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INTRODUCTION

In recent years, artificial intelligence (AI) and deep 
learning (DL) have become highlighted technologies across 
society, including in the field of medicine. The concept of 
DL is not brand-new (1, 2), but the recent rapid growth of 
computing power and digital data have enabled its success 
in various fields of application, such as speech recognition 
(3), natural language processing (4), self-driving vehicles 
(5), and medicine (6, 7).

One of the most successful areas of DL is computer vision. 
A specific type of DL algorithm called the convolutional 
neural network (CNN) has played a central role in this 
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success. In 2012, a DL algorithm called “AlexNet,” using 
a CNN architecture, won the annual ImageNet Large 
Scale Visual Recognition Challenge, which is the biggest 
competition in the image recognition field (8), exhibiting 
a much lower error rate than the winning algorithm from 
the previous year (16% vs. 26%) (9). In 2015, the winning 
algorithm of the competition called “ResNet,” based on a 
CNN, exhibited an error rate of 3.6%, surpassing human-
level performance (10).

For medical image analyses, CNN-based DL models 
showed expert or beyond-expert level performances in 
various tasks, including the diagnosis of skin cancer from 
skin photographs (11), diagnosis of diabetic retinopathy 
from fundus photographs (12, 13), and detection of breast 
cancer metastasis from pathologic slides (14). These initial 
successes raised expectations that DL-based medical image 
analysis tools would soon be implemented in daily practice. 
Recently, it has been asserted that radiologists could 
and should be educated consumers by understanding the 
value of AI tools in clinical practices and evaluating their 
performance before their clinical implementation (15). 

Chest X-ray (CXR) ragiographic images and computed 
tomography (CT), which are the two pillars of thoracic 
radiology, have been the most actively investigated imaging 
modalities for various computer-aided image analyses. 
Some investigations have shown promising results using 
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Recent investigations based on DL suggest a potential to 
overcome the limitations of conventional CAD systems (30, 
43). In a study by Nam et al. (30), a DL algorithm exhibited 
a per-nodule sensitivity of 70–82% with 0.02–0.34 false-
positives per image for the detection of malignant lung 
nodules on CXRs. In another study by Cha et al. (43), a DL 
algorithm showed a 76.8% per-nodule sensitivity at 0.3 
false-positives per image. In both studies, the performance 
of the DL algorithms was better than that of the 
radiologists. Although it is difficult to directly compare the 
performances in the two studies because of the differences 
in the test dataset, the above-radiologist performances 
of DL suggest the potential of its implementation in daily 
practice (Fig. 1).

Detection of Multiple Abnormalities on CXR

In addition to lung nodules, the DL-based algorithm has 
shown good performance in various thoracic diseases, such 
as pulmonary tuberculosis (area under receiver operating 
characteristic curve [AUC], 0.83–0.99) (28, 29, 44, 45), 
pneumonia (maximum AUC in internal validation, 0.93) (46), 
and pneumothorax (AUC, 0.82–0.91) (32, 47), and in the 
evaluation of medical devices on CXRs (48-50). However, 
algorithms specific to a single disease or abnormality 
may have limited value in real clinical practice, as the 
interpretation of CXR requires the assessment of various 
diseases and abnormalities in the thorax.

In 2017, Wang et al. (51) reported a large open-source 
dataset including 112120 CXRs from 30805 patients, which 
were labeled for 14 thoracic abnormalities, provided by 
the U.S. National Institute of Health (50). The authors 

conventional computer-aided image analyses (16-23), 
but few of them have been implemented in actual clinical 
practice because of their suboptimal performances (24, 
25). It is now anticipated that DL technology will overcome 
the limitations in performance shown by conventional 
computer-aided image analyses and be implemented in 
the daily practice of thoracic radiology (17, 26). Indeed, 
there have been several early investigations reporting the 
surprisingly high performance of DL technologies in thoracic 
radiology, particularly CXRs (27-32).

The aim of this review article is to introduce 
potential applications of DL technology in the field of 
thoracic radiology (Table 1) and possible scenarios of 
implementation in the clinical workflow. In addition, we 
aim to discuss challenges in the application of DL in routine 
clinical practice. 

Lung Nodule Detection on CXR

Lung nodule detection on CXR is important because 
lung nodules may represent lung cancer. However, this can 
often be challenging and lung nodules are not uncommonly 
missed by radiologists (33, 34). Therefore, a computer-
aided detection (CAD) system for lung nodules is by far the 
most investigated task of CAD with respect to CXRs (25, 
35-38). Investigations in this field began in the 1960s 
(39). Regarding conventional CAD systems, multiple studies 
reported a potential to enhance radiologists’ performance 
(38, 40-42); however, their standalone performance was 
suboptimal for a clinical implementation, resulting in many 
false-positive nodules (1.7–3.3 false positive results per 
image) (25).

Table 1. Task-Based Classification of Potential Applications of Deep Learning Technology in Field of Thoracic Radiology

Detection of abnormalities
Detection of lung nodule on CXR (30, 43) or chest CT (69)

Image classification
Classification of lung nodules according to morphology (71)
Classification of lung nodules according to likelihood of malignancy (72-74)
Diagnosis of specific diseases (active tuberculosis (28, 29, 44), lung cancer (75, 77), COPD (85), pulmonary fibrosis (81, 84))
Prediction of patient prognosis or treatment response (76, 85, 86)

Image segmentation
Organ segmentation (lung (95, 96), pulmonary lobes (97), airway (98))
Lung nodule segmentation (99, 100)

Image generation
Image neutralization (108-110)
Image quality improvement (image noise reduction) (114-116)

COPD = chronic obstructive pulmonary disease, CT = computed tomography, CXR = chest X-ray
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reported benchmark performances of DL algorithm for the 
identification of various abnormalities; they showed AUCs 
ranging from 0.66 (for identification of pneumonia) to 
0.87 (for identification of hernia) with an average AUC 
value of 0.75 (51). Several subsequent studies reported 
better performances in detecting specific abnormalities 
using the same dataset (average AUC values, 0.76–0.81) 
(31, 52, 53). More recently, additional large-scale open-
source CXR datasets labeled for various abnormalities have 
been released (e.g., CheXpert dataset (54): 224316 CXRs 
labeled for 14 findings from Stanford Hospital, US; MIMIC-
CXR dataset (55): 371920 CXRs labeled for 14 findings from 
Beth Israel Deaconess Medical Center, US: PADChest dataset 
(56): 160868 CXRs labeled for 174 findings from Hospital 
San Juan, Spain) (Table 2). Investigations of DL-based CAD 

in the detection of multiple abnormalities on CXRs must 
continue for the time being.

Differentiation of various abnormalities on CXR using DL 
algorithms can be a challenging task, as various thoracic 
diseases have overlapping radiologic findings (Fig. 2). 
In a study by Hwang et al. (27), a DL algorithm could 
accurately differentiate pneumothorax (accuracy: 95%) 
from parenchymal diseases (lung cancer, tuberculosis, 
pneumonia) while exhibiting much lower performance for 
the differentiation of three parenchymal diseases (accuracy: 
21–84%). Despite the limited performance in differential 
diagnosis, overlapping radiologic findings of various 
diseases may help the detection of rare, non-targeted 
diseases using the DL algorithm, considering that training 
a DL algorithm to cover all diseases that can be found 

Table 2. Major Large-Scale Open-Source Datasets of CXR
Name of Dataset Distributor Data Source No. of Data Labels Location

ChestX-ray14 (51) US National Institute  
  of Health

National Institute  
   of Health Clinical  
Center (US)

112120 CXRs from  
  30805 patients

14 radiological findings https://nihcc.app.box.
com/v/ChestXray-NIHCC

CheXpert (54) Stanford University Stanford Hospital  
  (US)

224316 CXRs from  
  65240 patients

14 radiological findings* https://stanfordmlgroup.
github.io/competitions/
chexpert/

MIMIC-CXR (55) Massachusetts  
   Institute of 
Technology

Beth Israel  
   Deaconess Medical  
Center (US)

371920 CXRs from  
  65383 patients 

14 radiological findings* https://physionet.org/
content/mimic-cxr/2.0.0/

PADChest (56) Medical Imaging  
   Databank of  
Valencia Region

Hospital San Juan  
  (Spain)

160868 CXRs from  
  67625 patients

174 radiologic findings;  
   19 differential 
diagnoses; 104  
anatomic locations

http://bimcv.cipf.es/
bimcv-projects/padchest/

*Identical labels.

A B C
Fig. 1. Detection of lung nodules on chest X-ray. 
A. Chest X-ray image shows nodular opacity at juxta-diaphragmatic right basal lung (arrow). B. Corresponding CT image shows 1.5-cm solid 
nodule at right lower lobe of lung (arrow). C. DL algorithm successfully detected nodule with output probability score of 25% (Courtesy of 
authors, DL algorithm is same as that in study by Nam et al. (30)). CT = computed tomography, DL = deep learning

25%
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ranging from 0.71 to 0.84 (58). However, as of 2016, the 
WHO recommendation is that CAD should be used only 
in research because of the limited evidence regarding its 
diagnostic accuracy (61).

DL may boost the performance of CAD systems for 
tuberculosis. Recent studies using DL algorithms have shown 
promising performances (AUC, 0.83–0.99) (Fig. 3) (28, 29, 
44, 45, 62), suggesting a potential for implementation. 
Furthermore, in a study by Hwang et al. (28), the DL 
algorithm (AUC, 0.99) outperformed human readers 
(AUC, 0.75–0.97), including thoracic radiologists and the 
performance of human readers improved after reviewing the 
algorithm results (AUC, 0.75–0.97 to 0.85–0.98). Thus far, DL 
algorithms, however, have been tested on datasets collected 
for case-control studies (45). Further investigations on the 
diagnostic performance of DL-based algorithms are required 
in actual screening or triage situations to prove their 
applicability in real-world practice. 

Lung Cancer Screening with Low-Dose CT

With cumulative evidence of reduced lung cancer 
mortality following screening using low-dose chest CTs (63-
65), nationwide systemic lung cancer screening programs 
have been implemented or are expected to be implemented 
in the near future (66, 67). The workload of radiologists 
is expected to increase with the implementation of lung 
cancer screening (68). DL may help radiologists in various 
aspects of the interpretation of low-dose CTs for lung cancer 

on CXRs is virtually impossible. In our recent study, a DL-
based algorithm that had been trained for four diseases 
(lung cancer, tuberculosis, pneumonia, and pneumothorax) 
could identify clinically referable CXRs, including those 
with not only target diseases of the algorithm (sensitivity: 
87.9–93.6%), but also non-target diseases of the algorithm 
(sensitivity: 73.9–82.6%) with an AUC of 0.95, in the 
emergency department (57). The algorithm also exhibited 
higher sensitivities compared to those of on-call radiology 
residents (sensitivity, 65.6%).

Screening for Tuberculosis on CXR

Detection of pulmonary tuberculosis is another important 
task of CAD with a high potential for clinical application. 
The World Health Organization (WHO) recommends 
systemic screening for active tuberculosis in high-risk 
populations to reduce the global burden of tuberculosis 
(58). Although the choice of screening algorithm depends 
on the population and availability of diagnostic modalities, 
CXR plays a key role in the suggested screening algorithms 
(58). However, although CXR has good diagnostic ability 
for tuberculosis (sensitivity of 87% and specificity of 89% 
for tuberculosis-related abnormalities) (58-60), the number 
of expert radiologists able to interpret them are limited, 
especially in high-prevalence countries. In this regard, a 
commercialized CAD system for tuberculosis (CAD4TB, Delft 
imaging systems, ’s-Hertogenbosch, The Netherlands) has 
been tested in various screening settings, exhibiting AUCs 

A B C
Fig. 2. Detection and differentiation of different abnormalities on chest X-ray. 
Chest X-ray (A) and CT (B) obtained on same day from patient with pulmonary edema shows consolidation in both lung fields, bilateral pleural 
effusion, and mild cardiomegaly. DL algorithm classified chest X-ray image as abnormal, with 82% probability score. C. Algorithm identified 
Csns, PEf, and Cm on chest X-ray and localized each abnormality separately. Notably, algorithm recognized focal area of dense consolidation 
in right lower lung field as nodule (Courtesy of authors, DL algorithm is same as that in study by Kim et al. (132)). Cm = cardiomegaly, Csn = 
consolidation, Ndl = nodule, PEf = pleural effusion

Ndl 22%

PEf 43%
Cm 76%

Abnormality score 82%

PEf 66%

Csn 82% Csn 57%
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screening. 
Lung nodule detection is a classic task for CAD in the 

field of chest CTs (19). In 2016, a challenge for lung nodule 
detection called LUng Nodule Analysis (LUNA) 16 was held 
(69) and best-performing DL algorithms exhibited over 90% 
per-nodule sensitivity, ranging from 0.125 to eight false 
positives per examination (70). 

Classification or categorization of lung nodules is another 
key task in lung cancer screening. The DL algorithm may 
categorize lung nodules based on their size, location, 
number, calcification, internal consistency, or existing 
criteria, such as the Lung CT screening Reporting and Data 
System (Lung-RADS), to reduce inter-reader variability 
among radiologists (71) or directly classify each lung 
nodule based on its likelihood of malignancy (72-74).

Per-examination level classification, that is, to classify 
CT examinations directly into those with and without lung 
cancer, is another potential strategy. In 2017, Kaggle, a 
representative online data science competition community, 
held a competition called “Data Science Bowl 2017” with 
a task of predicting lung cancer diagnosis within one year 
of a single CT examination (75). With a similar strategy, 
the Google AI team published a remarkable study (77). In 
the study, a DL algorithm evaluated a full set of low-dose 
chest CT images, with or without a prior CT examination 
for comparison. The algorithm revealed the likelihood of 
the subject to be diagnosed with lung cancer. Compared to 
the Lung-RADS categorization by thoracic radiologists, the 
algorithm exhibited better performance using a single CT 
volume (sensitivity, 79.5–95.2% vs. 62.5–90.0%; specificity, 

81.3–96.5% vs. 69.7–95.3%; varied by threshold for 
positive results) and in-par performance with radiologists 
using two CT volumes (previous and current CTs; sensitivity, 
72.5–87.5% vs. 70.0–86.7%; specificity, 84.2–96.5% vs. 
83.7–96.3%; varied by threshold for positive results). 
Although the ability to explain the output and possibility 
of integration with the current workflow is questionable, 
the high performance of DL algorithms in the diagnosis of 
lung cancer, without any intervention by radiologists, is 
impressive. 

Classification of Diffuse Lung Diseases on CT

DL can also be utilized in the interpretation of CTs of 
patients with diffuse lung diseases. The classification of 
radiologic findings of interstitial lung disease (ILD) is 
prone to high intra- and inter-reader variabilities, and DL 
technologies may help reduce this variability. 

Several studies reported that DL algorithms can classify CT 
findings of ILD (e.g., honeycombing, reticulation, ground-
glass opacity, and consolidation) (78-80). Furthermore, in 
a recent study by Walsh et al. (81), DL could classify CTs 
with fibrotic lung disease according to existing guidelines 
(82, 83), exhibiting overall accuracies of 73.3% and 76.4% 
for different test datasets. The algorithm exhibited better 
accuracy than 66% of radiologists. More recently, Christe 
et al. (84) reported an end-to-end DL algorithm that could 
segment the lung and airway, classify and segment different 
findings of lung parenchyma, and finally, classify the 
examination-level diagnosis based on the current criteria for 

A B C
Fig. 3. Identification of chest X-ray with active pulmonary tuberculosis.
A. Chest X-ray of patient with active pulmonary tuberculosis shows subtle nodular infiltration in right upper lung field (arrow). B. Corresponding 
CT image shows clustered centrilobular nodules and mild bronchiectasis in right upper lobe of lung (arrow). C. DL algorithm successfully detected 
lesion, with heat map overlaid on chest X-ray (Courtesy of authors, DL algorithm is same as that in study by Hwang et al. (28)).
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Applications of AI in Quantitative Imaging 
Analyses

Segmentation
There have been continuous efforts to extract quantitative 

biomarkers from chest CT images to evaluate various 
diseases (88-91). More recently, radiomics, extracting high-
throughput quantitative features from images to predict 
diagnosis or prognosis, has emerged as an important field 
of radiologic research (92). The accurate segmentation 
of specific anatomic structures or pathologic findings of 
interest might be a gateway for those quantitative image 
analyses. However, manual segmentation by radiologists 
is extremely time-consuming and practically impossible 
in daily practice. DL has shown excellent performance in 
image segmentation and image classification (93, 94). The 
excellent performance of DL algorithms has been reported 
in the segmentation of various anatomic structures in chest 
CTs, including the lung parenchyma (95, 96), pulmonary 
lobes (97), airways (98), and lung nodules (99, 100).

Image Neutralization
Another barrier in quantitative image analyses is the 

variation in reconstructed images caused by variations in 
scanners, and scanning and reconstruction protocols (101-
103). For radiomics, those variations have been indicated 
as the major source of variability in radiomic features, 
limiting the reproducibility of results and generalizability 
of radiomics (101, 104-106). DL can help overcome this 
barrier by neutralizing images with various image styles. 
DL can generate a new image with different image textures 
while maintaining the image content using a specific type 
of DL algorithm called generative adversarial network 
(107). Recently, Lee et al. (108) reported that a DL 
algorithm could convert CT images into those of different 
reconstruction kernels and reduce the variability in the 
quantification of emphysema using converted CT images. In 
subsequent studies, the group reported reduced variability 
in radiomic features by utilizing DL-based CT image 
reconstruction kernel conversion (Fig. 4) (109) and slice 
thickness reduction techniques (110) using DL algorithms.

Image Quality Improvement

Optimization of the image quality while minimizing the 
radiation dose are major issues in clinical practice. In the 
previous decade, the iterative reconstruction (IR) technique 

idiopathic pulmonary fibrosis (83). The algorithm exhibited 
similar performance to two radiologists (overall accuracy, 
56%). 

DL can also be utilized to evaluate chronic obstructive 
pulmonary disease (COPD). In a study by González et al. 
(85), a DL algorithm could identify CTs with COPD with a 
C-statistic of 0.856 in a cohort from the COPDGene study. 
The DL algorithm classified CTs of patients with different 
stages of COPD, exhibiting accuracies of 51.1% and 29.4% 
in different cohorts.

Beyond Detection and Diagnosis: DL for Novel 
Imaging Biomarkers

Most investigations of DL in the field of radiology to date 
have focused on detection of radiologic abnormalities or 
identifying diseases. However, the prediction of patient 
prognosis or therapeutic response may be another potential 
application of DL. Recently, Lu et al. (86) reported that a 
DL-based risk score obtained from CXR images could predict 
long-term all-cause mortality. The authors validated the 
DL-based risk score in cohorts from the Prostate, Lung, 
Colorectal, and Ovarian Cancer Screening trial and National 
Lung Screening Trial and found a graded association of the 
mortality rate and risk score, independent of age, sex, and 
the radiologists’ interpretation (86). In a study by González 
et al. (85), the DL algorithm could predict the occurrence of 
acute respiratory diseases (C-statistic, 0.55–0.64) and death 
(C-statistic, 0.60–0.72) from chest CT images. In a study 
by Hosny et al. (76), a DL algorithm could predict 2-year 
overall survival after radiotherapy (AUC, 0.70) or surgery 
(AUC, 0.71) for non-small cell lung cancer, outperforming 
conventional machine learning techniques. DL can also 
be utilized in radiogenomics research. In a study by Wang 
et al. (87), a DL algorithm could predict the mutation of 
epidermal growth factor receptor from CT images, with an 
AUC of 0.81 in an independent cohort, outperforming the 
conventional method of using hand-crafted CT features.

Although early investigations have shown the promising 
performance of novel DL-based imaging biomarkers, 
outperforming conventional techniques, thorough validation 
might be warranted for those novel DL-based imaging 
biomarkers, as the prediction of patient outcomes is a less-
intuitive task than lesion detection or image classification.
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achieved remarkable advancements and contributed to 
image noise reduction on CT images (111-113). However, 
there are several limitations to IR: 1) vendor-specific 
technologies requiring sinogram data from the CT scanner; 

2) over-smoothening of images resulting in the loss of 
anatomic structures, such as the interlobar fissures; and 
3) production of unfamiliar image textures (112). These 
limitations can potentially be overcome by the utilization 

A

C

B

D

Original soft kernel image

Generated soft kernel image

Original sharp kernel image

Generated sharp kernel image

Fig. 4. Conversion of reconstruction kernel on chest CT.
CT images reconstructed with soft kernel (A) and sharp kernel (B) from single scan of patient with lung nodule showing different image textures, 
which may cause variability in radiomic features of lung nodule. DL algorithm could generate CT image with similar texture to that of soft kernel 
image from sharp kernel image (C), and vice versa (D). Utilizing generated images with similar textures, variability in radiomic features can be 
reduced compared to that when using images with different textures (Courtesy of Sang Min Lee, University of Ulsan College of Medicine, Asan 
Medical Center, DL algorithm is same as that in study by Choe et al. (109)).
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of DL-based image generation by providing images with 
lesser noise but more familiar image style to radiologists, 
similar to images from a filtered back projection. Some 
vendors have already demonstrated DL-based noise 
reduction algorithms (114, 115). Furthermore, DL-based 
noise reduction can be applied independent of vendors or 
scanners, as the DL algorithm can generate new images 
from reconstructed CT images, without sinogram data.

The DL may also contribute to the improvement of 
CXR image quality. In a study by Ahn et al. (116), DL-
based software could generate CXR images simulating 
those obtained with grids from those obtained without 
the utilization of grids. The subjective image quality and 
radiologists’ preference improved in those generated grid-
like images, without the need for an additional radiation 
dose because of the utilization of grids.

Service Delivery Scenarios of DL Systems in the 
Clinical Workflow

The two classic scenarios of integrating CAD into the 
clinical workflow are add-on and stand-alone scenarios 
(Fig. 5) (117, 118). In the add-on scenario, radiologists 
check the results from CAD during (concurrent reader) or 
after (second reader) image interpretation. In previous 
studies, the performance of radiologists improved after 
reviewing the output of DL algorithms when identifying 
CXRs with malignant nodules (30), active tuberculosis (28), 
or major thoracic disease (27). In the stand-alone scenario, 
CAD may automatically classify CXRs without intervention 
from radiologists. In this scenario, the CAD system may 
require a more thorough validation of its diagnostic 
performance and reliability, and should be utilized only 
in selected clinical situations with narrow tasks (e.g., 
screening for specific diseases in the healthy population), 
particularly when the availability of radiologists is limited.

The third scenario of CAD integration into the clinical 
workflow can be in the triage of examinations. In this 
scenario, CAD makes a provisional analysis of each image 
before radiologists’ interpretation and can prioritize 
the work list in terms of the criticality of the disease or 
abnormalities. Consequently, when there is a large volume 
of examinations with limited radiologist availability, such 
prioritization may help reduce the turnaround time for 
examinations with critical findings and prevent a delay 
in treatment. This concept of prioritization has been 
mainly investigated in the field of neuroradiology, in 

Fig. 5. Delivery scenarios for DL-based CAD systems.
DL-based CAD system can be utilized as assistance tool to enhance 
diagnostic accuracy of radiologists as concurrent (A) or second reader 
(B). C. In select situations in which radiologists’ interpretations are 
unavailable, DL-based CAD system may interpret images alone to 
identify patients requiring referral. D. In triage scenario, CAD system 
may analyze images before radiologists’ interpretations to triage 
examinations based on presence of findings requiring immediate 
diagnosis and management and prioritize radiologists’ worklists to 
improve turnaround time for examinations with critical findings. 
E. Finally, in prescreening scenario, CAD system may analyze large 
volumes of examinations before radiologists’ interpretation to identify 
clearly negative cases, and radiologists may then only interpret 
remaining uncertain examinations. AI = artificial intelligence, CAD = 
computer-aided detection

Add-on scenario, concurrent reader

Image
acquisition

Radiologist 
interpretation 
with AI result

Report

A.

Add-on scenario, second reader

Image
acquisition

Radiologist 
interpretation 

AI result
review

Report

B.

Stand-alone scenario

Image
acquisition

AI interpretation Report

C.
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Image
acquisition

AI interpretation ReportWorklist
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which the timely diagnosis and management of acute 
neurologic diseases are critical (119). DL algorithms can 
automatically identify critical brain CT findings and perform 
prioritization to minimize delayed diagnosis (120, 121). 
For CXRs, Annarumma et al. (122) utilized a DL algorithm 
to identify CXRs with critical or urgent findings to prioritize 
examination. In a simulation study, the median delay for 
CXRs with critical findings was reduced from 7.2 hours to 
43 minutes with the application of DL-based automated 
prioritization (122).

The last scenario for implementing CAD is a prescreening 
of negative examinations (123). This scenario could be 
utilized in selected clinical situations. Very low disease 
prevalence settings, such as screening of an asymptomatic 
population (e.g., screening tuberculosis with CXR or 
screening lung cancer with low-dose CT), with limited 
availability of experts to interpret images is a typical 
indication for this scenario. In this scenario, CAD may 
analyze a large volume of examinations before the 
interpretation of radiologists to identify clearly negative 
examinations, and radiologists would interpret the 
remaining examinations that were positive or inconclusive 
in the CAD analysis. Such prescreening schemes may help 
radiologists to reduce the time burden of interpreting large 
volumes of negative examinations and to focus on more 
clinically relevant cases. To be utilized as a prescreening 
tool, the high sensitivity of CAD should be ensured.

Challenges in the Clinical Application of DL

Ability to Explain the DL Algorithm
In order for a DL algorithm to receive credit or the 

acceptance of radiologists, it should appropriately explain 
the logical background for the output (124-126). For 
example, let us consider a DL algorithm that can predict 
lung cancer from screening low-dose CT. In addition to the 
final output of the algorithm (i.e., the likelihood of lung 
cancer), radiologists or clinicians may want to know why 
the algorithm provided the outcome based on their existing 
knowledge. Was there any pulmonary nodule? What was 
the size, internal consistency, and location of the nodule? 
Were there specific features of the nodule or background 
lung that raised the suspicion of lung cancer? To solve 
this explainability issue (or “black-box” issue), the most 
common method is to utilize a saliency map (126, 127). 
By overlaying a saliency map on the input image (Fig. 
3), one can visualize the specific areas of the image that 

contributed to the final output of the DL algorithm. Saliency 
maps would be good solutions in detection tasks (e.g., 
detection of pulmonary nodules) or classification algorithms 
with intuitive tasks (e.g., identification of cardiomegaly). 
However, it may be insufficient for non-intuitive tasks, such 
as the diagnosis of specific diseases or prognostication. 
Radiologic AI should provide interpretability, transparency, 
reproducibility, and high performance to receive credibility 
from radiologists and be implemented in clinical practice.

Validation in Actual Clinical Practice
Although previous studies have reported the excellent 

performance of various DL algorithms in various tasks, 
most were validated in the algorithms’ development setting 
with retrospectively and conveniently collected datasets 
(128). Such conveniently collected datasets may have 
enriched disease prevalence and a narrow disease spectrum. 
In contrast, the population in the real-word situation 
may have a much lower disease prevalence and a much 
broader spectrum of diseases, some of which may not be 
covered during the development of the DL algorithm (129). 
Therefore, the excellent performance of the DL algorithm 
in the algorithms’ development setting may not guarantee 
performance in real-world settings; thus, DL algorithms 
should be further validated in actual clinical situations 
before their clinical application. Indeed, in our recent study 
(57), a DL algorithm to identify CXRs with major thoracic 
disease showed a decreased performance in a diagnostic 
cohort comprising patients from the emergency department 
(AUC, 0.95), compared to that for the test datasets 
collected for the case-control study (AUC, 0.97–1.00). 

The ultimate goal of applying the DL algorithm is 
improving patient outcomes in clinical practice. However, 
validation of the DL algorithm with respect to patient 
outcomes might be a much more challenging task than 
the validation of diagnostic performance. Improved 
diagnostic performance does not necessarily mean improved 
patient outcomes as there are multiple stages between 
diagnosis and patient outcomes, including patient referral, 
therapeutic decision making, and patient management 
(129). To date, little evidence exists regarding the influence 
of DL algorithms on patient outcomes or on their cost-
effectiveness. 

Integration into the Daily Clinical Workflow
Even before the rise of DL, a number of software programs 

for computer-assisted image analysis had demonstrated 
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CONCLUSION
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technologies, including CT, magnetic resonance imaging, 
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