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A B S T R A C T

Variability of neural signaling is an important index of healthy brain functioning, as is signal complexity, which
relates to information processing capacity. Alterations in variability and complexity may underlie certain brain
dysfunctions. Here, resting-state fMRI was used to examine variability and complexity in children and adoles-
cents with and without autism spectrum disorder (ASD). Variability was measured using the mean square
successive difference (MSSD) of the time series, and complexity was assessed using sample entropy. A categorical
approach was implemented to determine if the brain measures differed between diagnostic groups (ASD and
controls). A dimensional approach was used to examine the continuum of relationships between each brain
measure and behavioral severity, age, IQ, and the global efficiency (GE) of each participant’s structural con-
nectome, which reflects the structural capacity for information processing. Using the categorical approach, no
significant group differences were found for neither MSSD nor entropy. The dimensional approach revealed
significant positive correlations between each brain measure, GE, and age. Negative correlations were observed
between each brain measure and the severity of ASD behaviors across all participants. These results reveal the
nature of variability and complexity of BOLD signals in children and adolescents with and without ASD.

1. Introduction

Two key components of healthy brain functioning are variability of
neural signaling and complexity of these signals. In the healthy brain,
variability of neural signaling allows for the formation of functional
networks (Fuchs et al., 2007) and the exploration of multiple stable
functional states (Ghosh et al., 2008; McIntosh et al., 2008, 2010).
Previous work has shown that higher variability of brain signals is as-
sociated with better behavioral performance (Garrett et al., 2011).
Further, variability changes in response to task demands: BOLD varia-
bility has been shown to be lowest in the resting-state, increased during
internally focused tasks, and highest during externally focused tasks
(Grady and Garrett, 2018). It has been suggested that variability allows
for greater environmental uncertainty during externally-directed com-
pared to internally-directed tasks, and variable, flexible neural sig-
naling allows the brain to adapt to such uncertainty (Grady and Garrett,
2018).

Several studies have examined age related changes in brain signal
variability. Using fMRI, Garrett et al. (2010) found that during fixation
periods of a task, the standard deviation of BOLD time series increased
with age in 33% of voxels and decreased in 67% of voxels. The spatial
pattern of age-related changes in variability was different than that of
mean BOLD activity, suggesting that these metrics provide unique in-
formation about age-related changes in brain activity. Variability has
also been examined using the mean square successive difference
(MSSD; von Neumann et al., 1941), defined as the average of the sum of
squared differences in amplitude between successive time points. Thus,
MSSD measures variability from one time point to the next. MSSD re-
flects variability in a signal that is independent of drifts in the mean
(Garrett et al., 2011). Using fMRI, Nomi et al. (2017) found that MSSD
decreased from ages 6 to 85 in the majority of brain regions examined.
In attention deficit hyperactivity disorder (ADHD), positive correlations
have been reported between symptom severity and MSSD in default
mode regions (Nomi et al., 2018).
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Signal complexity is also important for optimal brain function. One
way to measure the complexity of a signal is with sample entropy,
which assigns high values to more complex signals, and low values to
highly deterministic or random signals (Costa et al., 2005). It is im-
portant to measure the complexity of brain signals in addition to
variability, because a variable brain signal may not necessarily be
complex. A signal with higher entropy can be interpreted as having
higher information processing capacity (Gatlin, 1972; Heisz and
McIntosh, 2013; Shannon, 1948). Like variability, complexity is
thought to reflect the ability of the brain to adapt to unpredictable
environments (Goldberger et al., 2002). Using fMRI, it has been shown
that signal complexity in various regions of the default mode network
was positively correlated with multiple cognitive functions, including
attention, language, and short-term memory (Yang et al., 2013). Higher
multiscale entropy of EEG signals has been associated with greater
knowledge representation (Heisz et al., 2012). It has further been
shown that entropy of EEG signals increases across development (Lippé
et al., 2009; McIntosh et al., 2008; Misic et al., 2010).

Abnormal levels of variability and complexity in the brain may be
related to sub-optimal cognition. Too much variability can result in
inefficient information processing and ineffective exploration of dif-
ferent network configurations in the brain (Ghosh et al., 2008;
McIntosh et al., 2008, 2010). Autism spectrum disorder (ASD), a neu-
rodevelopmental disorder that is characterized by atypical social com-
munication and restricted, repetitive and stereotyped behaviors
(American Psychiatric Association, 2013), is one condition that may be
characterized by detrimental levels of noise. ASD is hypothesized to be
characterized by an increased ratio of excitatory to inhibitory coupling
in the brain, which could be associated with noisier and less stable
signaling, reduced functional differentiation, and less efficient in-
formation processing (Rubenstein and Merzenich, 2003). These al-
terations may relate to abnormal myelination and synaptic develop-
ment (Rubenstein and Merzenich, 2003). Inhibitory signaling is
believed to be associated with improving the specificity of excitatory
brain signals; thus, imprecise brain activity and increased noise can
result from increased excitatory and decreased inhibitory signaling
(Nelson and Valakh, 2015).

Studies of dynamic functional connectivity (FC) have shown that FC
is also more variable in ASD (e.g. Chen et al., 2017; Falahpour et al.,
2016; Wee et al., 2016; Zhang et al., 2016). Chen et al. (2017) reported
greater variance of distributed functional connections in ASD, which
was related to total scores on the Autism Diagnostic Observation
Schedule (ADOS). Dynamic FC has been shown to improve classifica-
tion of ASD compared to typically developing (TD) participants (Wee
et al., 2016), and to be a better predictor of ASD behaviours compared
to “static” FC measured over an entire time series (Jia et al., 2014).
However, the nature of resting-state BOLD signal variability in ASD
compared to TD individuals remains unclear. Entropy of EEG signals
has also been shown to be reduced in ASD at rest (Bosl et al., 2011) and
during both social and non-social tasks (Catarino et al., 2011), but the
nature of the complexity of resting-state BOLD time series in ASD is
currently unknown. Further, relationships between information pro-
cessing capacity in functional compared to structural networks in ASD
are not well-characterized. Anatomy plays a role in shaping functional
networks in the brain (Deco et al., 2013; Honey et al., 2007, 2009,
2010). For instance, regions that exhibit high structural connectivity
(SC) typically exhibit strong FC (Honey et al., 2007, 2009). Previous
work has revealed relationships between information processing capa-
city in structural networks and cognitive functioning (Berlot et al.,
2016; Reijmer et al., 2013). Diffusion weighted imaging (DWI) can be
used to estimate the strength of white matter connections between
brain regions via tractography. As time series are not available for
structural connectomes, a graph theory metric, global efficiency (GE),
can be used to estimate information processing capacity (Bullmore and
Sporns, 2012).

In the present study, we characterized BOLD signal variability and

complexity in youth with and without ASD. Further, we characterized
relationships between these measures and age, GE, IQ, and behavioral
severity.

2. Materials and methods

2.1. Participants

Twenty male participants with ASD (M=13.25 years, SD= 2.87
years) and 17 male TD participants (M=13.42 years, SD=3.21 years)
from the San Diego State University sample from the Autism Brain
Imaging Data Exchange (ABIDE) II database (Di Martino et al., 2017)
were included in this study. Informed consent or assent had been ob-
tained for all participants and caregivers in accordance with the Uni-
versity of California, San Diego and San Diego State University In-
stitutional Review Boards. Participants were matched for age, full-scale
IQ and head motion (Table 1). Participants were excluded if they were
less than 8 years of age, their full-scale IQ was below 75 or if their head
motion during the scan exceeded a mean framewise displacement (FD)
0.2 mm. Further, participants were included only if they had an
MPRAGE scan, resting-state fMRI scan, and DWI scan.

2.2. Data acquisition

The following scans were acquired on a GE MR750 system at SDSU:
structural (T1-weighted 3D SPGR sequence; TR=8.136ms,
TE= 3.172ms, TI= 600ms, flip angle= 8°, field of view
(FOV)=256mm, matrix size 256×192, 1.0 mm isotropic voxel re-
solution), diffusion-weighted (T2-weighted sequence; TR=8500ms,

Table 1
Participant Characteristics.

Parameter ASD
(Mean+ SD)
[range]

TD
(Mean+ SD)
[range]

Group difference

N 20 17 N/A
Age 13.25+2.87

[9.6 – 17.80]
13.42+ 3.21
[8.10 – 17.60]

t(35) = -0.17,
p=0.87

IQ 98.50+14.33
[77 – 130]

103.35+ 10.15
[79 – 125]

t(35) = -1.17,
p=0.25

Handedness 15 RH
3 LH
2 mixed

14 RH
1 LH
2 mixed

X2(2,
N=37)= 0.80,
p=0.67

Head motion: fMRI
(mean FD)

0.106+0.035
[0.054 – 0.189]

0.096+ 0.042
[0.040 – 0.194]

t(35)= 0.76,
p=0.45

Head motion: fMRI
(number of
censored time
point)

3.85+ 1.69
[1 – 7]

3.35+ 1.84
[0 – 7]

t(35)= 0.86,
p=0.40

Head motion: DWI
(mean FD)

0.609+0.155
[0.426 – 0.999]

0.546+ 0.160
[0.325 – 1.05]

t(35)= 1.21,
p=0.24

SRS Total 104.25+ 24.92
[59 – 147]

18.41+ 11.57
[2 – 36]

t(35)= 13.04, p
< 0.001

SRS Awareness 13.10+4.39
[3 – 19]

3.82+ 2.83
[0 – 10]

t(35)= 7.48, p
< 0.001

SRS Cognition 17.85+6.02
[4 – 28]

2.94+ 2.77
[0 – 8]

t(35)= 9.39, p
< 0.001

SRS Communication 34.95+10.36
[21 – 55]

5.88+ 4.48
[0 – 15]

t(35)= 10.72, p
< 0.001

SRS Motivation 17.80+4.12
[11 – 25]

3.94+ 2.44
[0 – 8]

t(35)= 12.15, p
< 0.001

SRS Mannerisms 22.05+7.86
[8 – 36]

1.82+ 2.77
[0 – 11]

t(35)= 10.08, p
< 0.001

ADOS2 Total 14.70+4.92
[5 – 24]

N/A N/A

ADOS2 SA 11.35+4.26
[5 – 20]

N/A N/A

ADOS2 RRB 3.35+ 1.95
[0 – 8]

N/A N/A

ADOS2 Severity 7.85+ 2.08
[3 – 10]

N/A N/A
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FOV=192mm, matrix size 96×96, in-plane voxel dimension of
0.9375× 0.9375mm/1.875× 1.875mm with 2mm slice thickness, 68
slices, 61 diffusion directions), and fMRI (two-dimensional T2-weighted
gradient echo planar imaging blood oxygen level-dependent contrast
sequence; TR=2000ms, TE=30ms, flip angle= 90°,
FOV=200mm, in-plane voxel dimension of 3.4375mm x 3.4375mm
voxel resolution, 3.4 mm slice thickness, matrix size 64×64, 42 slices,
180 TRs, eyes open).

2.3. Resting-state fMRI preprocessing

Data were preprocessed using the Optimization of Preprocessing
Pipelines for NeuroImaging (OPPNI) software (Churchill et al., 2012a,b,
2015). First, motion correction was performed using AFNI’s 3dvolreg
function, followed by the generation of subject-specific non-neuronal
tissue masks using the PHYCAA+ algorithm (Churchill and Strother,
2013), then replacement of outlier volumes with interpolated values
from neighbouring time points (Campbell et al. (2013); https://www.
nitrc.org/projects/spikecor_fmri). This motion censoring step was im-
plemented due to previous evidence suggesting that censoring is highly
effective at removing residual motion-related artifacts in resting-state
fMRI data. For instance, Ciric et al. (2017) noted that censoring miti-
gates motion artifacts as well as distance-dependent artifacts. They also
found that methods that are less effective at denoising are not able to
identify modular network structure in functional connectomes. They
noted that global signal regression can mitigate motion artifacts, but
has the drawback of introducing distance-dependent artifacts. Thus, in
this study, censoring was used to remove residual motion artifacts.
Importantly, the maximum number of time points that were censored
was 7 out of 175, and the number of censored time points did not differ
between ASD and TD groups. Nonetheless, we analyzed the effects of
censoring on MSSD and entropy estimates. These analyses are described
in the Supplementary Material.

These steps were followed by slice-timing correction and temporal
detrending using a second-order Legendre polynomial. Next, principal
component analysis was performed on the motion parameters obtained
from the motion correction step. Principal components that accounted
for more than 85% of the variance of the motion parameters were re-
gressed out of the fMRI data. The time series of the mean white matter
and CSF signals were regressed out of the data, and finally, lowpass
filtering was performed with a cutoff of 0.1 Hz.

The ROI atlas used in this study is described in Bezgin et al. (2012).
Parcellation of each hemisphere into 48 regions was performed on a
macaque brain surface using mapping rules established by Kötter and
Wanke (2005). The parcellation was then transformed to the MNI
human brain using landmarks from Caret (www.nitrc.org/projects/
caret; Van Essen et al., 2001; Van Essen and Dierker, 2007). As direct
anatomical connections have been measured in the macaque brain,
using this parcellation scheme helps to eliminate false positive con-
nections found by probabilistic tractography used in human DWI ana-
lyses. This atlas is the default atlas used in The Virtual Brain (Sanz Leon
et al., 2013) to simulate brain network dynamics from human neuroi-
maging data. Further, as noted in Bezgin et al. (2012), “although the
detailed anatomy of the human brain is still poorly understood, there
exist many homologies with the brains of non-human primates. Thus, a
viable route to enhance the functional-anatomical framework in hu-
mans would be to map human brain regions to areas that have been
well studied in invasive monkey experiments”. For this study, we only
used cortical regions from the atlas, resulting in 82 ROIs in total (41 per
hemisphere; Table 2; Fig. 1). The atlas was transformed from MNI space
to each subject’s T1 space, then subsequently transformed to each
subject’s functional space using the inverse of each subject’s functional-
to-anatomical transform, which was obtained using linear registration
with 6 ° of freedom (DOF). Next, the time series of each region was
extracted using the mri_segstats function in Freesurfer.

2.4. DWI preprocessing

Preprocessing of dwMRI data included motion correction using
eddy current correction in FSL, fitting diffusion tensor models at each
voxel using the dtifit function in FSL, co-registering each subject’s skull-
stripped T1 MRI to DTI space using linear registration with 12 ° of
freedom (DOF), registering a standard MNI T1 image to each subject’s
T1 image, labeling the grey matter in T1 space with the 82 cortical
regions using nearest neighbour interpolation, then transforming the
ROI-labelled T1 image into diffusion space. BEDPOSTX (Bayesian
Estimation of Diffusion Parameters Obtained using Sampling
Techniques; the X refers to the modeling of crossing fibres) in FSL was
used to fit the probabilistic diffusion model on the preprocessed dwMRI
data. Markov Chain Monte Carlo sampling is run to build up distribu-
tions on diffusion parameters at each voxel. Probabilistic fiber tracking
using the probtrackx2 function in FSL was then performed to define
weights (fiber counts/number of streamlines) and anatomical distances
between each pair of ROIs. Probtrackx2 takes repetitive samples from
the distributions of voxel-wise principal diffusion directions. A
streamline is computed through each of these local samples, thus gen-
erating a probabilistic streamline. By taking many samples, a histogram
of the posterior distribution of the streamline location, or connectivity
distribution, is created. All masks for tractography were interface
masks, that is, masks of the boundary between the gray matter and

Table 2
Cortical regions from the Bezgin et al. (2012) atlas.

Index Region

Right Left

1 42 Temporal polar cortex
2 43 Superior temporal cortex
3 44 Amygdala
4 45 Orbitoinferior prefrontal cortex
5 46 Anterior insula
6 47 Orbitomedial prefrontal cortex
7 48 Central temporal cortex
8 49 Orbitolateral prefrontal cortex
9 50 Inferior temporal cortex
10 51 Parahippocampal cortex
11 52 Gustatory cortex
12 53 Ventrolateral premotor cortex
13 54 Anterior visual area, ventral part
14 55 Posterior insula
15 56 Prefrontal polar cortex
16 57 Hippocampus
17 58 Subgenual cingulate cortex
18 59 Ventrolateral prefrontal cortex
19 60 Visual area 2 (secondary visual cortex)
20 61 Medial prefrontal cortex
21 62 Ventral temporal cortex
22 63 Anterior visual area, dorsal part
23 64 Visual area 1 (primary visual cortex)
24 65 Centrolateral prefrontal cortex
25 66 Secondary auditory cortex
26 67 Retrosplenial cingulate cortex
27 68 Posterior cingulate cortex
28 69 Anterior cingulate cortex
29 70 Secondary somatosensory cortex
30 71 Primary somatosensory cortex
31 72 Primary auditory cortex
32 73 Primary motor cortex
33 74 Inferior parietal cortex
34 75 Medial parietal cortex
35 76 Dorsomedial prefrontal cortex
36 77 Intraparietal cortex
37 78 Superior parietal cortex
38 79 Frontal eye field
39 80 Dorsolateral prefrontal cortex
40 81 Medial premotor cortex
41 82 Dorsolateral premotor cortex
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white matter. This approach is referred to as anatomically-constrained
tractography, and allows one to avoid the white matter seeding bias,
that is, the tendency for major white matter structures to be over-de-
fined (Smith et al., 2012). The seeds for tractography were masks of
each of the 82 ROIs. The following settings were used: 5000 samples,
2000 steps per sample, step length of 0.5, curvature threshold of 0.2,
loop check on, and correction of the path distribution for the length of
the pathways. Targets were masks for each of the other 81 ROIs;
streamlines were terminated once they reached the target mask. For a
given ROI, the exclusion mask for connections with ipsilateral ROIs
consisted of that ROI and ROIs in the contralateral hemisphere, and the
exclusion mask for connections with contralateral ROIs was the mask
for that ROI. Any pathways that entered the exclusion masks were
discarded. For each subject, an SC weights matrix was defined for each
pair of ROIs as the number of streamlines detected between the two
ROIs divided by the total number of samples. A tract lengths matrix was
defined for each pair of ROIs as the average distance between the two
ROIs. Finally, both the weights and tract lengths matrices were thre-
sholded based on tractography data for the same atlas from the Co-
CoMac database (Stephan et al., 2001), such that non-existent con-
nections in the CoCoMac data were set to 0 in the human weights and
tract lengths matrices to control for false positives.

Next, the GE of each participant’s SC weights matrix was calculated.
GE was used as a summary measure of structural networks because a
single value is calculated for the entire network, instead of one measure
for each ROI. GE is defined as the average inverse shortest path length
in the brain network, and is a measure of the overall capacity of the
brain network to perform “parallel information transfer and integrated
processing” (Bullmore and Sporns, 2012). Therefore, it would be ex-
pected that brain networks that exhibit high GE in their structural
networks would exhibit high overall entropy of functional networks. GE
was calculated for each participant’s SC matrix using the efficiency_-
wei.m function from the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010). We used a graph metric to estimate information pro-
cessing capacity in each participant’s structural network, since time
series are not available for estimating variability or entropy.

Based on previous work examining correlations between GE and age
that controlled for effects of head motion (Rudie et al., 2012), we ex-
amined the correlation between GE and mean FD that was calculated
for the DWI scans, and found that this relationship was significant, r(35)
= −0.39, p= 0.02. Therefore, the effects of head motion were re-
gressed out of the GE values.

2.5. BOLD signal variability and complexity

Prior to calculating variability and complexity, the BOLD time series
for each ROI was normalized to have a mean of 0 and standard de-
viation of 1. BOLD signal variability was defined using MSSD (von
Neumann et al., 1941), which is defined as the sum of the squared

differences of BOLD signal values between successive time points for a
region of interest, divided by the number of time points minus one. A
primary benefit of MSSD is that it prevents overestimates of dispersion
in data that result from a shift in the mean (Garrett et al., 2011). The
formula for MSSD is as follows:

=
∑ −

−
=
−

+δ
x x

n
( )

1
i
n

i i2 1
1

1
2

Complexity was defined as the sample entropy of the signal using
the sample entropy function from PhysioNet (https://physionet.org/
physiotools/mse/). Sample entropy is used to determine the appearance
of repetitive patterns in a time series, thus measuring the regularity of
the time series. As such, sample entropy values are low for signals that
are completely random or strongly deterministic, and are high for more
complex signals. (Costa et al., 2005; Pincus, 1991; Richman and
Moorman, 2000).

One issue with measuring sample entropy is that two parameters
must be selected: the pattern length m, which is the number of data
points used for pattern matching, and the tolerance factor r, which is
the fraction of the standard deviation of the signal. Recently, Yang et al.
(2018) presented a method for selecting optimal m and r values for an
fMRI dataset based on the standard error of entropy estimates in CSF
voxels. For different combinations of m and r, entropy was calculated
for each voxel in each participant’s CSF mask. Then, the standard error
of this entropy estimate was defined as

=SE 1.96*
( )

2

σSampEn
SampEn

as in Yang et al. (2018). The median standard error was then calculated
across participants, for each combination of m and r. Further, the
number of sample entropy estimation failures due to an absence of
pattern matches was summed across all CSF voxels and participants.
“Acceptable” combinations of m and r were defined as those with a
median standard error of less than 0.1, and with zero sample entropy
estimation failures across all CSF voxels and participants. These values
were used to calculate the sample entropy of the ROIs in the grey
matter. Subsequently, for each participant, sample entropy values were
averaged across the acceptable m and r combinations for each ROI.
Using this method, we tested m values of 1 to 4 with a step size of 1, and
r values ranging from 0.05 to 0.80, with a step size of 0.05, which were
the same r values used in Yang et al. (2018). These investigators also
tested greater values of m, but found that for m>4, the standard error
was greater than 0.1 for all values of r; thus, we only test m values of 4
or less.

2.6. Partial least squares

Partial least squares (PLS; McIntosh et al., 1996; McIntosh and

Fig. 1. Cortical regions from the Bezgin et al. (2012) atlas in MNI space.
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Lobaugh, 2004) is a multivariate statistical method that is used to de-
termine optimal relationships between a set of brain variables and ei-
ther a study design (mean-centering PLS) or a set of behaviour variables
(behavioural PLS). In PLS, singular value decomposition is used to
calculate orthogonal patterns that explain the maximal covariance be-
tween brain variables and design or behaviour variables. For each
pattern, “brain saliences” are calculated for each brain region to in-
dicate how strongly each region contributes to the relationship between
brain and design/behaviour. In other words, brain saliences indicate
which brain regions best characterize the relationship. In mean-cen-
tering PLS, design saliences indicate the group, condition, or group x
condition profiles that best characterize the relationship between the
brain and design variables. In the case of behavioural PLS, behaviour
saliences indicate the profile of behaviour variables that best char-
acterize the relationship between the set of brain variables and beha-
viour variables. “Brain scores” and “behaviour scores” are calculated
for each pattern of relationships between brain and behaviour vari-
ables, which indicate the contribution of each participant’s brain and
behaviour variables, respectively, to the pattern. Brain scores are cal-
culated by multiplying the matrix of brain variables by the brain sal-
iences; behaviour scores are calculated by multiplying the matrix of
behaviour variables by the behaviour saliences. Further, singular values
show the proportion of covariance that each pattern (relationship be-
tween brain and design/behaviour) accounts for.

In this study, mean-centering PLS was used to determine optimal
contrasts in entropy between conditions (acceptable combinations of m
and r), and optimal contrasts in MSSD and entropy between ASD and
TD groups. Behavioural PLS was used to determine relationships each
of these brain variables and a set of predictor variables, including GE of
the structural networks, age, IQ, and scores on the Social
Responsiveness Scale (SRS; Constantino and Gruber, 2005). The SRS is
a parent or teacher report of ASD-related traits that was created for use
in the general population in both clinical and educational settings.
Behavioural PLS was also performed using scores on the Autism Diag-
nostic Observation Schedule 2 (ADOS2) instead of SRS scores in the
ASD group. This analysis was only performed for ASD participants, as
ADOS2 scores were not available for the TD group. Each behaviour
variable was normalized to have a mean of 0 and standard deviation of
1.

The significance of each PLS pattern can be determined using per-
mutation testing. The rows (participants) of the data matrix were re-
shuffled and the singular value was recalculated. This procedure was

repeated 1000 times to obtain a distribution of singular values. Then, a
p-value for the original singular value was obtained by calculating the
proportion of singular values from the sampling distribution that are
greater than the original singular value.

Further, the reliability of each brain salience can be determined
using a bootstrapping procedure. Here, 500 bootstrap samples were
generated by randomly sampling participants with replacement while
maintaining group membership. Next, for each brain salience (brain
region), a bootstrap ratio (BSR) was calculated as the ratio of the brain
salience to the standard error of the salience from the bootstrap sam-
ples, which is a measure of the stability of each brain salience regardless
of which participants are included in the analysis. Stable brain regions
were defined as those that surpassed a BSR threshold of +2, which
corresponds to approximately a 95% confidence interval.

2.7. Data visualization

Brain plots were created using the following Python packages:
matplotlib (Hunter, 2007), nibabel (Brett et al., 2016), and nilearn
(Abraham et al., 2014). All other figures were created in MATLAB
(version R2015b).

3. Results

3.1. Effects of m and r on entropy estimates

Fig. 2 shows the results of the entropy estimates in CSF voxels. This
analysis revealed that for m=1, all r values were acceptable. For
m=2, r values from 0.20 to 0.65 were acceptable. Hereafter, the term
“condition” will be used to refer to an acceptable combination of m and
r.

To ensure that any group differences in MSSD and entropy in the
gray matter ROIs were not confounded by residual effects of head
motion, we first performed a behavioral PLS using mean FD as the
“behaviour” variable. We found that there was no significant relation-
ship with head motion for MSSD (p= 0.53) or entropy (p= 0.23).
However, we found that the relationship between SD and head motion
was significant (p= 0.002), even when additional ICA denoising was
implemented using ICA-AROMA (p= 0.005; Pruim et al., 2015a,
2015b). These findings therefore provide more support for the use of
MSSD over SD for measuring brain signal variability.

Mean-centering PLS was then used to examine how different

Fig. 2. A) Standard error of entropy estimates in CSF voxels. White stars indicate “acceptable” combination of m and r, for which the median entropy estimate in CSF
voxels across participants was less than 0.1. Red crosses indicate combinations of m and r that resulted in a failure of entropy estimation in at least 1 voxel across all
participants. B) Percentage of all CSF voxels (across all participants) showing a failure of entropy estimation.
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acceptable combinations of m and r affected entropy estimates in the 82
grey matter ROIs across all participants. There was one significant
pattern from this analysis that showed a contrast between different
combinations of m and r (p < 0.001, 99.97% covariance explained;
Fig. 3). Therefore, entropy estimates differ significantly depending on
which combinations of m and r are used for the analyses.

For subsequent analyses, since there were differences in entropy
that depended on the choice of m and r, we averaged entropy estimates
across all acceptable m=2 conditions except for r= 0.20, which
showed a contrast with the other r values for m=2.

3.2. Categorical analyses of MSSD and entropy using mean-centering PLS

Next, mean-centering PLS was performed to determine differences
in MSSD and entropy between diagnostic groups. In other words, a
categorical approach was used to analyze MSSD and entropy. For
MSSD, no significant differences were observed between ASD and TD
groups (p= 0.18). Similarly, groups were not significantly different in
entropy (p= 0.15).

3.3. Dimensional analyses of MSSD and entropy using behavioral PLS

Next, behavioral PLS was performed to characterize relationships
between MSSD and entropy in each brain region and the following
measures: GE, age, IQ, and SRS scores, and between entropy and these
measures. One main advantage of using PLS in this way is that re-
lationships between different “behaviour” variables in relation to brain
variables can be analyzed, for instance, to determine if two behaviour
variables differ in terms of the strength or direction of their linear re-
lationships with the brain variables. PLS was performed using SRS total
scores as opposed to scores on the five SRS subscales, because scores on
the subscales were highly correlated with each other as well as total
SRS scores (r>0.80) and therefore biased the PLS results.

The behavioral PLS analyses revealed one significant pattern for
MSSD (p= 0.02, 58.11% covariance explained, Fig. 4) and for one
significant pattern for entropy (p= 0.01, 48.88% covariance ex-
plained, Fig. 5). For both analyses, there was a distributed set of brain
regions that exhibited positive correlations with GE and IQ, but nega-
tive correlations with SRS scores. For MSSD, 19 out of 82 (23.17% of)
brain regions contributed reliably to the brain-behaviour pattern. For
entropy, 17 out of 82 (20.73% of) brain regions contributed reliably to
the pattern. These regions are listed in Supplementary Table 1. For both
MSSD and entropy, a continuum of brain-behaviour relationships can
be observed across ASD and TD participants, as shown in Figs. 4B and
5B. In other words, a broad range of brain and behaviour scores can be

observed across all participants, but overall, brain and behaviour scores
were higher in the TD group (MSSD brain scores: t(35) = −1.96, p=
0.06; MSSD behaviour scores: t(35) = −3.03, p= 0.005; entropy
brain scores: t(35)= 2.40, p= 0.02; entropy behaviour scores: t
(35)= 3.49, p= 0.001). Further, for both MSSD and entropy, beha-
viour scores were more variable for the ASD group compared to the TD
group, which illustrates the highly heterogeneous nature of ASD, al-
though the group difference did not reach significance for MSSD
(MSSD, SDASD= 1.18, and SDTD=0.94, F(19, 16)= 2.29, p= 0.10;
for entropy, SDASD=1.23, SDTD= 0.93, F(19, 16)= 3.64, p= 0.01).

Notably, as shown in Table 3, although the correlations between
brain and behaviour scores were higher for the ASD group compared to
the TD group, the correlations did not differ significantly between the
diagnostic groups.

The brain saliences for the MSSD and entropy analyses were sig-
nificantly correlated, r=0.46, p < 0.001 (1000 permutations),
showing that there was a strong relationship between the brain regions
that contributed to the MSSD pattern and the regions that contributed
to the entropy pattern (Fig. 6).

Behavioral PLS analysis was also performed in the ASD group using
ADOS2 scores in addition to the other predictor variables. As ADOS2
scores were only available for the ASD group, the TD group was not
included in these analyses. When ADOS2 total scores were included, the
PLS analysis was significant for MSSD (p= 0.045), but not for entropy
(p= 0.18). However, in both cases, the behaviour saliences were not
reliable for ADOS2 total scores, as the 95% CIs crossed the x-axis. A
similar pattern was observed when the ADOS2 social affect (SA) and
RRB scores were used instead of the total scores: PLS was significant for
MSSD (p= 0.02) and not significant for entropy (p= 0.15), but the
behaviour saliences for ADOS2 SA and RRB scores were not reliable.

3.4. Interactions between MSSD-behaviour and entropy-behaviour
correlations

As brain-behaviour relationships were similar for both MSSD and
entropy, we combined both of these brain measures in a single beha-
vioural PLS analysis, with each brain measure being treated as a se-
parate “condition”, to determine if any additional patterns existed that
showed a contrast between MSSD and entropy in terms of correlations
with the predictor variables. However, the results of the analysis
showed that there was one significant pattern (p < 0.001) showing the
same pattern of brain-behaviour correlations as the individual analyses
(i.e. positive correlations between brain variables and age and brain
variables and GE, and negative correlations between brain variables
and SRS scores). No additional significant patterns showing different

Fig. 3. Contrast between entropy conditions and associated BSRs for each region, at a threshold of +2. Error bars show 95% confidence intervals determined through
bootstrap resampling.
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brain-behaviour correlations for MSSD and entropy were observed.

3.5. Correlations between behaviour measures

Finally, the relationships between the set of predictor variables were
analyzed across all participants and within groups. As shown in Fig. 7,
there was a moderate positive correlation between GE and age, a weak

negative correlation between GE and IQ, and a moderate negative
correlation between GE and SRS scores. SRS scores were weakly ne-
gatively correlated with IQ. Further, GE did not differ significantly
between the ASD and TD groups, t(35) = −1.18, p= 0.25. A notable
difference between groups was the correlation between age and GE: in
ASD, this correlation was positive (r(18)=0.46, p= 0.04), whereas
the correlation was negative, but not significant, in controls (r(15) =

Fig. 4. Behavioural PLS results for MSSD. A) Contrast in relationships for correlations between MSSD and predictor variables, B) associated brain and behaviour
scores for each group, C) BSRs for each region, D) brain plot of BSRs. Regions with a BSR surpassing a threshold of +2 are shown in orange. Error bars show 95%
confidence intervals determined through bootstrap resampling. Blue circles=ASD, red circles= TD.

Fig. 5. Behavioural PLS results for entropy. A) Contrast in relationships for correlations between entropy and predictor variables, B) associated brain and behaviour
scores for each group, C) BSRs for each region, D) brain plot of BSRs. Regions with a BSR surpassing a threshold of +2 are shown in orange. Error bars show 95%
confidence intervals determined through bootstrap resampling. Blue circles=ASD, red circles= TD.
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-0.32, p= 0.21). The correlation coefficients between the two groups
were significantly different, Z=2.30, p= 0.02.

The correlation matrix for the predictor variables used in the ASD-
only PLS analysis (i.e. including ADOS scores) is shown in
Supplementary Fig. 4.

4. Discussion

4.1. Overview

Variability and complexity of resting-state BOLD signals were ex-
amined in participants with and without ASD. For both MSSD and en-
tropy, a continuum of brain-behaviour relationships was observed
across diagnostic groups despite a lack of significant differences be-
tween groups. A distributed set of brain regions exhibited positive
correlations between MSSD and GE and age in both groups, and ne-
gative correlations with SRS scores. A similar pattern was observed for
entropy.

4.2. Variability and complexity in ASD

Categorical and dimensional approaches were used to characterize
MSSD and entropy in participants with ASD compared to TD partici-
pants. The categorical approach involved analyzing differences be-
tween diagnostic groups (ASD and controls), whereas the dimensional
approach involved the use of continuous measures: age, IQ, SRS scores,
and GE. No group differences were observed when a categorical ap-
proach was used; however, using the dimensional approach, a set of

brain regions exhibited relationships with the predictor variables.
The negative relationship between entropy and SRS scores supports

the notion that greater severity of ASD behaviours is associated with
decreased entropy, and therefore decreased information processing
capacity, in the brain. Few studies have examined entropy in ASD;
however, our results are in line with a previous EEG study that found
reduced MSE in ASD during both social and non-social tasks (Catarino
et al., 2011). Reduced entropy in participants with more severe ASD
behaviors supports the “loss of brain complexity hypothesis” proposed
by Yang and Tsai (2013), which states that the complexity of neural
signals reflects the capability of the brain to adapt to changing en-
vironments, and that in pathological states, this “adaptive capacity” of
the brain is reduced.

Similarly, a continuum of brain-behaviour relationships was ob-
served for MSSD, whereby SRS scores were negatively correlated with
MSSD. A dimensional approach has been used to study MSSD in ADHD.
Nomi et al. (2018) did not find significant differences in MSSD between
children with and without ADHD, but found positive correlations be-
tween MSSD and ADHD behavioural severity across diagnostic cate-
gories. While Nomi et al. (2018) found positive correlations between
MSSD and symptom severity, we found negative correlations between
these measures. This finding may seem counterintuitive to theories
suggesting that ASD is characterized by an increased ratio of excitatory-
inhibitory coupling in the brain, which may lead to poor functional
differentiation and noisier and unstable neural signaling, resulting in
inefficient information processing (Rubenstein and Merzenich, 2003).
One possible explanation for this discrepancy is that detrimentally in-
creased levels of noise may manifest at smaller scales in ASD, but not at
macroscopic scales as measured by fMRI. This hypothesis is in line with
the theory that physical connectivity at the level of microcolumns is
increased in ASD, but computational connectivity is reduced (Belmonte
et al., 2004). In other words, within neural assemblies, connections
between synapses and fiber tracts are increased, but long-range con-
nections between functional brain regions are reduced. The authors
hypothesized that increased physical connectivity could lead to un-
differentiated neural regions, which would preclude the development of
effective communication between long-range functional regions. Thus,
at macroscopic scales, ASD-like symptoms may be associated with re-
duced variability, which could be associated with a reduced capacity to
explore different functional network configurations. Further, we in-
cluded a larger set of predictor variables in our study compared to Nomi
et al.’s study. In addition to behavioral severity, we included age and a

Table 3
Correlations between brain and behaviour scores.

Brain variable All participants ASD TD Significance

MSSD r(35)=0.58, p < 0.001 r(18)=0.60, p=0.005 r(15)=0.38, p=0.13 Z=0.81, p=0.42
Entropy r(35)=0.67, p < 0.001 r(18)=0.67, p=0.001 r(15)=0.50, p=0.04 Z=0.72, p=0.47

Fig. 6. Brain saliences for MSSD and entropy. Light purple circles=MSSD,
dark purple circles= entropy.

Fig. 7. Correlation matrix showing relationships between the set of predictor variables used in the behavioral PLS for A) all participants, B) ASD participants, C) TD
participants.
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measure of information processing in structural networks (GE). This
analysis revealed important interactions between GE, age, and beha-
vioral severity, whereby for both MSSD and entropy, a distributed set of
brain regions exhibited positive correlations with GE and age, but ne-
gative correlations with behavioral severity. Thus, factors such as the
efficiency of structural networks and age may be modulating the re-
lationship between MSSD, entropy and measures of behavioral severity.

The PLS analyses used in this study provided a data-driven, “sys-
tems” approach for understanding BOLD signal variability and com-
plexity in ASD. For both MSSD and entropy, a set of distributed brain
regions contributed reliably to the brain-behaviour patterns in the be-
havioural PLS analyses. Previous studies have also reported widespread
alterations in measures of brain function in ASD. For instance, various
studies have reported atypical FC in multiple resting-state networks
(e.g. Abraham et al., 2017; Anderson et al., 2011; Rashid et al., 2018;
Rudie et al., 2012; Supekar et al., 2013; Wee et al., 2016). Further,
distributed abnormalities in white and grey matter development have
been reported in ASD (Carper et al., 2002; Sparks et al., 2002). Müller
(2007) suggested that ASD should be characterized as a “distributed
disorder”, or in other words, a network disorder, which is applicable to
genetics, brain structure and function, and behaviour. It was noted that
the many potential genetic risk factors for ASD can influence the de-
velopment of multiple networks in the brain; therefore, “localizing
models” may not be helpful for understanding ASD. As stated by Müller
(2007), it is likely that there is a “distributed ontogenetic starting point
affecting several emerging brain regions and functional systems… and
each of these will in turn affect additional regions and functional sys-
tems throughout development”. Therefore, data-driven, whole-brain
analyses are important for understanding brain function in ASD.

4.3. Variability and entropy increase with age

Distributed brain regions showed increases in MSSD and entropy
from childhood through adolescence, suggesting that across develop-
ment, information processing capacity increases in the brain (Figs. 5
and 6). Previous work has suggested that increased information pro-
cessing capacity over development results from a greater quantity of
possible configurations of functional networks (McIntosh et al., 2010).
Entropy of EEG signals has been shown to increase from childhood to
adulthood, and is associated with higher accuracy and less variable
reaction times during task performance (Lippé et al., 2009; McIntosh
et al., 2008; Misic et al., 2010). Increases in entropy across development
are thought to reflect increased integration and segregation in the brain
(Garrett et al., 2013; McIntosh et al., 2008).

While developmental changes in variability and entropy have
mostly been studied using EEG, Nomi et al. (2017) used fMRI to study
changes in variability across the lifespan. In this study, central execu-
tive, default mode, visual, sensorimotor, and subcortical regions ex-
hibited linear decreases in MSSD from ages 6 to 85, whereas nodes in
the salience network and bilateral ventral temporal cortices exhibited
increases in variability. The discrepancies between these findings and
ours may relate, in part, to differences in age ranges and preprocessing
strategies, which can affect estimates of BOLD signal variability
(Garrett et al., 2010, 2013). Additional research on developmental
changes in BOLD signal variability across different age ranges using
various preprocessing strategies is required to resolve these dis-
crepancies.

4.4. Variability and entropy are associated with global efficiency in
structural networks

Behavioural PLS also revealed positive correlations between MSSD
of BOLD time series and GE in structural networks, and between en-
tropy and GE (Figs. 5 and 6). This finding supports the notion that
structure shapes function in the brain (Deco et al., 2013; Honey et al.,
2007, 2009, 2010). Further, there was a contrast in the relationship

between GE and behavioural severity, such that brain regions that ex-
hibited positive correlations with GE exhibited negative correlations
with behavioural severity. Previous work has shown relationships be-
tween GE in structural networks and cognitive abilities. Berlot et al.
(2016) showed that mild cognitive impairment (MCI) patients exhibited
reduced GE of brain networks, which was associated with reduced
cognitive control. Further, in Alzheimer’s disease, reduced GE has been
associated with memory and executive function abilities (Reijmer et al.,
2013). Collectively, these results suggest an important relationship in-
formation processing capacity in structural and functional networks
and cognitive functioning.

4.5. Correlations between GE and age

While groups did not differ in GE, a significant positive correlation
was found between GE and age in the ASD group, yet the correlation
between GE and age in the TD group was negative and non-significant.
A previous study of similarly-aged ASD and TD participants also did not
find group differences in GE; however, they found that GE in structural
networks increased with age (controlling for head motion) in TD, but
not ASD, participants (Rudie et al., 2012). Another study reported a
positive correlation between GE and age in TD individuals (Hagmann
et al., 2010); however, the investigators studied a much broader age
range (18 months to 18 years old). It is possible that developmental
trajectories of GE are nonlinear, given that other properties of structural
development do not follow linear trajectories. For instance, white
matter integrity exhibits nonlinear increases from childhood to adult-
hood, with steeper increases in childhood (Lebel et al., 2008). There-
fore, future studies should study larger samples and broader age ranges
of individuals with and without ASD to examine potential nonlinearities
and group differences in developmental trajectories of information
processing capacity in structural networks. Another possibility is that
efficiency trajectories may differ in different parts of the brain: Dennis
et al. (2013) found that GE increased with age in the left hemisphere,
but decreased with age in the right hemisphere, in a sample of 439
adolescents and adults aged 12 to 30 years. Thus, future studies should
aim to further elucidate region- or network-dependent development of
information processing capacity.

4.6. Limitations

There are several limitations of the current study. First, our sample
size was small due to the limited number of high quality datasets with
both DTI and resting-state fMRI data from the ABIDE II database. We
chose to analyze data from a single site for this study. While previous
work has demonstrated the feasibility of multisite DTI studies based on
high concordance of fractional anisotropy and mean diffusivity mea-
surements across five different scanning sites (Fox et al., 2012), the
reliability of measurements of resting-state FC across scanning sites is
less clear. FC measurements can be affected by differences in scanner
manufacturers and acquisition protocols (Shinohara et al., 2017; Yu
et al., 2018). Dansereau et al. (2017) analyzed multisite resting-state FC
data across 8 scanning sites, and reported small to moderate between-
site effects. Jovicich et al. (2016) studied difference in DMN FC in 5
healthy elderly participants who were scanned at 13 different sites with
harmonized protocols, and found significant differences in temporal
signal-to-noise ratio between sites. These differences were hypothesized
to relate to differences in hardware and pulse sequences between sites.
Nielsen et al. (2013) found that classification of ASD compared to
controls based on resting-state FC was lower when multiple sites were
included as opposed to a single site. Further, Easson et al. (2018) de-
fined subtypes of ASD and controls based on FC using 5 sites from the
ABIDE database, and found that it was necessary to regress out the
effects of scan site prior to k-means classification, otherwise, the clus-
ters differed significantly in scan site. This finding shows that promi-
nent FC clusters defined in an unsupervised manner are driven by
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differences in FC across scanning sites. Thus, it will be crucial to further
elucidate the effects of scanning site on resting-state FC to allow for
multisite studies, and thus, larger sample sizes.

4.7. Conclusions

This study reveals relationships between brain signal variability and
complexity and GE, age, and behavioural severity across ASD and TD
participants, and illustrates the importance of taking a dimensional
approach to studying brain function in ASD. By analyzing brain varia-
bility and complexity in relation to a set of predictor variables, a con-
tinuum of relationships between brain variables and predictor variables
was observed; however, when treating ASD and TD groups categori-
cally, significant group differences were not observed. Further, in-
creased GE in structural networks and increased age were associated
with higher MSSD and entropy, revealing important information about
structure-function relationships in the brain and the developmental
trajectories of variability and complexity.
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