helix proteins (OHPs) also
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occur in higher plants. OHPs seem to be involved in the assembly of the photosynthetic
apparatus of plants and protect Chls from photooxidation [120].

The HLIPs are assumed to be phylogenetic precursors of the LHC superfamily (in-
cluding plant early light-inducible proteins, ELIPs, and the four-helix PsbS protein, which
appears to be critically involved in photoprotection/NPQ, see below). All these LHC and
LHC-like proteins are likely to have evolved by multiple gene duplication, fusion and,
possibly, helix-deletion events [118,119]. At present it is not clear why the evolution of
typical LHCs did not occur in cyanobacteria and started only later in the evolution of
rhodophytes, algae and plants.

3.4. IsiA and Pcbs

Under stress conditions (in particular, iron deficiency, but also high-light and/or
oxidative stress, etc.), cyanobacteria accumulate an additional Chl a- (and ß-carotene-)
binding protein—iron stress induced protein A, IsiA [121,122]. The IsiA protein, also called
CP43′, is structurally (and evolutionary) related to the PSII core antenna complex CP43
(compare Figure 4). IsiA was shown to form octadecameric rings around trimeric PSI [123].
Aggregates of the IsiA protein have been proposed to quench excess excitation energy
under light stress conditions [124,125].

Antenna proteins homologous to CP43 (and isiA) are constitutionally expressed in
Oxychlorobacteria (previously called “Prochlorophytes”)—(divinyl-) Chl b-containing clades
of the cyanobacterial radiation. These proteins are consequently called “prochlorophyte
chlorophyll a/b-binding proteins” (Pcbs). Pcbs can—similar to IsiA—form octadecameric
rings around trimeric PSI [126]. Additionally, specific Pcbs were shown to act as PSII
peripheral antenna complexes [127].

4. In Vitro Reconstitution of LHCs

LHCII and other related antenna complexes can be reconstituted from their compo-
nents (apoproteins, pigments and lipids) in vitro. In vitro reconstitution studies have been
carried out with isolated native [128] or recombinant LHC apoproteins (e.g., [39,129,130])
and have provided a wealth of insight into the requirements for stable assembly of these
complexes as well as structure-function relationships. Experiments carried out with na-
tive and mutant (truncated) apoproteins, or with different compositions and ratios of
cofactors, have revealed the requirements of protein structural domains and cofactors that
are indispensable for the reconstitution of stable LHCII [39,131]. Proteins, Chls, specific
xanthophylls and specific lipids altogether are required for the stability of the LHCs in vitro
and in vivo. Lutein has been shown to be required for LHCII-trimer formation in vitro
and in vivo [130,132]. The lipid phosphatidyl glycerol (PG) is required for LHCII-trimer
formation as well [130]. The presence of another lipid, digalactosyl diacylglycerol (DGDG),
is essential for macroaggregate formation and, consequently, also for crystallization of
trimeric LHCII [130]. Pigments and apoproteins are degraded in vivo if one of these com-
ponents is missing. PG apparently also coordinates a Chl a molecule which is likely to be
involved in EET from LHCII to CP29. The same Chl a is also assumed to be participating in
a recently proposed excitation energy quenching mechanism [133,134].

5. Photodamage, Photoprotection and Regulation of Functional Antenna Size

The essential functional role of antenna systems is the optimal adaptation to quite
different environmental—mainly illumination—conditions that may vary, both in time
(seasonal, diurnal, even in fractions of seconds) and space (e.g., canopy region versus
ground level in a tropical rain forest or different depths in oceans and lakes).

A key parameter of the regulatory control is the adjustment of functional antenna size.
The response to variations of environmental—in particular, light—conditions comprises
different time scales: high-light stress triggers a short-term response (within seconds to few
minutes) leading to the alteration of light-harvesting efficiency in the PSII antenna system
via enhanced nonradiative dissipation. This mechanism apparently involves the action of
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the so-called xanthophyll cycle (this important photoprotective mechanism is discussed
in more detail below). The so-called state 1-state 2 transitions regulate the balance of
excitation energy distribution between both photosystems via lateral diffusion of LHCII
(in particular, under low light conditions, cf., e.g., [135–137]). State 1-state 2 transitions
comprise reversible redox-regulated and phosphorylation/dephosphorylation mediated
dissociation/association of a mobile fraction of LHCII with the cores of both photosystems,
occurring on the order of about 10 min [135]. State transitions tend to be suppressed
under high-light conditions in plants [138]. State transitions and other antenna-related
regulatory phenomena can be readily measured, even in intact plants and algae, using
Chl fluorescence techniques, including pulse-amplitude-modulated (PAM) fluorometric
technology [135,138].

A comparatively slow adaptation to varying light conditions is achieved by pigment
and/or protein synthesis and degradation taking place on the order of several hours
to days.

Excess light energy input often results in a phenomenon referred to as photoinhibition,
eventually leading to photodamage and destruction of the photosynthetic apparatus [139].
Excess of excited Chl singlet states, which are not utilized in photochemistry, gives rise
to long-lived excited Chl triplet states (3Chl*), via intersystem crossing (ISC). 3Chl* has
the potential to generate free radicals by electron or hydrogen transfer (type I mechanism)
or to sensitize the generation of highly reactive singlet oxygen via the interaction with
O2 in its triplet ground state (type II mechanism) [140]. These photosensitized processes
will become harmful when (photo)protective mechanisms cannot sufficiently defuse the
reactive pigment and oxygen species.

Photosynthesizing organisms contain carotenoids as essential constituents of LHCs
providing effective photoprotection: (i) carotenoids in Van der Waals contact with Chls are
very efficient quenchers of 3Chl*; in LHCII, the rate of 3Chl* quenching by carotenoids is
much faster that the formation via ISC, see, e.g., [75,141], and (ii) carotenoids can efficiently
defuse singlet oxygen or detoxify other reactive species [12].

In addition to the general protection by the “carotenoid triplet valve” [142], oxygenic
photosynthetic organisms have evolved highly efficient mechanisms to alleviate the dele-
terious effects of excess excitation energy input: the excess population of 1Chl* singlets
is safely and effectively dissipated nonradiatively as heat by a much studied, but still
not fully elucidated, process, which can be assessed as nonphotochemical quenching of
Chl fluorescence (NPQ). In plants and algae, the major component of NPQ is the rapidly
inducible and relaxing “energy dependent quenching” (qE)—connected to proton translo-
cation into the thylakoid lumen (and resulting “acidification”). The qE mechanism can
effectively dissipate excited singlet states of Chl a (and, thus, prevent 3Chl* formation).
The qE mechanism is apparently a complex cooperative phenomenon, which requires
several—interdependent—factors. Decisive, however, is the drop of the lumenal pH below
~6, which triggers the following sequence of events: certain amino acid residues in LHCs
and in the PsbS protein are protonated, and the respective proteins undergo conformational
changes. Violaxanthin (being peripherally bound to LHCII, see Figure 2) is released from
its binding pocket. A lumen-localized enzyme, violaxanthin-deepoxidase, is activated
by the lowered pH and attaches to the membrane. Violaxanthin is de-epoxidized in two
steps (via antheraxanthin, the monoepoxy intermediate) to zeaxanthin [143]. Subsequently,
zeaxanthin is assumed to reassociate with LHCs. Upon release of the stress conditions,
zeaxanthin is again (via antheraxanthin) enzymatically epoxidized to violaxanthin. Hence,
the dark- or low-light reversible process is called the “xanthophyll cycle”.

Numerous studies have shown that qE is intimately correlated with zeaxanthin accu-
mulation [144]. However, the actual molecular mechanism of the xanthophyll-dependent
dissipation of excess energy remains elusive and is fiercely debated. One model purports
that the lowest-lying singlet state (S1) of violaxanthin (with nine conjugated double bonds
determining the energy of the lowest electron transition in polyenes) is above the S1 state
of Chl a, thus rendering violaxanthin an effective donor of excitation energy to Chl a [145].
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On the other hand, the transition to the S1 state of zeaxanthin (having 11 double bonds)
is assumed to be energetically well below that of S1 of Chl a so that the quenching of this
excited state may be feasible. This model is usually referred to as the “molecular gear shift”
model [145]. Computationally, it is unclear whether gas phase models suffice for predicting
the actual energetic interactions between Chl/xanthophyll chromophore pairs [146], and
the problem is also methodologically challenging [147].

Furthermore, a possible quenching mechanism, based on the xanthophyll exchange,
was computationally found; however, that mechanism would only remove excess energy
from the Chl Soret band before internal conversion to the Q band [148].

Another model proposes that quenching is brought about by structural changes
and/or the aggregation of LHCs, with zeaxanthin (in contrast to violaxanthin) giving rise
to enhanced aggregation [149]. The considerations of the mechanism of NPQ become even
more complicated by the finding that the above mentioned PsbS protein appears also to be
critically involved [150]. It has been shown that mutants of Arabidopsis thaliana lacking the
PsbS protein exhibit a severely impaired capacity for qE [150]. The PsbS protein, although
genes of it are found in green algae, is apparently not expressed in Chlamydomonas.
PsbS-like function(s) in NPQ in certain green algae were reported to be exerted by LHCSR,
another member of the LHC protein family [151]. The possible interaction of PsbS and
CP29 was also explored computationally [152]. Combined experimental and computational
models propose PsbS to be primarily conveying the luminal acidification signal to a set of
amino acids on the stromal side of LHCII. Those amino acids subsequently change their
protonation state, giving rise to charge transfer (CT) states in nearby Chls, which in turn
allow for radiation-less deactivation of excess singlet excitation. This mechanism would
allow LHCII to remain relatively rigid and has the advantage that no specific quenched
conformation of the protein structure (which so far eluded all attempts of characterization)
would be required [133,134].

An energetic shift of CT states of (strongly) interacting Chls due to a polarity change
of the environment induced by structural changes was suggested [153]. CT states seem to
play important, not yet fully understood roles in photosynthetic EET processes [154,155].

Another model has been put forward which proposes Chl-to-carotenoid CT with
carotenoid radical formation as the mechanistic basis of excess energy dissipation, also
involving participation of the PsbS protein [156,157].

Yet, another proposal assumes that altered excitonic interactions between Chls and
certain xanthophylls are responsible for the qE mechanism [158]. These experiments
were based on the combined study of one- and two-photon excitation in the spectral
region of the presumed “dark” S1 states of carotenoids/xanthophylls. However, recent
two-photon excitation studies of isolated pigments and LHCs indicate predominant two-
photon absorption of Chls in the respective spectral region [159]. Hence, a re-evaluation of
previously obtained data appears to be required. This endeavor is currently underway in
our labs [160,161]. However, data obtained with NLPF comparing trimeric and (slightly)
aggregated LHCII seemed to corroborate a change of Chl-xanthophyll interactions to be
the origin of NPQ [43].

Notwithstanding all these conflicting mechanistic models, acidification of the thy-
lakoid lumen, operation of the xanthophyll cycle, an intact PSII antenna system and, possi-
bly, the PsbS protein are all well-established factors in short-term plant photoprotection.

Cyanobacteria do not contain plant-type LHCs. In these organisms another type of
NPQ has been developed. Excess excitation energy input at the level of phycobilisomes
is dissipated in in cyanobacteria in a blue-green light-activated process by the orange
carotenoid protein, OCP [61,162], reviewed by Kirilovsky and Kerfeld [163]. OCP is a water
soluble ~35 kDa protein, that binds a single ketocarotenoid, e.g., hydroxyechinenone [61].
The blue-green light-induced action of OCP can be monitored as NPQ of phycobilisome
fluorescence. The molecular mechanism seems to be a blue-green light-induced confor-
mational change of the OCP-bound carotenoid, reflected in a color change from orange
to red (RCP), which is dark reversible. The underlying structural change appears to be
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a translocation of the carotenoid between the C- and N-terminal domains of the protein
and a resultant a change of pigment–protein interactions [164,165]. OCP is thus another
example of how carotenoids can be used as structural elements with mechanical function.

In cyanobacteria, full restoration of fluorescence of PBS and, hence, efficient light-
harvesting is dependent on the recently discovered fluorescence recovery protein, FRP [166].

Conclusions: It is clear that light-harvesting antenna complexes not only serve to enlarge
the absorption cross sections of the respective photochemical RCs (delivering excitation
energy towards them) but are also vitally important in short- and long-term adaptation
and regulation of the energy-transforming processes in the photosynthetic apparatus, in re-
sponse to external and internal conditions. Thus, the structural diversity in photosynthetic
antenna “designs” becomes conceivable.

However, an enigma remains: why are so many light-harvesting complexes trimeric
(or multiples thereof)? Given the structural, genetic, pigment-binding and functional diver-
sity of LHCs, as presented above, it appears that the trimeric construction principle may
be a result of the environment in which these complexes are located in or are attached to,
namely, two-dimensional (2D) membrane systems. As discussed above, the fast regulation
of light harvesting seems to be crucial to ensure long-term integrity of the photosynthetic
apparatus. Hence, the closest possible spatial proximity of the regulatory factors and the
RCs is necessary.

The arrangement to form a specific multimer of order N will require a specific angle of
2π/N between the excitation energy donor and acceptor sites of each monomeric complex
for optimal EET, which is unlikely to appear randomly. Short chains (such as dimers)
thus may be prone to tilt-over. Longer chains may have enough flexibility to form rings
of any order of magnitude (such as LH1/LH2; Figures 7 and 8). However, trimers are
the smallest imaginable “rings”. The structural polarity of a native membrane obviously
does not allow for the complexes to turn “upside down”, in particular if RCs are involved,
and retain functionality. Therefore, trimers may simply be the minimal solution to form
modular aggregates that allow for (i) stable spatial orientation and (ii) regulatory control of
multiple subunits by membrane-related parameters, e.g., ∆pH across the membrane. This
may also hold for so-called “soluble” (i.e., non-membrane integral) antenna complexes,
such as FMO. FMO is actually tightly appressed to the membrane-intrinsic RCs by the
chlorosomes/baseplate proteins in green bacteria.

Another still not fully understood issue is the existence of so-called “red” antenna
states (antenna Chl states at longer wavelengths than the respective RCs) which would
require up-hill EET to feed the RCs. The issue was recently discussed (but not solved) by a
comprehensive review [167].

Based mainly on 2DES spectroscopic results, obtained with a variety of LHCs (as
well as RCs), it has been proposed that photosynthetic EET and charge separation may be
driven by coherent quantum effects (subsequently dubbed “quantum biology”) [168]. This
notion and the interpretation of 2DES data with regard to light harvesting are currently
fiercely debated [169] and shall be the topic of another paper.

6. Highlights

1. We review the wide variety of naturally occurring photosynthetic light-harvesting
complexes (LHCs) from a structure-function relationship perspective.

2. A common feature of natural light-harnessing systems is a trimeric (or multiples
thereof) organization.

3. We provide a simple explanation of this—so far unaccounted for—phenomenon.
4. Natural light-harnessing systems can be used as inspirations for biomimetic assem-

blies and/or attached to biohybrid devices for sustainable solar energy conversion.
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