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Abstract

Dopamine prediction error responses are essential components of universal learning mechanisms. 

However, it is unknown whether individual dopamine neurons reflect the shape of reward 

distributions. Here, we used symmetrical distributions with differently weighted tails to investigate 

how the frequency of rewards and reward prediction errors influence dopamine signals. Rare 

rewards amplified dopamine responses, even when conventional prediction errors were identical, 

indicating a mechanism for learning the complexities of real-world incentives.

Dopamine neurons generate reward prediction error responses that guide the direction and 

magnitude of reward learning1. These learning signals are approximated by reinforcement 

learning algorithms, including Temporal Difference (TD) and Rescorla-Wagner learning 

models2,3. According to standard TD learning, ‘reward predictions’ are simply point 

estimates – formally, the temporally discounted sum of future outcomes3. The magnitude 

of these predictions, often determined by the average value of past outcomes, accurately 

describe the activity of dopamine neurons in well-controlled laboratory settings2. However, 

point estimate predictions reflect neither predicted uncertainty, nor the shapes of reward 

distributions, and they are not adequate descriptors of behavior4–7. Consider that, learning 

takes longer when rewards are sampled from broader distributions, compared to when they 

are sampled from narrower distributions5,6. Likewise, decision-makers take longer to choose 

between options when value differences are small, compared to when differences are large7. 

These results demonstrate that probability distributions over reward values, and not simply 
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point estimates such as the mean, influence behavior. Dopamine responses adapt to the 

range or standard deviation of predicted outcomes8, but it remains unknown if the weights 

allocated to the tails of reward distributions – a parameter that determines distribution shape 

and frequency of prediction errors – affects dopamine responses and neural learning rules.

Reinforcement Learning (RL) has produced remarkable advances in artificial intelligence9,10 

and RL techniques have recently been extended to learning probability distributions11. 

Distributional RL models simultaneously learn many different value predictions that, 

together, represent probability distributions. It was recently shown that a range of value 

predictions derived from distributional RL were reflected by dopamine neurons, raising 

the enticing possibility that brains employ a distributional code for value12. Critically, this 

distributional code operates at the level of populations, rather than individual neurons. Thus, 

it is unknown how single dopamine neurons may adapt their responses to predicted reward 

probability distributions.

To investigate whether the distribution shape differentially affected reward learning, we 

created symmetrical reward size distributions that simulated the shapes of Uniform and 

Normal distributions (Fig. 1a). Within each block (15–25 trials), monkeys made choices 

between two never-before-seen cues that predicted Normal or Uniform reward size 

distributions, as in Fig. 1a, with pseudorandomly chosen EVs (Fig. 1b, Methods). As 

expected, the monkeys performed at chance levels on trial 1, but quickly learned to choose 

the better option (Fig. 1c). Logistic regression of the choice behavior indicated both trial-

by-trial learning and better overall performance in the Normal blocks (βTrial = 0.110, p 
< 0.0001, βNormal = 0.167, p = 0.007, N = 6098 trials, t-test). We used a standard RL 

model3 to quantify the prediction errors generated during learning (Fig. 1d). This analysis 

revealed that behavior in both block types was characterized by an active learning phase 

when the prediction error magnitudes were diminishing, and a later asymptotic phase when 

the magnitudes were stable (Fig. 1e). However, the number of trials in the active learning 

phase was significantly fewer in the Normal blocks compared to the Uniform blocks (Fig. 

1f, Methods). Moreover, during the active learning phase, pupil diameter responses were 

more sensitive to rare reward prediction errors than to common reward prediction errors 

of the same magnitude (Fig. 1g, Methods). This indicates that greater vigilance or arousal 

was associated with learning from rare-predictions errors. This effect disappeared during the 

asymptotic phase (Fig. 1h). Together, these data showed enhanced learning performance in 

blocks with rewards drawn from Normal distributions.

We recorded extracellular dopamine neuron action potentials during a passive viewing task 

(Fig. 2a, Extended Data Figure 1, Methods). Here, the magnitudes of the S, M, and L 

rewards were fixed at 0.2, 0.4, and 0.6 ml, respectively (Fig. 1a). Prior choice testing 

confirmed that Normal and Uniform distributions with these reward size elements had 

equivalent expected utilities (EUs) (Extended Data Figure 2, Methods). As expected from 

cues that predict the same EUs, Dopamine neurons were similarly activated by the Normal 

and Uniform distribution predicting cues (Fig. 2b). Thus, the passive viewing task rigorously 

controlled the magnitudes of conventional prediction errors – defined as received minus 

predicted reward values.
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At the time of reward delivery, dopamine responses were amplified by rare prediction 

errors. We used two different randomization schemes to control for the number of times 

each distribution was presented (CS-matched), or the number of times each prediction 

error was experienced (PE-matched) (Extended Data Figure 3). Under both randomization 

schemes, the 0.6 ml reward activated a larger dopamine response in Normal distribution 

trials, compared to dopamine activations following delivery of the same volume reward 

in Uniform distribution trials (Fig. 2c, d, solid lines). Likewise, dopamine responses were 

more strongly suppressed by delivery of 0.2 ml reward during Normal distribution trials, 

compared to delivery of the same reward during Uniform distribution trials (Fig. 2c, d, 

dashed lines). Linear regression revealed that thirty-four neurons were significant for reward 

size, and that the vast majority of neurons (29/40) had steeper slopes for the Normal 

condition, compared to the Uniform condition (Fig. 2e, f). Thus, rare prediction errors 

resulted in bidirectional amplification of the responses, compared to common prediction 

errors of the same magnitude. We applied a naive Bayes classifier to 11 neurons with the 

greatest selectivity for rare rewards (Methods). The classifier was able to decode distribution 

identity from the responses to 0.2 ml and 0.6 ml, but failed to decode the distribution from 

the responses to 0.4 ml (Fig. 2g). Together, these results demonstrate that phasic dopamine 

responses reflect predicted probability distributions.

Finally, we investigated whether reversal point variability reflected the predicted 

distributions. We categorized responses as activations or suppressions and calculated the 

reversal points for each neuron in each distribution (Methods). As predicted by the 

distributional TD model12, the Uniform distribution evoked a larger spread of reversal 

points compared to the Normal distribution (Fig. 3a). We subtracted cell- and distribution-

specific reversal points from each cells’ average responses to the three different rewards 

and tested whether the differential reversal points accounted for the bidirectional response 

amplification. Following reversal point correction, we still observed significantly amplified 

responses, in both the negative and positive domain, to identical rewards drawn from 

the Normal compared to the Uniform distribution (Fig. 3b, Extended Data Figure 4), 

but no significant difference in the reversal point-corrected responses to 0.4 ml. These 

results demonstrate that the bidirectional amplification of responses is not accounted for 

by the reversal points. Moreover, these results hint that the single cell-level amplification 

of responses and the population level distributional TD model could be complementary 

schemes for learning the shapes of probability distributions.

Discussion

Here we show that dopamine reward prediction error responses are amplified by rare 

rewards. Amplified dopamine responses were evident even when identically sized rare and 

common rewards generated identical TD prediction errors. This result demonstrates that 

dopamine responses are sensitive to the shapes of predicted probability distribution, rather 

than just the predicted mean. These findings suggest a novel paradigm for phasic dopamine 

responses and reward learning that is distinct from, but complementary to, conventional 

reward prediction error updating.
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Several lines of evidence indicate that the amplifications of dopamine responses were 

not explained by differences in conventional prediction errors. Behavioral assays showed 

that the monkeys assigned similar Expected Utility (EUs) to both distributions (Extended 

Data Figure 2). EU is a proxy for the ‘predicted reward value’ term used to describe 

dopamine reward prediction error responses13. Accordingly, dopamine responses to Normal 

and Uniform distribution predicting cues were indistinguishable (Fig. 2b). Therefore, the 

amplified dopamine responses we observed here were not explained by differences in 

conventionally defined prediction errors. Rather, the dynamic ranges of the neurons adapted 

to the shapes of the predicted probability distributions (Fig. 2c–f).

Biological learning signals have inspired deep RL algorithms with performance that exceeds 

expert human performance on Atari games, chess, and Go9,10. Recently, a novel machine 

learning model, distributional TD, was applied to study the activity of dopamine neurons12. 

A fundamental distinction between distributional TD and the results we present here is the 

scale at which outcome distributions are represented. In distributional TD, the probability 

distribution is represented at the level of dopamine neuron populations. In contrast, our 

results show that single dopamine neurons are sensitive to the shape of the probability 

distribution (Fig. 2c–f). Our data suggest that two mechanisms, one operating at the level 

of populations and the other at the level of single neurons, are complementary schemes 

for learning probability distributions. Indeed, our data confirmed one prediction from the 

distributional TD model: for the same population of dopamine neurons, the spread of the 

measured reversal points is larger for Uniform, when compared to Normal predicted reward 

distributions (Fig. 3a). Nevertheless, even after accounting for the distribution-sensitive 

reversal points, we still observe bi-directional amplification of dopamine responses to rare 

rewards (Fig. 3b). These results reveal complementary learning schemes within the same 

population of dopamine neurons.

At the level of single neurons, the amplified dopamine responses to rare rewards indicate 

that reinforcement learning (RL) models that acquire only point estimate predictions are not 

adequate to describe dopamine activity. Rather, these data suggest that RL algorithms that 

track uncertainty, such as Kalman TD14, may provide an appropriate conceptual framework 

to explain information processing in the reward system. Kalman-like reinforcement signals 

enables reward prediction and estimation of uncertainty15, and therefore may be critical for 

implementing Bayesian inference. In this sense, the observed amplification of dopamine 

responses by rare rewards is consistent with a signal that could guide Bayesian inference 

of the most likely outcomes. Nevertheless, future studies will be required to understand 

whether phasic dopamine responses can support explicit Bayesian inference for optimal 

economic choices.

The amplification of dopamine responses by rare rewards appears to be a distinct 

phenomenon from novelty driven dopamine responses that we and others have previously 

observed16,17. Stimulus novelty decays with the number of exposures and dopamine 

responses appear to follow this decay16. A recent study has shown that stimulus novelty, 

specifically, and not rarity, drives the large dopamine responses observed during the first 

exposures to stimuli, and that novelty-driven CS responses promote learning17. None of the 

rewards used in our study were novel, as only three rewards were used while recording: 0.2 
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ml, 0.4 ml, and 0.6 ml of blackcurrant juice. The monkeys experienced these three rewards 

hundreds of times each during every session. Rarity was maintained only during Normal 

trials, when 0.2 ml and 0.6 ml were rarely given. Thus, the amplification of dopamine 

responses to rewards drawn from the tails of Normal distributions is likely a function of 

reward rarity, and distinct from novelty responses.

Pupil diameter was sensitive to prediction errors generated during active learning phases, 

but the sensitivity sharply decreased after learning. This result is consistent with prior 

studies showing that pupil diameter is more sensitive to unexpected uncertainty, compared 

to expected uncertainty18, and indicates that the monkeys learned the distributions and their 

associated expected uncertainties. In parallel, we observed that learning was enhanced in the 

Normal distribution trials. Specifically, we observed that learning became asymptotic after 

fewer trials in Normal compared to Uniform blocks. Together, these results are consistent 

with prior studies in humans showing that reward learning is dependent on standard 

deviation and higher statistical moments of reward distributions4–6. Further experiments 

will be required to disentangle the effects of higher statistical moments, especially standard 

deviation and kurtosis, on reward learning. Nonetheless, amplified dopamine reward 

prediction error responses are a candidate neural mechanism to explain how distribution 

shape affects learning.

One limitation of our study is that the behavioral choice data and neural recordings were 

collected using different tasks. The behavioral paradigm enabled us to directly measure 

learning differences, however, it required models to do post-hoc estimation of the underlying 

reward prediction errors. This dependency on model-derived estimates constrained our 

ability to control the magnitudes of reward prediction errors. Therefore, we used a 

passive-viewing task to control prediction errors during neuronal recordings (Fig. 2a). This 

strategy of measuring behavior in one version of the task and doing neural recordings in 

a simplified version of the task has been used many times previously by ourselves and 

others19. However, the experimental separation of the behavioral measurement from the 

neural recordings prevents us from drawing firm conclusions regarding the role of dopamine 

signal amplifications in learning. Future studies that combine complex behavior and neural 

recording in the same task will be critical for determining the trial-by-trial relationship 

between dopamine response amplification and behavior.

It is tantalizing to speculate about the possibility that the neural circuits responsible for value 

processing evolved in a world where the Normal distribution makes frequent appearances 

– and that this evolutionary history makes it easier for individuals (and their dopamine 

neurons) to learn Normal statistics. Regardless, the amplified dopamine responses coupled 

with the faster learning dynamics observed here suggest that the magnitude of dopamine 

release may affect cellular learning mechanisms in the striatum. Moreover, dopamine 

responses have the ability to modulate dopamine concentrations in the prefrontal cortex 

(PFC), which are tightly linked to neuronal signaling and working memory performance20. 

These findings raise the possibility that amplified dopamine responses could contribute to 

the exaggerated salience of rare events and postulate a neural mechanism to explain aberrant 

learning behaviors associated with debilitating mental health disorders such as psychosis, 

schizophrenia, and depression.
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METHODS

Animals, Surgery and Setup

All animal procedures were approved by Institutional Animal Care and Use Committee 

of the University of Pittsburgh. We used two male Rhesus macaque monkeys (Macaca 
mulatta) for these studies (both 6 years of age, 13.9 and 11.2 kg). A titanium head holder 

(Gray Matter Research) and a recording chamber (Crist Instruments, custom made) were 

aseptically implanted under general anesthesia before the experiment (Extended Data Figure 

1e, f). The recording chamber for vertical electrode entry was centered 8 mm anterior to 

the interaural line. During experiments, monkeys sat in a primate chair (Crist Instruments) 

positioned 30 cm from a computer monitor. During behavioral training, testing and neuronal 

recording, eye position was monitored noninvasively using infrared eye tracking (Eyelink 

Plus 1000). Licking was monitored with an infrared optical sensor positioned in front 

of the juice spout (Balluff). Eye, lick and digital task event signals were sampled at 2 

kHz. Custom-made software (Matlab, Mathworks Inc.) running on a Microsoft Windows 7 

computer controlled the behavioral tasks.

Behavioral Tasks

Pavlovian Task for Neural Recordings—Two visually distinct cues (fractal images) 

were used to predict reward. One cue predicted a Uniform distribution, where 0.2, 0.4, and 

0.6 ml were delivered with equal frequency (1/3 probability for each reward). A second 

cue predicted a Normal reward distribution, where 0.2 and 0.6 ml were delivered with 

low frequency (2/15 probability for each of the two rewards), and the middle reward (0.4 

ml), was delivered with a much higher frequency (11/15 probability). Finally, there was an 

unpredicted reward condition, where 0.4 ml of juice was delivered with no preceding cue.

We used two different randomization schemes, one where there were equal instances of 

Normal and Uniform trials (CS-matched), and one where there were equal instances of 

nonzero prediction errors for both Normal and Uniform (PE-matched) (Extended Data 

Figure 3). In each trial the situation was pseudorandomly chosen with replacement, 

according to the randomization scheme. The cue-reward interval was always 2 s. Trials 

were separated with inter-trial intervals of 2–5 s., chosen from a truncated exponential 

distribution. Before recording, all cues were well learned after experiencing them repeatedly 

over multiple sessions (monkey B: 10 sessions, ~2800 trials; monkey S: 6 sessions, ~2600 

trials).

Choice Tasks for Measuring Distribution Values—For the data presented in 

Extended Data Figure 2b–d, three cues predicted a Normal distribution (Fig. 1a, right), 

and three different cues predicted a Uniform distribution (Fig. 1a, left). One small, ‘safe’ 

cue predicted 0.2 ml of juice and one large, ‘safe’ cue predicted 0.6 ml of juice. Monkey S 

was offered binary choices between Normal and Uniform distribution-predicting cues, and 

between distribution-predicting cues and safe cues. Following successful central fixation for 

0.5 s, two choice options appeared on the monitor and the monkey indicated its choice by a 

saccade towards one of the cues. The monkey was allowed to saccade as soon as it wanted. 

The monkey had to keep its gaze on the chosen cue for 0.5 s to confirm its choice. Reward 

Rothenhoefer et al. Page 6

Nat Neurosci. Author manuscript; available in PMC 2022 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was delivered 1.5 s later. Trials were separated with inter-trial interval of 1.5–6.5 s, drawn 

from a truncated exponential distribution. Failure to maintain the central fixation or early 

break of the fixation on the chosen option resulted in a 4 s time-out, and a repeat of the 

failed trial.

For the data presented in Extended Data Figure 2e–g, monkeys made choices between 

well-learned distribution-predicting fractal cues and ‘safe’ value bar cues that indicated the 

magnitude of the alternative option. The value bar cue had a value range of 0 ml to 0.8 ml, 

in 0.1 ml increments. Wherever the horizontal bar intersected the vertical scale indicated 

with 100% certainty the size of juice the monkeys would receive if they chose it. The mean 

of the distribution predicting cues was 0.4 ml. In each choice trial, after successful central 

fixation for 0.5 s, the two choice options appeared on the monitor and the monkey indicated 

its choice by a saccade towards one of the cues. The monkey was allowed to saccade as 

soon as it wanted. The monkey had to keep its gaze on the chosen cue for 0.5 s to confirm 

its choice. Reward was delivered 1.5 s later. Trials were separated with inter-trial interval of 

1.5–6.5 s, drawn from a truncated exponential distribution. Failure to maintain the central 

fixation or early break of the fixation on the chosen option resulted in a 4 s time-out, and a 

repeat of the failed trial.

Choice Task to Measure Learning—For the data presented in Figure 1b–g, monkeys 

were offered two never-before-seen cues on the first trial of every block. The block length 

was selected from a truncated exponential distribution between 15 to 25. Within each block 

both the cues predicted rewards drawn from the same type of distribution, Normal or 

Uniform. Further, each novel cue had a different pseudo-randomly selected mean that was 

either 0.2, 0.3, 0.4, 0.5, or 0.6 ml. For example, if it were a Uniform block, and the means 

selected for the two cues were 0.3 and 0.6 ml, the rewards for one cue would be 0.2, 0.3, 

and 0.4 ml (drawn with equal frequency), and 0.5, 0.6, and 0.7 ml (also drawn with equal 

frequency). In each choice trial, after successful central fixation for 0.5 s, the two choice 

options appeared on the monitor and the monkey indicated its choice by a saccade towards 

one of the cues. The monkey was allowed to saccade as soon as it wanted. The monkey had 

to keep its gaze on the chosen cue for 0.5 s to confirm its choice. Reward was delivered 1.5 

s later. Trials were separated with inter-trial interval of 1.5–6.5 s, drawn from a truncated 

exponential distribution. Failure to maintain the central fixation or early break of the fixation 

on the chosen option resulted in a 4 s time-out, and a repeat of the failed trial.

Choice Task for Measuring the Subjective Value of Reward Size Distributions
—The overall goal of this study was to investigate how predicted distribution shape 

influenced dopamine responses. To fairly investigate this, we required that the predicted 

distribution values be the same. Accordingly, we created the Uniform and Normal reward 

size distributions such that they were composed of the same three elements and had the same 

Expected Values (Fig. 1a). However, dopamine neurons reflect subjective values, so we used 

two choice tasks to verify that the Expected Utilities (EUs) of the distributions were the 

same (Extended Data Figure 2).

We first used a direct choice task to measure the relative subjective values of the 

distributions. Visual cues (fractal images) were used to predict rewards. To avoid preferences 
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between cues, we used six different cues to predict distributions – three cues predicted the 

Normal distribution and three different cues predicted the Uniform distribution (Extended 

Data Figure 2a). To ensure that the monkey was making valid economic choices rather 

than choosing randomly, we also created two safe cues that predicted a small (0.2 ml) and 

large (0.6 ml) reward. We reasoned that subjects making valid economic choices should 

choose the large reward option over both distributions, and both distributions over the 

small reward option14. We used classical conditioning to train monkeys on the cue-reward 

contingencies, then we measured binary choices between the cues (Extended Data Figure 

2b). The monkey selected the Normal cue over the Uniform cue with a probability of 0.53 

± 0.19; this was not significantly different from chance (Extended Data Figure 2c) (p = 

0.48, N = 9 cue pairs, t-test). Additionally, the monkey chose the Normal distribution over 

the small reward (Extended Data Figure 2c, p < 0.0001, t-test) and the large reward over 

the distribution (Extended Data Figure 2c, p = 0.0004, t-test). Similarly, the monkey chose 

the Uniform Distribution over the small reward, and the large reward over the distribution 

(Extended Data Figure 2d, p = 0.001 and 0.005, respectively N = 3 cue pairs, each, t-test) 

Thus, while making valid economic choices, the monkey was choice indifferent between 

the distributions. These results provide strong evidence that the predicted values of the two 

distributions were the same.

The EUs were critical to our interpretation of the data, and as such, we replicated this 

result using a different behavioral paradigm: we independently measured the certainty 

equivalents (CEs) of Normal and Uniform reward distributions. CEs are the volumes of 

rewards the subject would exchange for a gamble; in these experiments the distributions 

were the gambles. Monkeys made choices between cues that predicted a distribution and 

cues that explicitly indicated safe options (Extended Data Figure 2e, Methods). We plotted 

the probability of choosing the safe option as a function of the safe option volume and 

generated psychometric functions (Extended Data Figure 2f, g). The CEs was the safe 

values that corresponded to P(Choose Safe) = 0.5 (black arrows in Extended Data Figure 

2f, g). Analysis of the session-by-session CEs for the Normal and Uniform blocks found 

no effect of the distribution type on the CEs (p = 0.2, N = 18. T-test). Therefore, the CEs 

strongly agree with the direct choice data indicate that the Normal and Uniform reward size 

distributions had similar subjective values. These results indicated that the prediction errors 

generated from the distributions could be readily compared and ensured that disparities 

between prediction error responses were not driven by differences in the predicted subjective 

values.

Analysis of Behavioral Data

Logistic regression—We used logistic regression to quantify the influence of reward 

distribution on monkeys’ behaviors, controlling for trial numbers since a new block starts 

and the difference between the values of two cues.

log P Correct
1 − P Correct = β0 + βD * D + βC * C + βT * T
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where D is a binary variable for reward distribution type (0 for Uniform and 1 for Normal), 

C is a continuous variable for the difference between the values of two cues and T is a 

categorical variable for the trial number since the start of a new block.

Reinforcement Learning Model—We used a fixed learning-rate reinforcement learning 

(RL) model to examine monkeys’ choices during learning and to acquire trial-by-trial 

estimate of chosen and unchosen values3. The model had two value functions representing 

the learned values of probability distribution 1 (pd1) and probability distribution 2 (pd2) 

respectively. In each trial (t), the probability that the model chooses pd1 over pd2 was 

estimated by the softmax rule as follows:

P pd1 t = eV t pd1 /β

eV t pd1 /β + eV t pd2 /β

where β, the temperature parameter of the softmax rule, determines the level of choice 

randomness.

In each trial, upon making a choice and receiving an outcome, the value of the chosen option 

on that trial, Vt, was updated according the reward prediction error, as follows:

V t + 1 = V t + α * δt

where α denotes the learning rate, and the prediction error is calculated as the following: δt 

= rt − Vt, indicates the difference between the predicted and realized reward sizes, Vt and 

rt, respectively. The free parameters, α and β, were fit by maximizing the likelihood of the 

model. After fitting the model, we took the trial-wise mean of the unsigned PE over blocks 

of the same type (Fig. 1e).

To characterize the transition from active learning to asymptotic behavior, we fit logarithmic 

functions to each block, and the collected the block by block transition trials that marked 

the crossing of a predetermined threshold that separated active learning from asymptotic 

behavior. When the first derivative of the fitted prediction errors decreased below a 

predetermined threshold, we considered that the animal had stopped actively learning. 

When the magnitude of the prediction errors stayed below 0.1 for more than two trials, 

we considered that the animal successfully estimated the true value, since the true difference 

between the lowest/highest values from the mean was 0.1 ml. We designated the boundary 

between active learning and asymptotic phases as the trial when both conditions were met. 

The faster learning exhibited in the Normal distribution block was robust under a wide range 

of prescribed thresholds.

Deconvolution

Event-related pupil responses were analyzed trial-by-trial using nideconv21,22, a Python 

package that specializes in fMRI and pupil signal deconvolution. The design matrix for a 

trial consisted of a total of four event types: the onset of central dot for fixation, the onset 

of cue presentation, the monkeys’ saccades to indicate choice, offset of cue presentation (in 

Rothenhoefer et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2022 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



temporal order), and the onset of reward. The pupil diameter changes related to fixation and 

the offset of cue presentation were analyzed 0.5 s pre-event until 2 s post-event; the time 

windows for the onset of cue presentation and monkeys’ saccades started 0.5 s pre-event and 

ended 3 s post-event; the time window for the presence of rewards started at 0.5 s pre-event 

and ended at 1.5s post-event. To understand the relationship between pupil diameter and 

prediction error post-reward, reward prediction errors and value estimates derived from the 

model were used as covariates in the deconvolution algorithm. Consequently, we obtained 

a measure of how sensitive the post-reward pupil diameter changes are to the prediction 

errors in each reward distribution, by looking at the beta coefficients in the prescribed 

time window. Finally, we grouped the deconvolved signal based on the Active/Asymptotic 

learning period distinction and reward distribution type and calculated the ensemble average 

across trials.

Neural Data Acquisition

Custom-made, movable, glass-insulated, platinum-plated tungsten microelectrodes were 

positioned inside a stainless-steel guide cannula and advanced by an oil-driven 

micromanipulator (Narishige). Action potentials from single neurons were amplified, filtered 

(band-pass 100 Hz to 3 kHz), and converted into digital pulses when passing an adjustable 

time–amplitude threshold (Bak Electronics). We stored both analog and digitized data on a 

computer using custom-made data collection software (Matlab).

Dopamine neurons were functionally localized with respect to (a) the trigeminal 

somatosensory thalamus explored in awake monkeys (very small perioral and intraoral 

receptive fields, high proportion of tonic responses, 2–3 mm dorsoventral extent23, (b) 

tonically active position coding ocular motor neurons and (c) phasically direction coding 

ocular premotor neurons in awake monkeys. Individual dopamine neurons were identified 

using established criteria of long waveform (> 2.5 ms, Extended Data Figure 1a) and 

low baseline firing (< 8 impulses/s)24. Following standard sample sizes used in studies 

investigating neuronal responses in non-human primates, we recorded extracellular activity 

from 67 dopamine neurons. Forty neurons had a sufficient number of trials and we used 

these neurons for further analysis.

The neurons that met these criteria showed the typical phasic activation after unexpected 

reward (Extended Data Figure 1b, p < 0.0001, N = 40 neurons; Wilcoxon rank-sum test). 

Extended Data Figure 1c and d show maps of our recording locations relative to both 

monkeys’ grids, and the number of cells recorded at each location. Extended Data Figure 1e 

and f show MRI images of monkey S and the location of the recordings.

Analysis of Neural Data

Data Pre-Processing—We constructed peri-stimulus time histograms (PSTHs) by 

aligning the neuronal impulses to task events and then averaging across multiple trials. 

We smoothed the PSTHs by convolving with (1 – e−t)e−t/T, where T is set to be 20 ms. 

The analysis of neuronal data used defined time windows, individual to each neuron, that 

included the major positive and negative response components following cue onset and juice 

delivery, as detailed for each analysis and each figure caption. The neural activity within 
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time window following juice delivery was baseline-corrected by subtracting the average 

activity from −1000 ms to 0 ms relative to cue onset.

Single Neuron Linear Regression—To determine whether previous rewards influence 

the current CS response, we fit a linear model to each neurons’ CS response, using the 

rewards from the previous 5 trials as the independent variables. We found that previous 

outcomes up to 5 trial back did not influence CS response. This result is not particularly 

surprising in the Normal distribution trials, as the previous 5 outcomes were most often 0.4 

ml. This reward magnitude evoked no reward prediction errors. The Uniform distribution, 

on the other hand, did generate more prediction errors. The lack of a clear learning effect in 

the Uniform distribution has two main causes, we think. First, trial types were determined 

at random (Extended Data Figure 3). Thus, the previous Uniform trial could be several trials 

back. Second, the monkeys had experienced the cues so often that the learning rate was 

likely very low.

To assess if reward responses for an individual neuron were enhanced bidirectionally by rare 

prediction errors, we fit the following linear model to each neuron:

Fz = β0 + β1 * D + β2 * R + β3 * D × R

where Fz is the normalized firing rate in the time window following juice delivery, D is 

a binary variable for reward distribution type (Normal distribution as reference group), 

R is a continuous variable for reward magnitude and D × R represents the interaction 

effect between reward distribution and reward magnitude. Fig. 2f was obtained by scatter 

plotting each neuron’s slope for the Normal distribution against its slope for the Uniform 

distribution. A paired t-test was used to see if the slopes were significantly biased towards 

Normal distribution.

Decoding Distribution Type—For each of the three reward magnitudes, we used a 

Gaussian naïve Bayes classifier to decode the Normal and Uniform reward distributions 

from the average firing rate in the time window following juice delivery25. We then 

used leave-one-out cross-validation to assess the performance of the decoder. The 

resulting confusion matrix was normalized by the number of trials. After cross-validation, 

permutation tests with 5000 iterations were performed to see if the accuracy of the decoder 

is significantly different from chance for each reward magnitude. A decoder including all 

40 neurons was not able to correctly classify distribution types above chance. Therefore, 

we used a Selectivity Index (SI) to select neurons for decoding. The single-neuron SI for a 

particular reward magnitude was defined as the difference between mean reward responses 

in two reward distribution, divided by the pooled variance of two conditions.

SI =
FN − FU

σP

The subset of 11 neurons with the largest SI successfully decoded the predicted distribution 

from the responses to 0.2 and 0.6 ml (Fig. 2g). To ensure that the rest of the neurons did not 
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encode an opposite effect, we built a classifier with the rest of the neurons (29/40) and did 

not observe above-chance performance (p = 0.515, p = 0.329, p = 0.549, for 0.2, 0.4 and 0.6 

ml respectively, Permutation test).

Reversal-Point Correction—To account for variability of reversal point reported in the 

literature12, we corrected the reward response of each neuron by subtracting the estimated 

reward response of its reversal point. We estimated neuron- and distribution-specific reversal 

point by splitting the distribution of responses for each neuron, in each distribution, into two 

groups. One group contained the trials with activations, and the other group contained the 

trials with suppressions. We then averaged the reward sizes that were associated with the 

responses in the two groups, and the reversal points were obtained by taking the mean of the 

two averages (Fig. 3a). The neural activity corresponding to the reversal point was estimated 

by plugging the reversal point into the single neuron linear regression described above. For 

each neuron in each distribution, we subtracted this estimated activity from the responses to 

0.2, 0.4 and 0.6 ml. We used a two-tailed Wilcoxon signed rank test to test if neurons with 

steeper response slopes to rewards from Normal distributions show bidirectional stretch in 

their reward responses, after reversal point correction (Fig. 3b).

Statistics and Reproducibility

All statistical analyses were performed and all graphs were created in Python 3.7.2, Matlab 

R2019b and Python package nideconv. No statistical methods were used to predetermine 

sample sizes, but our sample sizes are similar to those reported in studies investigating 

neuronal and behavioral responses in non-human primates8,14,17. For data collected in the 

choice experiment, based on the metrics we adopted, only choices in blocks with length 

equal to 15 were included in the statistical tests to avoid skewing the results (Fig. 1c, e, f). 

For neural data analysis, we recorded extracellular activity from 67 dopamine neurons in 

two monkeys, and 40 neurons had a sufficient number of trials for further analyses. 27 of 

the 67 neurons were excluded due to an insufficient number of trials in all of the trial types 

used (<7). Effects were considered significant at p < 0.05. Statistical details for each analysis 

(for example, N and p) are specified in respective part of the text. Data distribution was 

assumed to be normal but was not formally tested in parametric tests (for example, t-test). 

Data collection and analysis were not performed blind to the conditions of the experiments.
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Extended Data

Extended Data Fig. 1. Dopamine neurons and recording sites.
a, Example dopamine waveform from one of the neurons in our population. b, The 

population of 40 neurons used for our analyses in the Pavlovian and choice task had 

significant activations following unpredicted rewards – a characteristic feature of dopamine 

neurons. Grey bar along the x-axis indicate the response window used for analysis. c, 
Recording locations for the left hemisphere of monkey S. X-axis indicates lateral to medial 

location in the grid in millimeters, relative to midline (0). Right y-axis indicates posterior to 

anterior location in the grid in millimeters, relative to interaural line (IAL). Each locations’ 

color indicates the number of neurons recorded for that location. Black circles surrounding 

the individual locations indicated that neurons recorded there were part of the population 
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of 29 neurons that had a steeper response slopes in normal compared to uniform condition. 

Bar graphs on the left and top axes indicate the proportion of cells in that AP (left) or 

ML (top) location that were effect positive. Yellow dot corresponds to location indicated 

in MRI scan shown in d and e. d, Recording locations for the left hemisphere of monkey 

B. Same as panel c. e, Sagittal view MRI of the recording chamber of monkey S. Purple 

arrow indicates the AP location in the grid (+12 mm from IAL). f, Coronal view MRI of the 

recording chamber of monkey S. Purple arrow indicates the ML location in the grid (1 mm 

from Midline). Yellow dot in e and f correspond to approximate recording grid location in c.

Extended Data Fig. 2. Normal and Uniform reward size distributions have equivalent subjective 
values.
a, Schematic of the distribution-predicting fractal cues used to represent Normal (N) and 

Uniform (U) distributions, and safe values for the choice task in b. Three unique cues were 

used to predict a Normal distribution of rewards, and three unique cues were used to predict 

a Uniform distribution of rewards. All the distribution predicting cues were comprised of the 

same three reward volumes (0.2, 0.4, and 0.6 ml), and thus the same expected value (EV) of 

0.4 ml. Additionally, one fractal cue predicted a sure reward of 0.2 ml, and another fractal 

cue predicted a sure reward of 0.6 ml. b, Monkeys made saccade-guided choices between 

Normal distribution-predicting cues, Uniform distribution-predicting cues, and safe rewards. 

c, Bar graphs are the probability of choosing the alternate cue over a Uniform distribution-

predicting cue with an EV of 0.4 ml. The alternates from left to right on the x-axis are 

a safe cue predicting 0.2 ml, a Normal distribution-predicting cue with a mean of 0.4 ml, 

and a safe cue predicting 0.6 ml. Data points are from individual blocks, and error bars 

represent ±SEM across blocks (between 6 and 18 blocks per condition). d, Same as in c, but 

the probability of choosing an alternate cue over a Normal distribution-predicting cue with 

an EV of 0.4 ml, and the middle alternate option represents Uniform distribution-predicting 

cues with an EV of 0.4 ml. e, The choice task used to measure subjective value. Animals 

made saccade-directed choices between a distribution predicting cue and a safe alternative 

option. The safe alternative option was a value bar with a minimum and maximum of 0 
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and 0.8 ml at the bottom and top, respectively. The intersection between the horizontal bar 

and the scale indicated the volume of juice that would be received if monkeys selected 

the safe cue. f, Probability of choosing the safe cue as a function of the value of the safe 

option, when the distribution predicting cue had an expected value (EV) of 0.4ml. Dots show 

average choice probability for 9 safe value options for monkey B. Solid lines are a logistic 

fit to the data. Red indicates data from normal distribution blocks, grey indicates data from 

uniform distribution blocks. The dashed horizontal lines indicate subjective equivalence, and 

the CE for each distribution type is indicated with the dashed vertical lines. g, Same as in f, 

for monkey S.

Extended Data Fig. 3. Reward randomization schemes used to determine trial types.
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Top, ‘CS-matched” randomization with equal frequencies of Normal and Uniform trials. 

Bottom, “PE-matched” randomization with equal frequencies of 0.2 ml and 0.6 ml reward 

trials in each distribution. In both graphs, the y-axis represents the probability of drawing 

the trial type (trial types drawn with replacement). The 6 trial types divided according to 

distribution type (N and U) and reward size (0.2, 0.4 and 0.6 ml). The number of instances in 

each trial type “stack” indicates the probability of drawing the trial type.

Extended Data Fig. 4. Amplification effect was robust.
Box and whisker plots show the baseline subtracted responses to 0.2 and 0.6 ml of juice, 

as in Fig. 3b, but applied to all 34 neurons that were significantly modulated by value. 

* indicates p < 0.05, ** indicates p < 0.01, N = 34 neurons, Wilcoxon signed-rank test, 
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Bonferroni corrected for multiple comparisons. Box and whisker plots show, median (line), 

quartiles (boxes), range (whiskers), and outliers (+).
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Figure 1. Behavior
a, Schematic of Uniform (green) and Normal (purple) reward size probability distributions. 

Gray shaded regions illustrate the hypothetical probability density functions. Green and 

purple bars indicate the discrete probabilities of small (0.2 ml, small blue circle), medium 

(0.4 ml, medium blue circle), and large (0.6 ml, large blue circle) rewards. Abbreviations: 

(EV) expected value, (-PE) negative prediction error, (+PE) positive prediction error. A 

fractal drawing associated with a Uniform distribution predicted that each reward size 

would be drawn with 1/3 probability. A different fractal drawing associated with a Normal 

distribution predicted that the small and large reward volumes would be drawn 2/15 times, 

whereas the medium reward size would be drawn the remaining 11/15 times. b, Task setup 

where each block was either a Normal or a Uniform block. In Normal blocks, two novel 
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fractal images represented Normal distributions with different EVs. Likewise, in Uniform 

blocks, two novel fractal images represented Uniform distributions with different EVs. c, 
Box and whisker plots show the probability of choosing the higher-valued option on trials 

1 (left) and 15 (right), across both distribution types. Triangles represent the averages. *** 

indicates p < 0.0001, N = 275 blocks, t-test. d, RL model performance for a subset of trials. 

Actual (black) and estimated (grey) value differences for two choice options. Bar at the top 

indicates either Normal (purple) or Uniform (green) block type. The primary y-axis shows 

the EV differences between the two choice options, and the x-axis shows trial number. The 

blue tick marks correspond to correct and incorrect choices, defined by the relative expected 

values, and indicated by the secondary y-axis. e, Absolute prediction errors as a function 

of trial number within Normal (purple) and Uniform (green) blocks. Error bars are ±SEM 

across 142 Normal blocks and 133 Uniform blocks, and solid lines are exponential functions 

fit to the data. Shaded box schematically describes the transitions from “Active Learning” 

to “Asymptotic” behavior, the actual transition trials were determined on a block-wise basis 

(Methods). f, Box and whisker plot shows the number of trials in the “Active Learning” 

phase for Normal (N, purple) and Uniform (U, green) distribution blocks. *** indicates 

p < 0.0001, Mann-Whitney U test. g, Beta coefficients from a deconvolution analysis on 

the pupil diameter data, for the trials in the active learning phase of Normal (purple) and 

Uniform (green) blocks, aligned to reward delivery at time = 0. The grey horizontal bar 

indicates time points after reward where the Normal beta coefficients were significantly 

different from the Uniform beta coefficients (p < 0.05, N = 4703 trials, Cluster-based 

permutation test). Shaded regions indicate 95% confidence interval over trials. h, as in f, 

for trials in the asymptotic phase. Box plots show, mean (triangles), median (line), quartiles 

(boxes), and range (whiskers).
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Figure 2. Rare rewards amplified dopamine reward prediction error responses.
a, In the recording task, the monkeys viewed a distribution predicting CS and rewards 

were delivered two seconds later. b, Peri-stimulus time histogram (PSTH) of CS-evoked 

responses to the Normal and Uniform distribution predicting cues in a single neuron. There 

was no significant difference between the response magnitudes (p = 0.69, N = 40 neurons, 

Wilcoxon rank-sum). Shaded regions represent ±SEM across trials. c, Single neuron reward 

responses to rewards during Normal and Uniform trials, recorded using the CS-matched 

randomization scheme (Extended Data Figure 3). Top: PSTHs show impulse rate as a 

function of time. Solid lines show responses to 0.6 ml, whereas dashed lines show responses 

to 0.2 ml of juice. Shaded regions represent ±SEM across trials. Bottom: Raster plots, 

separated by Normal and Uniform trials and by reward sizes. Every tick mark represents 
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the time of an action potential, and every row represents a trial. Black vertical dashed 

line indicates the time of reward. d, as in c, for a neuron recorded using the PE-matched 

randomization scheme (Extended Data Figure 3). e, Single neuron linear regression of a 

single neuron (c) showed steeper response slopes to rare rewards drawn from the normal 

distributions. Solid lines indicate the fitted slopes in Normal and Uniform distribution trials. 

Dots represent the average neural response rewards in Normal and Uniform distribution 

trials. Error bars represent ± SEM across trials (all data points had between 13 and 76 trials). 

f, Scatter plot of Normal and Uniform distribution response slopes from every neuron (p 
= 0.003, N = 40 neurons, t = 3.19, t-test). Inset: Histogram shows the density of the dots 

relative to the diagonal unity line. g, Confusion matrices of distribution identity decoding 

from neuronal responses to 0.2 ml, 0.4ml and 0.6ml rewards in the Normal and Uniform 

distributions. The matrix sectors are shaded according to the proportion of trials decoded as 

Normal (N) and Uniform (U). The scale bar on the right shows that darker shades indicate 

higher proportions. Black asterisks indicate decoding performance above chance level for 

the responses to 0.2 ml and 0.6 ml (p = 0.045 and p = 0.028, N = 11 neurons, Permutation 

test, uncorrected p-values). No asterisk above 0.4 responses indicate no significant decoding 

(p = 0.642, N = 11 neurons, Permutation test).
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Figure 3. Dopamine pseudo-populations and single neurons simultaneously reflect predicted 
probability distributions.
a, Box and whisker plots show the spread of reversal points for the population of neurons 

in Normal (purple) and Uniform (green) trials ([0.0065, 0.0129] and [0.0133, 0.0221], N=40 

neurons, Bootstrap 90% confidence interval for standard deviation). b, Box and whisker 

plots show the baseline subtracted responses to 0.2 and 0.6 ml of juice. *** indicates p 
< 0.0001, N = 29 neurons, Wilcoxon signed-rank test, Bonferroni corrected. Responses 

to 0.4 ml were not significantly different and so not shown (p = 0.226, N = 29 neurons, 

Wilcoxon signed-rank test). Box and whisker plots show, median (line), quartiles (boxes), 

range (whiskers), and outliers (+).
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