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Objective: To explore the performance of Multi-scale Fusion Attention U-Net (MSFA-U-
Net) in thyroid gland segmentation on localized computed tomography (CT) images for
radiotherapy.

Methods:We selected localized radiotherapeutic CT images from 80 patients with breast
cancer or head and neck tumors; label images were manually delineated by experienced
radiologists. The data set was randomly divided into the training set (n = 60), the validation
set (n = 10), and the test set (n = 10). We expanded the data in the training set and
evaluated the performance of the MSFA-U-Net model using the evaluation indices Dice
similarity coefficient (DSC), Jaccard similarity coefficient (JSC), positive predictive value
(PPV), sensitivity (SE), and Hausdorff distance (HD).

Results: For the MSFA-U-Net model, the DSC, JSC, PPV, SE, and HD values of the
segmented thyroid gland in the test set were 0.90 ± 0.09, 0.82± 0.11, 0.91 ± 0.09, 0.90 ±
0.11, and 2.39 ± 0.54, respectively. Compared with U-Net, HRNet, and Attention U-Net,
MSFA-U-Net increased DSC by 0.04, 0.06, and 0.04, respectively; increased JSC by
0.05, 0.08, and 0.04, respectively; increased SE by 0.04, 0.11, and 0.09, respectively;
and reduced HD by 0.21, 0.20, and 0.06, respectively. The test set image results showed
that the thyroid edges segmented by the MSFA-U-Net model were closer to the standard
thyroid edges delineated by the experts than were those segmented by the other three
models. Moreover, the edges were smoother, over–anti-noise interference was stronger,
and oversegmentation and undersegmentation were reduced.

Conclusion: TheMSFA-U-Net model could meet basic clinical requirements and improve
the efficiency of physicians’ clinical work.
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INTRODUCTION

Head and neck tumors and breast cancer are currently the
tumors with relatively higher morbidity and mortality rates
worldwide (1). In 2020, 19.29 million new cancer cases
occurred worldwide, of which 4.57 million (23.7%) were in
China. Radiotherapy is an effective and common method for
treating head and neck cancer and breast cancer (2–4).
Accurately delineating organs at risk (OARs) when designing
radiotherapy plans can effectively avoid radiation side effects. At
present, physicians are responsible for outlining OARs, making
the process subjective, time consuming, and labor intensive.

The rapid development of artificial intelligence (AI) enabled
Ronneberger et al. (5) to propose the U-Net neural network model
in 2015. The delineation method based on deep learning (DL) has
gradually been developed and applied in clinical work (6–10). Ye
et al. (7) used an improved model, a dense-connectivity embedding
U-Net, to train and segment the T1 and T2 magnetic resonance
imaging (MRI) images of 44 patients with nasopharyngeal
carcinoma; the authors obtained a Dice similarity coefficient
(DSC) of 0.87 after tenfold cross-validation. Automatized
delineation of the thyroid gland on localized CT images for
radiotherapy has been critical in radiotherapy planning (11). Zhai
et al. (12) found that the patients who received thyroid mean radio
dose of ≥45 Gy had a 4.9 times increased risk of hypothyroidism
than those with lower mean radio dose. Akın et al. (13) conducted a
retrospective study on 122 patients who received three-dimensional
conformal radiation therapy (3D-CRT) for breast cancer. They
found that ①functional abnormalities occurred in the thyroid gland
which was exposed to total radiation doses of 26 to 30 Gy; ②44% of
the patients were exposed to a radiation dose of >26 Gy. Other
studies showed that 2 years after patients with head and neck
tumors received radiotherapy, their incidence of hypothyroidism
was 36%; moreover, this incidence increased along with follow-up
time (14, 15). Therefore, in radiotherapeutic planning, radiation
must be limited to the thyroid gland. Narayanan D. et al. (16) used
multi-atlas label fusion (MALF) and random forest (RF) to
automatically segment the thyroid gland on CT and found that
MALF with RF presented better segmentation with the DSC being
0.76 ± 0.11, which was significantly better than the individual
MALF and RF methods. Chang et al. (17) used a progressive
learning vector quantization neural network to segment the
thyroid on CT and their experimental results showed that the
proposed method could effectively segment thyroid glands with its
average SE being 88.43%. He et al. (18) used deep convolutional
neural network to segment the thyroid gland on noncontrast-
enhanced head and neck CTs and found that their proposed
method had significantly improved performance. Considering that
Abbreviations: CT, computed tomography; MSFA-U-Net, Multi-scale Fusion
Attention U-Net; DSC, Dice similarity coefficient; JSC, Jaccard similarity
coefficient; PPV, positive predictive value; SE, sensitivity; HD, Hausdorff
distance; HRNet, High-Resolution net; OARs, organs at risk; AI, artificial
intelligence; DL, deep learning; MRI, magnetic resonance imaging; MALF,
multi-atlas label fusion; RF, random forest 3D, three-dimensional; 3D-CRT,
three-dimensional conformal radiotherapy; ROI, region of interest; cSE, Spatial
Squeeze and Channel Excitation Block; BN, batch normalization; GAP, global
average pooling; DLC, deep learning contouring.
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CT localization for radiotherapy involves a simulated-positioning,
large-aperture CT (SOMATOM Sensation Open, 24 rows, F85 cm;
Siemens Healthcare, Forchheim, Germany), which is limited by
small size and poor image resolution, automatic segmentation of the
thyroid gland based on a DL model is difficult. The performance of
such a model on localized CT images for radiotherapy requires
further exploration. In the deep learning study, the combination of
HRNet and SE is common (19). In HRNet, multiple parallel
networks with different resolutions are used to extract features
and multi-scale fusions are repeatedly performed during feature
extraction to ensure that the model can fully obtain information of
different scales (20). The cSEmodule enables the model to pay more
attention to major channel features and suppresses those minor
channel features (21). Therefore, in this study, we proposed a model
that combined a Spatial Squeeze and Channel Excitation Block
(cSE) attention mechanism with HRNet on the basis of U-Net and
used it to segment the thyroid gland on localized CT images to help
delineate the gland as an OAR in radiotherapy.
MATERIALS AND METHODS

Data Set Acquisition
We obtained the experimental data set in this study from 80
patients with nasopharyngeal carcinoma or breast cancer who
were admitted to the Department of Radiotherapy of Yunnan
Cancer Hospital (Kunming, China) from June 2014 to April
2019. Localization for each patient was simulated using a
SOMATOM Sensation Open 24 CT scanner. CT images were
obtained in Digital Imaging and Communications in Medicine
(DICOM) format with slices being 5 or 3 mm thick and pixels
being 512 × 512. Senior radiotherapists drew the label images on
the CT images in DICOM, using 3D Slicer software version 4.11.
The label images were converted from DICOM to PNG
format (Figure 1).

We divided the data set (6:1:1) into training, validation, and
test sets. Due to the small number of medical data sets and the
high cost of drawing, collecting a sufficiently large number of
data sets was difficult; however, a training data set that was too
small would have created a risk of overfitting the model. To avoid
this risk, in this study we expanded the training sample data set
size by means of rotation, flipping, zooming, and shearing.

Data Set Preprocessing
To better highlight the region of interest (ROI), we first
converted CT image pixels into Hounsfield unit (HU) values
and then adjusted the window width and level of the converted
data to highlight the thyroid gland. Finally, we used adaptive
histogram equalization to further enhance the contrast and
normalize the images.

Model Framework
We improved our model based on the U-Net and HRNet model
architectures, called MSFA-U-Net. Main improvements were (a)
replacing two feature extraction convolutions of different
resolutions in the U-Net downsampling process with multiple
convolution blocks in HRNet and feature fusion between different
May 2022 | Volume 12 | Article 844052
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scales: and (b) introducing the cSE attention mechanism into each
convolution block (Figure 2). In the downsampling process of the
model, we connected a cSE module after extracting two 3 × 3
convolutional features and fused the input features with the post–
scale operation features by means of a residual connection that
consisted of a 1 × 1 2D convolution and a normalization layer (22)
[batch normalization (BN)]. In the cSE module, we used a global
average pooling (GAP) layer to convert a feature map from channel
× height × width to channel × 1 × 1 and then used Dense to reduce
the feature channel by half, which we achieved by activating the
function Relu. Next, we restored the feature channel to normal size
using Dense and activated it using the function Sigmoid. Finally, we
obtained a calibrated feature map via channelwise multiplication.
The schematic diagram of the residual connection and cSE module
structure is shown in Figure 3. Residual connection can prevent
gradient vanishing and gradient explosion during training (23).
Moreover, the cSE module could effectively reflect relationships
between different channels and assign different weights, enabling
Frontiers in Oncology | www.frontiersin.org 3
the model to focus on important features for accurate segmentation
of the thyroid gland during the training process. The whole module
is called an Attention Resblock (Figures 2, 3). The traditional U-
Net model uses the maximum pooling layer to perform
downsampling and reduce the number of parameters; this
method can lead to loss of information during feature extraction.
Therefore, in this study we used stepped convolution for
downsampling. Stride convolution can remove redundant
information, thereby reducing the size of the feature map. Our
model used multiple branches of different resolutions to extract
features in parallel during the training process, and it performed
feature fusion among different scales after each attention residual
block to achieve strong semantic information and precise location
during the training process. One or more transposed convolutions
(3 × 3) were used in the conversion from low to high resolution,
while one or more stride convolutions (3 × 3) were used in the
conversion from high to low resolution (Figure 3). In the
upsampling, the attention residual block replaced the two
A B

C

FIGURE 1 | Localized CT image, Ground truth, and 3D image. (A) Standard image of the imported model (CT image). (B) Corresponding label image (Ground truth).
(C) Thyroid gland drawn in 3D.
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FIGURE 2 | MSFA-U-Net structure.
A

B C

FIGURE 3 | Attention Resblock Module and feature fusion of different scales. (A) Attention Resblock Module; blue cuboid = cSE module, red cuboid = Resblock
module. (B) One or more stride convolutions (3 × 3) were used in the conversion from high to low resolution. (C) One or more transposed convolutions (3 × 3) were
used in the conversion from low to high resolution.
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convolution operations in U-Net to avoid excessive parameters.
Meanwhile, we added a dropout layer after each shortcut
connection (parameter set to 0.2) to avoid a decrease in
generalization caused by overfitting resulting from multiple
feature fusions between different scales during the training process.

Model Operating Environment
and Parameters
We used TensorFlow software version 2.4.0 (Google Brain Team,
2015; Mountain View, CA, USA) and Keras software version
2.4.3 (Chollet, 2015) to build the model, and Python 3 (Van
Rossum and Drake, 2009) to program it. In addition, we used a
Windows 10 64-bit operating system (Microsoft Corp.,
Redmond, WA, USA) with the following hardware: central
processing unit (CPU), Intel Core i9-10900 KF @ 3.70 GHz
(Intel Corp., Santa Clara, CA, USA); graphics card, NVIDIA
GTX3090 24 G (NVIDIA Corp., Santa Clara, CA, USA); and 128
GB memory. Model hyperparameters were selected from the best
results according to the experimental conditions (Table 1). Batch
Size represents the number of input images per iteration, Epoch
represents the batch to be trained, Image Size represents the
input size of the image, Learning Rate represents the initial
learning rate using exponential decay, Decay steps indicate how
many steps have been experienced for a learning rate decay, and
Decay Rate indicates the learning rate decay coefficient.

Loss Function
Due to its small size, the thyroid gland occupies minimal space
on a CT image. Therefore, use of the traditional cross-entropy
loss function would leave the model more inclined to predict the
background and thus unable to accurately identify the thyroid
gland. Milletari et al. (24) proposed a loss function for sample
imbalance in medical-image segmentation while researching V-
Net-Dice loss function, which is based on DSC. It directly
compares the overlap between the model prediction and real
segmentation, thereby effectively solving the problem of serious
thyroid imbalance. The Dice loss function is calculated according
to formula (1.1) below:

DL = 1 − 2*
X ∩ Yj j + e
Xj j + Yj j + e

, (1:1)

where X represents the label matrix of the real thyroid gland, Y is
the prediction matrix of the model predicting the thyroid gland,
and e represents a constant included to avoid division by zero.

Evaluation Indices
We used the common indices of DSC, JSC, PPV, SE, and HD to
further evaluate the generalization ability and segmentation
accuracy of the model.
Frontiers in Oncology | www.frontiersin.org 5
DSC (25) and JSC (26) were calculated according to formulas
(1.2) and (1.3), respectively:

DSC = 2*
X ∩ Yj j
Xj j + Yj j , (1:2)
JSC =
X ∩ Yj j
X ∪ Yj j , (1:3)

where X represents the standard segmentation map drawn by a
radiologist, Y is the prediction image segmented by the neural-
Network model, and | X∩Y | represents the overlap between the
standard map drawn by the radiologist and the model-predicted
image. The value range of DSC and JSC is 0–1; values closer to 1
indicate better predictive ability.

PPV (27) and SE (28) were calculated according to formulas
(1.4) and (1.5), respectively:

PPV =
TP

TP + FP
, (1:4)

SE =
TP

TP + FN
, (1:5)

where TP represents the correctly predicted foreground target
value, FP represents the incorrectly predicted foreground target
value, and FN represents the incorrectly predicted background
target value.

HD (29) was calculated according to formula (1.6):

H(X,Y) = max h X,Yð Þ, h Y ,Xð Þð Þ, (1:6)

where:
h X,Yð Þ = max

x∈X
 min

y∈Y
∥ x − y ∥, h Y ,Xð Þ

= max
y∈Y

 min
x∈X

∥ y − x ∥

Smaller values of HD indicate better predictive ability.

Comparison Model Design
To prove the validity of the proposed MSFA-U-Net model, we
selected three model architectures related to MSFA-U-Net and
conducted comparative experiments:

1. U-Net (5): A U-shaped symmetrical structure composed of
upsampling, downsampling, and skip connection. The skip
connection effectively combines feature information among
different resolutions and compensates for the loss of high-
resolution features in the downsampling process. It could also
output the feature map more accurately. U-Net is a widely
used model in medicine.
TABLE 1 | Network training parameters.

Model Batch Size Epoch Image Size Learning Rate Decay Steps Decay_Rate

U-Net 2 120 512 × 512 1e-5
HRNet 2 120 512 × 512 8e-5 300 0.96
Attention U-Net 2 120 512 × 512 8e-4 300 0.96
MSFA-U-Net 2 120 512 × 512 2e-4 300 0.96
May 2022 | Volume 12 | A
rticle 844052
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2. HRNet (20): This model maintains high-resolution output
during feature extraction. It has multiple parallel subnets with
different resolutions to compress and extract features and to
fuse features on multiple scales in order to obtain richer high-
resolution features. In their original study, the authors used
bilinear-interpolation upsampling. To better extract features
for fusion, in this study we used transposed convolution to
convert from low to high resolution.

3. Attention U-Net (30): This model introduces an attention-
gating mechanism, which gives the information in the jump
connection of the U-Net model different weights and enables
it to pay more attention to the ROI.
EXPERIMENTAL RESULTS

Qualitative Analysis of Results
Figure 4 shows the results of the thyroid gland segmentation of the
four models in the test set. Figure 5 shows the coverage map of the
four models on the CT image of the radiotherapy location. Given
the presence of many blood vessels and soft tissues with similar
gray levels around the thyroid gland, oversegmentation and
undersegmentation are expected in edge segmentation. As shown
in Figure 4, some of the surrounding blood vessels and soft tissues
were mistakenly segmented as part of the left lobe of the thyroid
gland when the U-Net model segmented that lobe. Although
HRNet and Attention U-Net decreased oversegmentation of the
surrounding soft tissues and blood vessels, some noise points and
uneven edges remained. However, the MSFA-U-Net architecture
used in this study achieved smooth edges and decreased noise.
Moreover, although we adjusted the window width and level and
adopted adaptive contrast enhancement, some lesions at some
levels of the thyroid might have been less obviously enhanced. At
these levels, MSFA-U-Net exhibited more-robust thyroid
segmentation than the other three models. In summary,
Frontiers in Oncology | www.frontiersin.org 6
compared with those other three models, MSFA-U-Net
improved the performance of thyroid gland segmentation on
localized CT images for radiotherapy.

Quantitative Analysis of Results
Table 2 compares the results for the four models in the test set of
thyroid gland segmentation indices on localized CT images for
radiotherapy. MSFA-U-Net had the best values for four evaluation
indices: DSC, 0.90; JSC, 0.82; SE, 0.90; and HD, 2.39. Compared
with the other three mainstream medical-image segmentation
models, MSFA-U-Net greatly improved DSC (improvement
range, 0.04–0.06), JSC (improvement range, 0.04–0.08), SE
(improvement range, 0.04–0.11), and HD (improvement range,
-0.21 to -0.06). On the PPV index, MSFA-U-Net was better than U-
Net and worse than bothHRNet and Attention U-Net; however, the
HRNet and Attention U-Net models performed worse than the
MSFA-U-Net model on the other evaluation indices.

Box Plot of Results
To further evaluate the differences among the four models, we
made box plots of the evaluation indices (Figure 6). The results
showed that MSFA-U-Net had a smaller distance between the
upper and lower quartiles than the other three models; it also had
fewer outliers, and the outliers it did have were closer to the
median. These findings indicated that MSFA-U-Net was better at
segmenting the thyroid gland on localized CT images for
radiotherapy than the other three models were; moreover, it
ensured more-consistent segmentation results.

Summary and Analysis of Results
Attention U-Net (which introduces gated attention) and HRNet did
not show obvious advantages in thyroid gland segmentation on
localized CT images for radiotherapy compared with U-Net; rather,
they performed even worse on some of the evaluation indices. The
reason might be that although the gated-attention mechanism can
A B D E FC

FIGURE 4 | Thyroid gland segmentation of the four models on localized CT images for radiotherapy. (A) Standard image of the imported model (CT image).
(B) Corresponding label image (Ground truth). (C) Thyroid segmented by U-Net. (D) Thyroid segmented by HRNet. (E) Thyroid segmented by Attention U-Net.
(F) Thyroid segmented by MSFA-U-Net.
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effectively segment the target category and location, it can also lead
to an increase in false-positive model predictions for small-volume
segmentation with variability in shape. HRNet performs multiple
simple feature fusions; although it can effectively fuse features and
obtain rich high-resolution features, it is also more likely to cause
overfitting if training data is relatively scarce. Therefore, the
phenomenon of integration leads to a decline in HRNet’s
generalization ability. Clearly, the increases in model parameters
and resource consumption might not necessarily improve results.
DISCUSSION

Radiotherapy is critical to comprehensive treatment of head and
neck tumors and breast cancer. When radiotherapy plans are
designed and implemented, accurate regulation of the radiation
dose within the target area and limitation thereof to the surrounding
OARs are important factors in the treatment plan’s evaluation.
OARs must be precisely delineated to effectively limit the dose
outside the target area and avoid side effects of radiation (31). The
thyroid gland, as an OAR during treatment of head and neck
tumors and breast cancer, must be protected during radiotherapy.
Atlas-based Auto- contouring (ABAS) and deep learning
contouring (DLC) are most widely used in present automatic
delineation of OARs. Choi Ms et al. (32) compared the
performance between ABAS and DLC in delineating breast
cancer OARs and clinical target volume, which showed that DLC
Frontiers in Oncology | www.frontiersin.org 7
performed better than ABAS in the properties of most structures.
Besides, L. V. van Dijk et al. (33). compared the performance
between ABAS and DLC in automatically delineating head and
neck OARs, which revealed that DLC had better performance than
ABAS and DLC presented significantly better thyroid automatic
delineation with DSC increasing 0.23 (0.83 VS 0.60). However, there
still exists improvement space in automatic delineation of thyroid
due to its small volume and complex shape, which necessitates
developing a new DLCmodel to improve the accuracy of automatic
delineation of the thyroid.

This study proposed a multi-scale fusion attention U-Net model
to address the problem of thyroid gland segmentation on localized
CT images for radiotherapy. The innovation of this algorithm lay in
the addition of multiple parallel channels on the basis of the
traditional U-Net model. It fully integrated feature information
between different resolutions, thereby avoiding single-resolution
information in the U-Net downsampling process. In addition, our
study also introduced the cSE attention mechanism, which inclined
the model to the ROI during the training process. The experimental
results showed that, compared with similar representative
segmentation algorithms, the proposed model improved both
qualitative and quantitative results to a certain extent and had
better robustness and generalization. The image segmentation
graphs revealed that MSFA-U-Net effectively reduced
oversegmentation and undersegmentation and achieved smoother
edges. It is believed in the relevant articles that DSC > 0.70 indicates
acceptable agreement (34, 35). All models used in this study reached
this threshold with the DSC value of MSFA-U-Net reaching 0.90,
indicating that this model could effectively segment the thyroid
gland on localized CT images for radiotherapy. The box plot
diagrams demonstrated that MSFA-U-Net yielded good
quantitative results: the upper- and lower-quartile gaps and
outliers of most evaluation indicators were reduced, indicating
that the model achieved consistent segmentation of the different
layers of the thyroid gland and could segment the gland effectively.

Furthermore, some automatic delineation performance of the
thyroid conducted by other researchers were compared with ours.
TABLE 2 | Assessment indices of the test set (�x ± s).

U-Net HRNet Attention U-Net MSFA-U-Net

DSC 0.86 ± 0.10 0.84 ± 0.09 0.86 ± 0.15 0.90 ± 0.09
JSC 0.77 ± 0.13 0.74 ± 0.13 0.78 ± 0.16 0.82 ± 0.11
PPV 0.88 ± 0.12 0.93 ± 0.08 0.95 ± 0.07 0.91 ± 0.09
SE 0.86 ± 0.12 0.79 ± 0.13 0.81 ± 0.17 0.90 ± 0.11
HD 2.60 ± 0.57 2.59 ± 0.54 2.45 ± 0.69 2.39 ± 0.54
Bold, optimal value.
A B D E FC

FIGURE 5 | Thyroid coverage map of the four models on localized CT images for radiotherapy. (A) CT image. (B) Coverage map of thyroid of corresponding label
image(Ground truth) on CT image. (C) Coverage map of thyroid segmented by U-Net on CT image (D) Coverage map of thyroid segmented by HRUet on CT image.
(E) Coverage map of thyroid segmented by Attention U-Net on CT image. (F) Coverage map of thyroid segmented by MSFA-U-Net on CT image.
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L. V. van Dijk et al. (33) adopted deep learning contouring to
improve automatic delineation for head and neck OARs. In their
study, automatic delineation of 693 patients were performed with
DSC and HD being 0.83 ± 0.08 and 3.6 ± 3.0 mm for DLC. In our
study, the DSC and HD for the proposed model, MSFA-U-Net,
were 0.90 ± 0.09, and 2.39 ± 0.54 respectively. Yang et al. (36) used a
self-adaptive Unet network to segment OARs on the CT images of
149 nasopharyngeal carcinoma patients and obtained thyroid
segmentation with DSC being 0.83 ± 0.03 and HD being 4.5 ±
Frontiers in Oncology | www.frontiersin.org 8
1.3. Compared with their model, our proposed model, MSFA-U-
Net, increased DSC by 0.07 and reduced HD by 2.11, indicating that
MSFA-U-Net had certain superiority in segmenting the thyroid
gland on localized CT images for radiotherapy. Zhong et al. (37)
proposed Boosting-based Cascaded Convolutional Neural Network
to segment the head and neck OARs. In their model, DSC was
above 92.29% and HD was 2.64 for the thyroid. Our proposed
model produced a lower DSC, but a better HD evaluation. Cascaded
and boosting were adopted in their model, which promoted its
A B

D

E

C

FIGURE 6 | Box plot diagrams in the test set. (A) Box plot diagram of DSC in the test set. (B) Box plot diagram of JSC in the test set. (C) Box plot diagram of PPV
in the test set. (D) Box plot diagram of SE in the test set. (E) Box plot diagram of HD in the test set.
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performance than single-models but meanwhile increased its
complexity. When we take model complexity and segmentation
performance into consideration, we find that our model still has
its advantages.

However, the algorithm proposed in this study had some
limitations. First, certain MSFA-U-Net evaluation indices have
not yet reached optimal results. Second, the introduction of
numerous feature fusions among different scales increased the
number of model parameters. Third, although Dice loss function
could effectively solve the problem of class imbalance, its
gradient characteristics could cause the model to oscillate
during the training process. In future research, we will explore
how to reduce the parameter count of the model while further
optimizing the model by using different loss functions.
CONCLUSION

In summary, the MSFA-U-Net model enabled radiotherapy
physicians to automatically delineate the thyroid gland on
localized CT images for radiotherapy. Our results showed that
the model could be applied in clinical work: compared with the
three commonly used models in medicine, MSFA-U-Net could
delineate the thyroid gland more accurately.
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