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Background Influenza A viruses have an envelope made of a lipid

bilayer and two surface glycoproteins, the hemagglutinin and the

neuraminidase. The structure of the virus is directly dependent on

the genetic makeup of the viral genome except the glycosylation

moieties and the composition of the lipid bilayer. They both depend

on the host cell and are in direct contact with the environment, such

as air or water. Virus survival is important for virus transmission

from contaminated waters in the case of wild aquatic birds or from

contaminated surface or air for humans.

Objective The objective of this study was to check whether the

origin species of the host cell has an influence on influenza A virus

survival.

Method The persistence in water at 35°C of viruses grown on

either mammalian cells or avian cells and belonging to two different

subtypes H1N1 and H5N1 was compared.

Results Both H5N1 and H1N1 viruses remained infectious for

periods of time as long as 19–25 days, respectively. However, within

the same subtype, viruses grown on mammalian cells were more

stable in water at 35°C than their counterparts grown on avian cells,

even for viruses sharing the same genetic background.

Conclusions This difference in virus stability outside the host is

probably connected to the nature of the lipid bilayer taken from the

cell or to the carbohydrate side chains of the virus surface

glycoproteins. Moreover, the long-lasting survival time might have a

critical role in the ecology of influenza viruses, especially for avian

viruses.
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Introduction

Influenza A viruses are major pathogens for an array of avian

and mammalian species, including humans. Indeed, wild

aquatic birds are the reservoir of the widest diversity of

influenza A viruses, which can undergo genetic events

associated with species barrier crossing. The role of the

environment in the ecology of avian influenza viruses is not

well understood. These segmented single-stranded negative

RNA viruses have an envelope and viral proteins including

two surface glycoproteins, the hemagglutinin (HA) and the

neuraminidase (NA).1 The structure of the virus is directly

dependent on the genetic makeup of the viral genome except

the glycosylation moieties of the HA and the NA, and the

composition of the lipid bilayer. They both depend on the

host cell. Species-specific differences in the structures of

oligosaccharides of glycoproteins have been well docu-

mented.2 Lipid composition varies with species, age, and

physiological status of the cells.3 Glycerophospholipids,

sphingolipids, and cholesterol are major components of the

cell lipid bilayer of vertebrates.4,5 The sphingolipids, formed

of ceramide, sphingomyelin, and glycosphingolipids (GSLs),

are involved in many biologically important phenomena,

involving cell polarity, membrane dynamics and cell–cell and
cell–ligand interactions.6 The content and pattern of gan-

gliosides, derived from GSLs, of several species and different

organs demonstrated variability among species.7–12 For

example, GM3 ganglioside was found as a major component

in ten animal species, such as humans, chicken, dog, monkey,

and rabbit, but there were significant variations in the
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distribution of minor gangliosides.10 Moreover, differences

may exist among tissues in a specific species.8 The choles-

terol, an essential component of the lipid bilayer, is

integrated between the phospholipids. Through the interac-

tion with the phospholipids and the sphingolipids, it

modifies the physical, structural, and dynamic properties of

membranes.13 Thus, the fluidity of the bilayer is influenced

by the lipid and carbohydrate contents of the plasma

membrane. Influenza viruses utilize lipid raft domains in

the plasma membrane of infected cells as sites of virus

assembly and budding. Lipid rafts, selected by influenza

viruses during budding from plasma membrane, are variably

sized and rich in cholesterol and sphingolipids.14,15 HA and

NA are intrinsically associated with lipid raft domains,

whereas the M2 protein is excluded from these domains.16 In

virions, lipid bilayers are in direct contact with the environ-

ment, such as air or water. We have shown previously that

the 2009 H1N1 influenza virus can persist outside the host

for as long as 3 years, depending on the tested parameters.

Furthermore, our experiments suggested that external struc-

tures, more directly in contact with the environment than

genomic RNA, are mostly involved in virus loss of infectiv-

ity.17 Until now, only one study described a molecular

determinant of resistance of influenza A viruses in natural

reservoirs and systems.18 To verify whether the origin species

of the host cell has an influence on influenza A virus survival,

we compared the persistence in water of viruses grown on

either mammalian cells or avian cells and belonging to two

different subtypes H1N1 and H5N1.

Materials and methods

Cells and viruses
Madin Darby canine kidney cells were maintained in

minimum essential medium (MEM 1X; GIBCO, Invitrogen,

Carlsbad, CA, USA), supplemented with 10% fetal calf serum

(FCS), antibiotics (0�1 units penicillin, 0�1 lg streptomycin/

ml, GIBCO, Invitrogen), and tricine (10 mM; Sigma, Saint

Louis, MO, USA) at 37°C in humidified 5% CO2 incubator.

Coturnix coturnix japonica fibroblasts (QT6) were grown in

Ham-F10 medium (F10 1X; Invitrogen) supplemented with

10% heat-inactivated FCS, 1% heat-inactivated chicken

serum, 0�1 units penicillin, 0�1 lg/ml streptomycin, and

2% tryptose phosphate broth (Eurobio, Les Ulis, France).

Seasonal influenza A/New Caledonia/20/99 (H1N1) and

influenza A/Hong Kong/156/97 (H5N1) strains were grown

on either MDCK cells or QT6 cells, after propagation in

embryonated chicken eggs followed by serial passages on

MDCK cells (passage history described in Table 1). The fifth-

and sixth-passage viral stocks were prepared as follows:

monolayers of MDCK or QT6 cells in 75-cm2 tissue culture

flasks were washed twice with 1X Dulbecco’s phosphate-

buffered saline (DPBS; GIBCO, Invitrogen) and then inoc-

ulated with 800 ll of initial virus suspension diluted in FCS-

free MEM or FCS-free F10 respectively to a multiplicity of

infection (m.o.i) of 0�01. After 1 hour adsorption at 35°C in

5% CO2, the inoculum was removed and cells washed twice

with 1X DPBS. FCS-free MEM containing 2 lg/ml trypsin-

TPCK or FCS-free F10 medium containing 0�4 lg/ml was

added to MDCK and QT6 cells, respectively. The cell

supernatants were collected 3 days post-infection and cen-

trifuged to remove cell debris. Progeny viruses were stocked

at �80°C.

Titration by endpoint method
Viral infectivity was estimated using endpoint titration, and

tissue culture infectious dose 50 per ml (TCID50 per ml)

value was calculated according to Reed and Muench’s

method.19 For endpoint titration, 3�3 9 104 MDCK cells

were seeded on each well of a microtiter 96-well plate. After

24–36 hours, subconfluent monolayers of MDCK cells were

washed twice with 1X DPBS, and FCS-free medium was

added and left until infection. Cells were infected as

described previously,17 except eight-row replicates instead

of four were performed for each sample. Examination for

cytopathic effects was performed with light microscopy. The

minimal detectable limit of this assay was 101�57 TCID50 per

ml.

The m.o.i was determined in plaque-forming unit (PFU)/

ml based on the following equation: (log titer of TCID50 per

ml) * 0�7 = titer PFU/ml.20

Real-time RT-PCR
Viral RNAs were extracted using the NucleoSpin 96 Virus kit

(Macherey-Nagel, Duren, Germany) according to the man-

ufacturer’s instructions. Extracted vRNAs were kept at

�80°C for long-term storage and at �20°C for short-term

storage. qRT-PCR targeting the M gene was carried out using

primers and probes developed by the French National

Influenza Reference Centers with a Light Cycler 480 instru-

ment (Roche, Boulogne-Billancourt, France) and a Super-

Script III Platinum OneStep RT-PCR kit (Invitrogen). For

the HA segment, two qRT-PCRs using TTCCTTAA

TGTGCCAGAATGGTCTT and GGTTTGTACTGCTCAA-

TAGGTGTTTC as primers for the beginning of the gene

(120 pb) and GAGAGGAAATAAGTGGAGTAAAATTGGA

and AAGATAGACCAGCTACCATGATTGC as primers for

the end of the gene (110 pb) were performed. Both reactions

were performed using the LightCycler� RNA Amplification

Kit SYBR Green (Roche) in a 20-ll reaction mix [4 ll of
LightCycler RT-PCR reaction mix SYBR Green I, 2�4 ll
MgCl2, 2 ll resolution solution, 0�3 ll of primer mix (each

0�375 lM final) for the qRT-PCR amplifying the beginning of

the HA gene or 0�4 ll primer mix (each 0�5 lM final) for the

qRT-PCR amplifying the end of the gene, 0�4 ll LightCycler
RT-PCR enzyme mix, 5 ll of template RNA] with a
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LightCycler� 480 Instrument. The final mix was submitted to

the following steps: reverse transcription (55°C for 30 min-

utes), denaturation (95°C for 30 seconds), and 50 cycles of

amplification (95°C for 5 seconds, 50°C or 53°C for qRT-

PCR amplifying the beginning or the end of the gene,

respectively, for 30 seconds, and 72°C for 7 seconds).

Endpoint RT-PCR
RT-PCR targeting the M and HA genes was performed in

two steps. Reverse transcription was carried out using

SuperScript III First-Strand kit (Invitrogen) and primer

annealing in the untranslated genomic region. PCR was

performed with MPBio Taq CORE kit (MP Bio, Santa Ana,

CA, USA) or PFU Turbo PCR kit (Agilent, Santa Clara, CA,

USA). Sequences of the primers and probes used in the qRT-

PCR and the two-step endpoint RT-PCR are the same as our

precedent work for the M gene.17 Forward AAATGGA-

GAAAACAGTGCTT and reverse CAAATTCTGCATTG

TAACGA primers were used for the amplification of the

HA gene.

Experimental procedure for trials in water
The kinetics of viral survival in water was carried out as

previously described,17 except for the following: three

aliquots instead of two aliquots and eight-row instead of

four-row replicate per aliquot were made for parallel

titration.

RNase treatment
H1N1 + M and H1N1 + Q strains were either exposed to a

temperature of 35°C for 25 days or not, and the viral

infectivity of each strain was assessed by endpoint titration

(as described above). The viral strains were then treated with

RNaseA/T1 Mix (Fermentas, Thermo Scientific, Waltham,

MA, USA) for 25 minutes at 37°C. Comparison of the means

was carried out by the paired Student’s t-test.

H1N1 + M and H1N1 + Q strains were also treated

with a 1�5% Triton X-100 non-ionic aqueous solution

(Roche) for 25 minutes at room temperature before RNase

treatment.

Results

Virus survival in water
The persistence in water of A/New Caledonia/20/99 (H1N1)

and A/Hong Kong/156/97 (H5N1) derived from either

mammalian Madin Darby canine kidney (MDCK;

H1N1 + M or H5N1 + M) or avian (QT6; H1N1 + Q or

H5N1 + Q) cells was evaluated at 35°C. Viral suspensions
were first diluted 1:10 in distilled water and left for

30 minutes at the studied temperature. This short period

of 30 minutes was arbitrarily chosen to determine the

infectivity loss due to the initial change of environmental

context for the virus. Microtiter endpoint titration was

performed on MDCK cells as described in the ‘Materials and

methods’ section, and the corresponding titer was called T0.

There was no drastic loss of infectivity after 30 minutes for

H5N1 and H1N1 viruses (1�80, 1�29, 1�21, and 0�95 log10 for

H5N1 + M, H5N1 + Q, H1N1 + M, and H1N1 + Q,

respectively) (data not shown). H1N1 and H5N1 strains

were then left in distilled water for 35 days at 35°C. Aliquots
were periodically removed to perform immediate endpoint

titrations and determine TCID50 per ml values. Kinetics is

represented in Figure 1, and TCID50 values corresponded to

the mean values of the titers made in parallel for the three

aliquots of infected water samples. For each condition,

kinetics starts from T0. Linear regressions calculated from

experimental values were obtained and used to determine the

duration beyond which there was no more infectious virus,

as previously described; 17 this duration corresponds with the

x-intercept value (see Table 2). At 35°C, seasonal H1N1 virus

strain propagated in MDCK cells (H1N1 + M) persisted for

25 days compared with 7 days when the same strain was

propagated on QT6 cells (H1N1 + Q) (Figure 1A and

Table 2). For the H5N1 strain, persistence estimates were

19 and 5 days when the virus was grown on MDCK

(H5N1 + M) and QT6 (H5N1 + Q) cells, respectively

(Figure 1B and Table 2). Because initial T0 was different

for each growing condition (H1N1 + M, H1N1 + Q,

H5N1 + M, and H5N1 + Q), we determined virucidy from

the slopes calculated from linear regression. It corresponded

Table 1. Passage history of H1N1 and H5N1 viruses. Both viruses were passaged on embryonated chicken eggs (w) and next five times on cell culture

(c), either on Madin Darby canine kidney (MDCK) cells or on QT6 cells. (*) Virus preparations used in survival kinetics

Passage history

Initial titer (TCID50 per ml)1st w 2nd wc1 3rd wc2 4th wc3 5th wc4 6th wc5*

Virus designation

H1N1 + M Egg MDCK MDCK MDCK MDCK MDCK 108�1

H1N1 + Q Egg MDCK MDCK MDCK MDCK QT6 105�44

H5N1 + M Egg MDCK MDCK MDCK MDCK MDCK 108�27

H5N1 + Q Egg MDCK MDCK MDCK QT6 QT6 106�58
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to a reduction of 4 log10 of the titer according to the

European Standards (NF EN 14476) (Table 2). No major

differences in estimated virucidy between H1N1 and H5N1

strains were observed when both strains were amplified on

the same cellular type: 6 versus 4 days for the H1N1 and

H5N1 viruses grown on avian cells, respectively, and 15

versus 12 days for the H1N1 and H5N1 viruses grown on

mammalian cells, respectively (Table 2). However, within a

subtype, viruses with a mammalian lipid bilayer (H1N1 + M

or H5N1 + M) survived longer than viruses with an avian

lipid bilayer (H1N1 + Q or H5N1 + Q) at 35°C.
Persistence of multiple viral stocks, with different passage

history, was also evaluated (Figure S1), and similar results

were obtained, showing that differences persisted across

trials.

Quantification of viral genome
From each aliquot sample used to estimate TCID50 per ml

values, viral RNA (vRNA) was also extracted to quantify

genome copy numbers. Real-time RT-PCR targeting a small

fragment (154 bp) of the M gene was performed as described

in the ‘Materials andmethods’ section. In Table 3, the genome

copy number per ml for each experimental condition is listed.

From d0 to d35, the RNA concentration (log10 copies/ml)

varied between 10�36 log10 and 9�12 log10 for H1N1 + M,

10�84 log10 and 7�61 log10 for H1N1 + Q, 10�57 log10 and 9�3
log10 for H5N1 + M, and 10�35 log10 and 9�47 log10 for

H5N1 + Q. RNA concentration was quite stable over time,

whereas the infectivity decreased. In the sameway, no variation

in RNA concentration was obtained from real-time RT-PCR

targeting two small regions of the HA segment (Table S1).

Integrity of the viral genome
As the quantitative RT-PCR (qRT-PCR) assay targeted very

small part of viral nucleic acid, genome integrity was also

evaluated by using primers targeting the whole M segment.

The 1027-bp RT-PCR product was detected on gel electro-

phoresis until day 35 for H1N1 and H5N1 viruses, grown on

either MDCK cells or QT6 cells (Figure 2A–D). An endpoint

RT-PCR targeting the whole HA gene was also performed,

and the 1701-bp product could be detected until day 22 for

H5N1 + M viruses and until day 7 for H5N1 + Q viruses

(Figure 2E,F). These results suggested that a significant part

of the viral genome was not degraded and remained intact in

virus particles, even when infectious virus particles were not

detected. Serial dilutions of the extracted RNA at day 0 and

day 22 were carried out prior to RT-PCR targeting the full-

length M or HA segments, for the H5N1 + M samples. Both

genes were detected until day 22, even at a dilution of 1:100

Table 2. Persistence times in water at 35°C. Slope (a), y-intercept (b), and x-intercept values of the linear regression straight line (log10 y = ax + b)

calculated from experimental values. Virucidy corresponded to the duration necessary to obtain a fourfold reduction in the titer in log10

Strain Temperature R2 Lipid bilayer origin

Slope y-intercept x-intercept Virucidy

(a) (b) (days) (days)

A/NewCaledonia/20/99 (H1N1) 35°C 0�97 Mammalian �0�26 6�55 25 [23; 27] 15 [14; 16]

0�89 Avian �0�62 4�4 7 [6; 8] 6 [6; 7]

A/Hongkong/156/97 (H5N1) 35°C 0�96 Mammalian �0�34 6�52 19 [18; 21] 12 [11; 13]

0�91 Avian �1�02 5�15 5 [4; 6] 4 [3; 5]
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Figure 1. Virus survival in water at 35°C. Viral persistence of A/New

Caledonia/20/99 (H1N1) (A) and A/Hong Kong/156/97 (H5N1) (B) grown

on either Madin Darby canine kidney (—) or QT6 (����) cells in water at

35°C. TCID50 values corresponded with the mean values of the titers

made in parallel from the three aliquots of water samples. Error bars

represent the standard error of the mean.
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for the HA gene (data not shown). These data reinforced our

previous results suggesting that external viral structures more

directly in contact with the medium than genomic RNA are

mostly involved in loss of virus infectivity.17

Integrity of the lipid bilayer
To explore that the loss of infectivitywas not due to amere viral

burst during survival kinetics, water samples or viral stocks

containing virus particles were submitted to RNase treatment

in order to eliminate all non-enveloped genomes. First, the

H1N1 + M and H1N1 + Q strains were submitted or not to a

temperature of 35°C for 25 days, and endpoint titration was

performed (data not shown). Each strain was then treated with

different quantities of a mixture of RNase A and RNase T1 (0,

25, or 100 lg). After RNase treatment, the RNA concentration

was quantified by the M gene qRT-PCR. For each quantity of

RNase, RNA concentration was similar, whether the virus was

exposed to 35°Cduring 25 days or not (allP-valueswere≥0�4).

However, differences were observed with genomes from QT6-

derived viruses, which seem to be more sensitive to RNase

treatment, when compared with the viruses grown on MDCK

cells. After a 35°C kinetic and a 25 lg RNase treatment, RNA

concentration decreased by 2 9 101-fold for H1N1 + Q

versus 5 9 10�1-fold for H1N1 + M (Figure 3A,B). The

whole M segment was detected for both strains under each

condition, showing that most part of the genome was

protected (Figure 3C). These results were validated by an

experiment inwhich the lipid bilayerwas disruptedwith a non-

ionic detergent prior to RNase treatment. By exposing vRNA

to RNase treatment, RNA concentration decreased by

1�8 9 103- and 5�5 9 104-fold for H1N1 + Q and

H1N1 + M, respectively (Figure 3D). These results showed

that a large part of the viral particles was not exploded at the

end of the survival kinetics, emphasizing the fact that external

viral structures are mostly involved in the loss of infectivity.

Discussion

In this study, both seasonal H1N1 and H5N1 viruses

remained infectious for periods of time as long as 1–3 weeks

at a temperature as high as 35°C. These data are in line with

our previous study about seasonal and pandemic H1N1

viruses. The stability of viral genome concentration and the

existence of full-length genomic segments in the course of

time confirmed previous data with different influenza strains,

suggesting that internal structures are mostly not involved in

the loss of virus infectivity.17 We showed that within the

same subtype, human-origin viruses grown on mammalian

cells were more stable than their counterparts grown on

avian cells in water at 35°C. By the same way, a study

highlighted that two isolates of an H2N3 avian-origin virus

are more stable when grown on MDCK cells than in

Table 3. M genomic segment concentrations. NA: not available. M genomic segment concentrations expressed in log(copy number per ml) obtained

for H1N1 and H5N1 virus strains. Concentrations were determined at different days (designated as dx, x being the number of the day). RNA

concentration at d0 was obtained after the viral suspension was left for 30 minutes in water at 35°C. All experiments were performed in triplicate

Virus designation d0 d1 d2 d4 d7 d8 d11 d15 d18 d22 d35

H1N1 + M 10�37 10�17 10�28 10�02 9�76 9�89 9�69 9�63 9�45 9�44 9�23
10�33 10�12 10�27 10�19 9�77 9�69 9�60 9�76 9�58 9�28 9�07
10�39 10�19 10�09 9�95 9�72 9�75 9�80 9�59 9�53 9�42 9�05

H1N1 + Q 10�93 9�57 10�11 9�63 9�73 9�39 9�47 9�04 9�01 8�71 7�46
10�76 9�83 9�92 9�67 9�52 9�42 9�10 8�94 8�79 8�67 7�46
10�82 9�56 9�91 9�76 9�46 9�37 9�12 8�92 8�80 8�68 7�90

H5N1 + M 9�70 10�24 7�18 9�66 5�72 9�64 9�50 9�19 9�00 8�71 9�53
11�06 11�16 6�00 9�84 9�71 10�05 9�52 9�32 9�04 8�99 9�24
10�96 NA 10�55 10�41 NA 9�61 9�45 9�26 6�09 8�96 9�13

H5N1 + Q 10�61 10�56 10�58 10�12 9�99 9�99 9�86 9�84 9�95 9�55 8�51
13�34 13�77 13�47 12�79 13�10 12�67 12�83 12�71 12�84 12�79 11�47
10�11 10�38 10�37 10�04 9�99 9�82 9�89 9�77 9�96 9�29 8�44

0 8 15 35
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B
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D

0 2 7 15 22

0 7 15 22

E

F

Figure 2. Endpoint RT-PCR targeting the whole M and hemagglutinin

(HA) segments. RT-PCR targeting the M gene was performed for H1N1 (A,

B) andH5N1 (C, D) viruses derived fromMadinDarby canine kidney (MDCK)

cells (A, C) or QT6 cells (B, D). RT-PCR targeting the HA genewas carried out

on H5N1 viruses derived fromMDCK cells (E) or QT6 cells (F). The indicated

numbers corresponded to the time points of the kinetics (in days).
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embryonated chicken eggs.21 Whole M genomic segment was

detected even after treatment of viruses with RNase,

suggesting that the detected genome was enveloped and that

most of the viral particles were not exploded during the

course of kinetics. Furthermore, in electron microscopy

studies, no obvious differences, in term of integrity of the

lipid bilayer (shape, diameter, protein density), were detected

between influenza virus particles whether or not they were

exposed to a given temperature for an extended period of

time (data not shown).

Taken together, our data point out the role in virus survival

outside the host of important external structures of the virions,

which are not encoded by the viral genome: the lipid bilayer

and the glycosylation moieties branched on the HA and the

NA. Indeed, lipid bilayers, as well as the carbohydrate side

chains of glycoproteins, are variable from species to species.2,7–

10,22 Lipid membranes of MDCK cells were previously studied

with differences observed between the apical and the basal

membranes.14,23 A recent lipidomic analysis studying the lipid

composition of the apical membrane ofMDCK cells and of the

envelope of influenza A viruses showed that the proportion of

cholesterol and sphingolipids is enriched in the envelope of

virions.24 The lipid composition of QT6 cells has not been

described yet, but some studies on interspecies lipid analysis of

various cells types and organs suggested differences between

mammalian and avian cell bilayers.25,26 To point out these

differences, the lipidomes of QT6 and MDCK cell bilayers are

currently under analysis by gas chromatography–flame ioni-
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Figure 3. Evaluation of the lipid bilayer integrity. M genomic segment concentrations were determined for H1N1 viruses grown on QT6 (H1N1 + Q) (A)

or Madin Darby canine kidney (H1N1 + M) cells (B) treated or not by RNase. H1N1 viruses were directly treated by RNase (■: black bars) or put in water at

35°C for 25 days (☐: white bars). (C) Endpoint RT-PCR was performed for H1N1 + Q and H1N1 + M viruses subjected to a temperature of 35°C for

25 days and then treated with RNase. (D) M genomic segment concentrations were determined for H1N1 + Q and H1N1 + M viruses treated by Triton

X-100 1�5% prior to the RNase. Error bars corresponded to standard deviations (n = 3).
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zation detector. Budding of influenza particles occurs at the

apical membrane of the infected cells, in specialized lipid

domains called rafts to concentrate the viral components and

to promote their interactions. These domains have distinct

biochemical and biophysical properties in comparison with

the rest of the plasma membrane.27,28 They stabilize oligo-

merized transmembrane proteins that can hence fulfill their

biological function, like clustering of HA in rafts. Recently,

lipid mobility studies by NMR showed that temperature-

dependent lipids ordering domains in the viral membranemay

also contribute to airborne transmission of viruses between

individuals29 and thus may play an important role in the

stability of the virus outside the host. Those findings may

explain how the virus equipped with an envelope can

independently, through changes in temperature, regulates its

rigidity and therefore protection against the environment

(cold temperatures) or helps its entry into a new host cell by

promoting viral fusion (temperatures similar to natural

infection).30 It has been previously shown that cholesterol-

enriched lipid envelopes are more rigid and promote viral

entry and infection.31 Our results, together with potential

differences in cholesterol composition, could explain why

human-origin viruses grown on avian cells are more suscep-

tible to temperature than their counterparts grown on

mammalian cells.
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