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A B S T R A C T   

Head and neck carcinoma (HNSC) is often diagnosed at advanced stage, incurring poor patient 
outcome. Despite of advances in chemoradiation and surgery approaches, limited improvements 
in survival rates of HNSC have been observed over the last decade. Accumulating evidences have 
demonstrated the importance of microRNAs (miRNAs) in carcinogenesis. In this context, we 
sought to identify a miRNA signature associated with the survival time in patients with HNSC. 
This study proposed a survival estimation method called HNSC-Sig that identified a miRNA 
signature consists of 25 miRNAs associated with the survival in 133 patients with HNSC. HNSC- 
Sig achieved 10-fold cross validation a mean correlation coefficient and a mean absolute error of 
0.85 ± 0.01 and 0.46 ± 0.02 years, respectively, between actual and estimated survival times. 
The survival analysis revealed that five miRNAs, hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR- 
3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p, were significantly associated with prognosis 
in patients with HNSC. Comparing the relative expression difference of top 10 prioritized miR-
NAs, eight miRNAs, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-221-3p, hsa-miR-501-5p, hsa- 
miR-491-5p, hsa-miR-149-3p, hsa-miR-3934-5p, and hsa-miR-3170, were significantly 
expressed between cancer and normal groups. In addition, biological relevance, disease associ-
ation, and target interactions of the miRNA signature were discussed. Our results suggest that 
identified miRNA signature have potential to serve as biomarker for diagnosis and clinical 
practice in HNSC.   

1. Introduction 

Head and neck squamous cell carcinomas (HNSCs) are a heterogenic malignancies that can involve multiple cellular origins and 
sites within the head and neck region. HNSCs are the most common malignancy accounting for nearly 430,000 deaths worldwide each 
year [1]. The major risk factors associated with HNSCs are including, tobacco, alcohol consumption [2] and human papillomavirus 
(HPV) infection [3]. Treatment of HNSCs involves chemotherapy, radiotherapy and surgical eradication. However, the heterogeneity 
of HNSCs, diversity of treatment approaches and individual patient response to these variables, make it difficult to define the outcome 
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of the treatment. Though, advancements in the treatment strategies, concerning aged patients and individual response, these mo-
dalities affects quality of life [4,5] and radiotherapy resistance remains a major challenge for HNSC treatment. The toxic nature of 
treatment and poor survival rates, highlighting the need for effective therapies using the specific biomarkers to improve the treatment 
outcome. 

MicroRNA (miRNA) brings new insights to cancer pathobiology and involves in the regulation of gene expression [6]. MiRNAs take 
part in many processes that are crucial for cancer progression, such as proliferation, migration and apoptosis. Several studies 
demonstrated that miRNA expression is dysregulated in human cancers [7,8]. There are various studies that have identified miRNAs 
for the prediction of progression in HNSC and explored the roles of miRNAs as biomarkers in cancer detection and prognosis. Upre-
gulation of miR-21, miR-200c and miR-34a and downregulation of miR-375 was observed in tumors of HNSCs [9]. Inhibition of 
miR-16 suppress cell migration in laryngeal cancer cell line and targets zyxin and promotes cell mobility [10]. The expression of 
miR-375 is associated with localization of the tumors and alcohol consumption in patients with laryngeal squamous cell carcinoma 
[11]. Hsa-miR-21 expression was consistently reported to be significantly associated with poor survival in HNSCs [12]. A meta-analysis 
on HNSCs identified significant miRNAs that are up and downregulated in HNSCs and decreased expression of 26 miRNAs were 
associated with poor survival [13]. Decreased expression level of serum miR-9 was found to be associated with poor prognosis in 
patients with oral squamous cell carcinoma [14]. Altered expression of miRNAs were used to predict recurrence in patients with HNSC 
[15]. Expression levels of hsa-miR-205, hsa-let-7d and hsa-miR-616 were associated with poor survival in patients with HNSC [16,17]. 
Some miRNAs are identified as potential biomarkers in HNSC [18]. Additionally, there are some miRNAs that are associated with risk 
factors and treatment modalities of HNSCs, such as HPV associated miRNAs [19] and radiotherapy associated extra cellular miRNAs 
[20]. Therefore, miRNAs have been using as prognostic biomarker in HNSC. 

Computational models have been using for prediction of prognosis in HNSCs. For instance, Bryce et al. developed an artificial 
neural network (ANN) model to predict survival in patients with HNSCs using clinical factors [21]. Recently, Jurmeister et al. 
developed machine learning-based models to distinguish lung cancer and HNSCs using DNA methylation data, in which support vector 
machine (SVM)-based model obtained a promising predictive accuracy for classifying HNSCs [22]. Reddy et al. utilized Random 
Forest, gradient boosted decision trees, and logistic regression models to predict the acute radiation toxicities in patients with HNSC 
[23]. Jiang et al. used ridge logistic regression to predict xerostomia after radiation therapy in patients with HNSC [24]. A set of 
machine learning models were used to detect the cancer in surgical specimens from 36 patients with HNSC [25]. A deep learning based 
model has been used to detect HNSC from computed tomography (CT) scan images [26]. A convolutional neural network-based frame 
work was utilized to predict patient outcome based on their CT images [27]. However, machine learning models based on miRNA 
expression profiles for estimating survival in HNSC are limited. Accordingly, our purpose is to utilize machine learning model to 
identify a miRNA signature that associated with survival patients with HNSC. 

In this study, we utilized an optimized support vector regression (SVR) model incorporated with inheritable bi-objective combi-
natorial genetic algorithm (IBCGA) as a feature selection algorithm to estimate the survival time as well as identify a miRNA signature 
that is associated with survival in patients with HNSC. The optimization technique was adopted from our previous work [28–30]. The 
major contributions of this work includes identifying a set of survival associated miRNA signature; robust feature set selection using 
feature appearance score (FAS); survival validation of the identified miRNAs using Kaplan-Meier (KM) survival analysis; biological 
relevance of the miRNAs was analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) annotations; 
and relative miRNA expression difference and coexpression analysis of the miRNAs in HNSC and their importance in cancers were 
discussed further. 

The manuscript is organized as follows: Section 1 provides background and related work, Section 2 describes the dataset, devel-
opment of the HNSC-Sig method, and the bioinformatics tools employed in the study. Section 3 covers the identification of the miRNA 
signature for estimating survival time in HNSC patients, biological pathway analysis of the miRNA signature, gene ontology anno-
tations, gene targets, miRNA disease association, and expression difference analysis. Section 4 discusses the roles of the identified 
miRNA signature in HNSC, the potential and limitations of utilizing miRNA signatures in cancer diagnosis and prognosis, and con-
cludes with final remarks. 

2. Materials and methods 

2.1. Dataset 

Initially, the dataset consisted of 523 HNSC samples were retrieved from TCGA database, and the miRNA profiling was performed 
using the Illumina HiSeq 2000 miRNA sequencing platform. We filtered the dataset based on the availability of survival information 
and miRNA expression profiling. Finally, the dataset consisted of 133 patients with 498 miRNA expression profiles of HNSC were 
further considered for the analysis. 

2.2. HNSC-Sig 

We establish the HNSC-Sig method based on SVR incorporated with optimal feature selection algorithm called IBCGA. The opti-
mization technique has been successfully applied in various cancer survival estimations [28,31–35]. HNSC-Sig was designed to 
identify a survival associated miRNA signature as well as estimate the survival time in patients with HNSC. Recent years, SVMs playing 
increasingly prominent roles in solving several biological problems, especially in cancer prognosis and survival predictions [36]. The 
SVR implemented in this study was used from the LibSVM package [37]. 
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2.2.1. An optimal feature selection method IBCGA 
Feature selection algorithms are crucial in reducing dimensionality when working with datasets that have a large number of 

features. Gu et al. proposed a new method for transient stability assessment of power systems, combining kernelized fuzzy rough sets 
and the memetic algorithm [38]. Li et al. proposed a novel OS-extreme learning machine with binary Jaya-based feature selection [39]. 
In this study, we used optimal feature selection algorithm IBCGA, which is potential at solving large parameter optimization problems 
and can select minimum set of miRNAs as signature from a large number of miRNA expression profiles (n = 498) while maximizing the 
prediction performance. Here, we used correlation coefficient (CC) [Equation (1)] and mean absolute error (MAE) as the estimation 
measures to evaluate the prediction performance. 

CC=

∑N

i=1
(xi − x) (yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⌊
∑N

i=1
(xi − x)2

⌋[
∑N

i=1
(yi − y)2

]√ (1)  

where xi and yi are actual and are the predicted survival times of the ith miRNA, x and y are the corresponding means, and N is the total 
number of patients in the cohort. The MAE is defined in Equation (2). 

MAE=
1
N

∑N

i=1
|yi − xi|

2 (2) 

Here, we used genetic algorithm (GA) terminology to represents chromosomes and genes. The chromosome of IBCGA comprises 
498 genes and three 4-bit genes for encoding, γ, C, and ν for the ν-SVR. The encoded chromosomes were designed as described in 
previous studies [36,40]. The IBCGA can simultaneously obtain a set of solutions, Xr, where r = rstart, rstart + 1 … rend in a single run. The 
detailed steps involved in IBCGA can be found in Supplementary method. 

2.2.2. Robust feature set selection 
The robust set of miRNA signature among 30 independent runs in HNSC-Sig has the highest FAS obtained using the following 

procedure [Equation (3)]. 

Step 1: Perform N independent runs of HNSC-Sig by maximizing accuracy of 10-CV for obtaining N miRNA signatures. There are Pa 
features in the a-th signatures, a = 1, …, N. 
Step 2: FAS is calculated as follows:  
a) Calculate the Feature appearance score f(a) for each feature ‘a’ that ever presents in the N sets of miRNAs.  
b) Calculate the score Pa, t = 1, …, N where si is the i-th feature in the a-th solution: 

Fa =
∑mt

i=1
f (si) / pa (3)   

Step 3: Output the a-th feature set with the highest appearance score Fa. 

2.3. Biological significance analysis 

KEGG pathway GO annotation analysis was performed using DIANA tools. The DIANA-microT web server provided the predicted 
miRNA targets for the pathway analysis. The p-value threshold was set to 0.05 and Fishers’s exact test (hypergeometric distribution) 
was used for the enrichment analysis. 

2.4. miRNA-target interaction network 

We constructed the miRNA-target interaction network using Cytoscape v3.7.2. For the prediction of target genes miRTarBase and 
TargetScan predictions were used presented in the CyTargetLinker application of the Cytoscape. The interaction threshold was 
adjusted to two units. 

3. Results 

3.1. MiRNA signature selection and survival estimation 

The dataset consisted of 133 patients with HNSC from The cancer genome atlas (TCGA) database. The optimized method HNSC-sig 
was incorporated with feature selection algorithm IBCGA to identify a set of survival miRNAs in patients with HNSC. HNSC-Sig 
identified an average 31 miRNAs and achieved a 10-fold cross-validation (10-CV) mean correlation coefficient and mean absolute 
error of 0.85 ± 0.01 and 0.46 ± 0.02 years, respectively, between actual and predicted survival time. We performed 30 independent 
runs of HNSC-sig to select the robust feature set. The system flow-chart of HNSC-Sig is depicted in Fig. 1. To select a robust feature set, 
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FAS was measured for each independent run of the HNSC-Sig. The highest FAS indicates that frequency of these features are higher 
compared to the lower FAS. The highest FAS of HNSC-sig was 8.48 and the 25 miRNAs were selected as a signature. HNSC-sig with 
highest FAS obtained a correlation and a mean absolute error of 0.86 and 0.42, respectively, between actual and predicted survival 
time. The FAS for each independent run is shown in Fig. 2a. 

The prediction performance of HNSC-Sig was compared with some regression methods, such as the least absolute shrinkage and 
selection operator (LASSO) and elastic net. HNSC-Sig exhibited superior prediction performance compared to LAASO and elastic net 

Fig. 1. System flow chart. Step 1: collection of miRNA expression data from TCGA data portal, Step: HNSC-Sig methodology, and Step 3: miRNA 
signature discovery by estimation of survival time, KM-survival curves, KEGG and GO annotation analysis, target network analysis, and expression 
difference analysis. 
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methods. The comparison of prediction performance results are shown in Table 1. The prediction performance of HNSC-Sig is shown in 
Fig. 2b. Correlation plots for HNSC-sig, LASSO, and elastic net are shown in Supplementary Fig. S1. 

The miRNAs of the signature were ranked based on main effect difference (MED) analysis [41]. The MED analysis gives score for 
each miRNA based on its estimation capability, hence, the miRNA with a highest MED score possess higher importance while esti-
mating the survival time. The list of miRNAs of the signature and corresponding MED scores are shown in Supplementary Table S1. 

3.2. Survival validation of the miRNAs 

The miRNAs of the signature were validated using KM survival analysis. Survival outcome was explored considering p-values. A p- 
value < 0.05 was considered to be statistically significant. Five of the miRNA signature, hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR- 
3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p, were significantly associated with prognosis in patients with HNSC. These five 
miRNAs, hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p, obtained p-values of 0.046, 
0.048, 0.048, 0.0095, and 0.044, respectively. KM survival curves for these five miRNAs are shown in Fig. 2c. 

3.3. Biological pathway analysis of the miRNA signature 

Biological significance of the identified miRNA signature was analyzed using KEGG pathways. The identified miRNA signature 
enriched in various pathways, the more significant enriched pathways (P < 0.005) including, fatty acid biosynthesis, lysine degra-
dation, hippo signaling pathway, adherens junction, proteoglycans in cancer, fatty acid metabolism, ECM-receptor interaction, 
pathways in cancer, prostate cancer, glioma, steroid biosynthesis, and p53 signaling pathway. The identified miRNA signature 
involved in fatty acid biosynthesis (p < E− 365), lysine degradation (p = 1.14E− 13), hippo signaling pathway (p = 4.01E− 13), 
adherens junction (p = 1.12E− 12), proteoglycans in cancer (p = 1.98E− 12), fatty acid metabolism (p = 8.20E− 09), ECM-receptor 
interaction (p = 6.70E− 08), pathways in cancer (p = 0.0006), prostate cancer (p = 0.0008), glioma (p = 0.0011), steroid 

Fig. 2. Robust miRNA signature identification. (A) Robust signature selection using Feature appearance score (FAS) measurement for each inde-
pendent run of HNSC-Sig. The highest FAS obtained is 8.48 at the 9th independent run, (B) estimation performance of the robust miRNA signature, 
and (C) KM survival plots for hsa-miR-3605-3p, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-497-5p, and hsa-miR-374a-5p. 
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biosynthesis (p = 0.0045), and p53 signaling pathway (p = 0.007) and targets 2, 20, 63, 38, 88, 9, 16, 124, 45, 28, 3, and 38 genes, 
respectively. The details of KEGG pathways and number of target genes are described in Table 2. The KEGG pathway enrichment 
analysis is depicted in Supplementary Fig. S2. 

3.4. Gene ontology annotations 

GO annotations of the miRNA signature was analyzed in terms of biological processes, cellular components and molecular func-
tions. The miRNA signature involved more significant biological pathways were epidermal growth factor receptor signaling pathway, 
fibroblast growth factor receptor signaling pathway, RNA metabolic process, DNA metabolic process, transcription, DNA-templated, 
mRNA metabolic process, immune system process, Fc-epsilon receptor signaling pathway, nucleobase-containing compound catabolic 
process, and Fc-gamma receptor signaling pathway involved in phagocytosis, by targeting 2120 genes. 

The miRNA signature involved in more significant cellular components were protein complex, nucleoplasm, cytosol, organelle, 

Table 1 
HNSC-Sig prediction performance comparison.  

Method Correlation coefficient Mean absolute error in years Features selected 

LASSO 0.62 0.69 22 
Elastic net 0.82 0.53 55 
HNSC-Sig 0.88 0.43 29 
HNSC-Sig-FAS 0.86 0.42 25 
HNSC-Sig-Mean 0.85 ± 0.01 0.46 ± 0.02 31.70 ± .75  

Table 2 
The miRNA signature involved in significant KEGG pathways.  

KEGG pathway miRNAs Target genes p-value 

Proteoglycans in cancer 20 112 1.211E− 16 
Adherens junction 20 49 2.932E− 12 
Viral carcinogenesis 20 104 7.936E− 09 
Hepatitis B 19 78 2.281E− 07 
Protein processing in endoplasmic reticulum 21 95 8.18E− 07 
TGF-beta signaling pathway 17 47 9.288E− 07 
Pancreatic cancer 19 42 9.288E− 07 
Bacterial invasion of epithelial cells 20 48 9.288E− 07 
Hippo signaling pathway 21 72 1.983E− 06 
Cell cycle 21 70 4.562E− 06 
Colorectal cancer 20 41 6.81E− 06 
Prostate cancer 21 56 1.037E− 05 
Estrogen signaling pathway 20 55 1.306E− 05 
Acute myeloid leukemia 17 38 1.677E− 05 
Glycosaminoglycan biosynthesis - keratan sulfate 12 10 2.874E− 05 
Pathways in cancer 21 184 3.088E− 05 
Focal adhesion 21 108 3.515E− 05 
Fatty acid biosynthesis 9 5 4.006E− 05 
Oocyte meiosis 17 59 4.028E− 05 
Glioma 19 37 4.028E− 05 
Endocytosis 21 100 4.028E− 05 
p53 signaling pathway 19 43 6.164E− 05 
N-Glycan biosynthesis 14 27 6.176E− 05 
Renal cell carcinoma 20 43 7.457E− 05 
Neurotrophin signaling pathway 21 67 7.712E− 05 
Chronic myeloid leukemia 18 45 7.842E− 05 
Shigellosis 20 39 8.722E− 05 
Prolactin signaling pathway 18 42 0.0001111 
Non-small cell lung cancer 17 33 0.0001449 
mTOR signaling pathway 18 38 0.000156 
FoxO signaling pathway 20 72 0.0001875 
Lysine degradation 17 25 0.0001893 
Small cell lung cancer 19 49 0.0003562 
Sphingolipid signaling pathway 19 60 0.0003722 
Ubiquitin mediated proteolysis 19 74 0.0003919 
Endometrial cancer 19 32 0.0004231 
Insulin signaling pathway 21 74 0.0004354 
AMPK signaling pathway 20 67 0.0004477 
ErbB signaling pathway 21 49 0.0004477 
HIF-1 signaling pathway 20 58 0.0006434 
Thyroid cancer 17 19 0.0007077 
Signaling pathways regulating pluripotency of stem cells 20 72 0.0007951  
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microtubule organizing center, and focal adhesion, by targeting 6887 genes. The miRNA signature involved in various molecular 
functions, the most significant molecular functions includes, enzyme regulator activity, protein binding transcription factor activity, 
nucleic acid binding transcription factor activity, poly(A) RNA binding, enzyme binding, RNA binding, ion binding, cytoskeletal 
protein binding, transcription corepressor activity, and transcription factor binding, by targeting 5098 genes. The details of the miRNA 
signature involved in GO annotations are listed in Supplementary Table S2. The GO enrichment analysis is shown in Supplementary 
Fig. S3. 

3.5. Identifying miRNA signature gene targets 

To investigate the possible genes targeted by the miRNA signature, we constructed a miRNA-target interaction network using 
Cytoscape v3.7.2. The miRNA-target network was constructed using predicted and validated targets by TargetScan Homo sapiens 
version 6.2 and miRTarBase v4.4 and MicroCosm v5. In which, miRTarBase collects target genes experimentally validated by western 
blot, microarrays, reporter assay, and next generation sequencing experiments [42]. TargetScan predicts biological targets of miRNAs 

Fig. 3. (A) miRNA-Target interaction using Cytoscape. The target genes of the miRNA signature were predicted using the miRTarBase, TargetScan, 
and MicroCosm. In this network, microRNAs and target genes are shown as red circles and pink rounded hexagons, respectively. The predicted 
microRNA–target interactions were visualized in orange, blue and violet using CyTargetLinker. (B) gene enrichment analysis predictions using 
miRTarBase, and (C) gene enrichment analysis predictions using TargetScan. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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[43], and MicroCosm contains computationally predicted targets for microRNAs, which are obtained from the miRBase sequence 
database and EnsEMBL.There are totally 20,832 target interactions in the network, in which TargetScan, miRTarBase and MicroCosm 
predicted and validated targets were 8313, 195, 12,324, respectively. For the better visualization overlap threshold was adjusted and 
in the constructed miRNA-target network (Fig. 3A), TargetScan, miRTarBase and MicroCosm targeted interactions were 1019, 107, 
and 981, respectively. 

Additionally, statistical analysis for over-representation of miRNA-target interaction enrichment was performed using MIEN-
TURNET [44]. The miRNA-target interaction enrichment analysis was performed for both predicted and validated interactions using 
TargetScan and miRTarBase. The bar chart representation of miRNA-target interaction enrichment is shown in Fig. 3B and C. 

3.6. miRNA signature disease association 

We predicted the miRNA-disease association of the miRNA signature using MISIM v2.0 [45], where miRNA functional similarity as 
weighting factors and calculates the frequencies of diseases. The miRNA signature and its weighted frequencies for HNSCs were 
measured and listed in Table 3. 

Additionally, the significant disease and functional association of the identified miRNA signature were analyzed using TAM 2.0 
[46]. The top five significant associated with miRNA signature are hepatocellular carcinoma (p-value (− log10) = 8.60), gastric cancer 
(p-value (− log10) = 6.70), breast cancer (p-value (− log10) = 6.40), gastrointestinal neoplasms (p-value (− log10) = 5.13), and 
esophageal carcinoma (p-value (− log10) = 4.88). The significant disease association of the miRNA signature is shown in Fig. 4. 

Next, we investigated the functions of the identified miRNA signature in HNSC by examining scientific literature. Within the 
miRNA signature, 19 miRNAs were found to have various roles in the progression and survival of HNSC. The miRNAs and their 
respective roles are listed in Supplementary Table S3. 

3.7. Expression difference in HNSC vs normal 

The relative expression levels of the miRNA signature were compared between cancer and normal samples. Among top 10 ranked 
miRNAs, eight miRNAs, hsa-miR-629-3p, hsa-miR-3127-5p, hsa-miR-221-3p, hsa-miR-501-5p, hsa-miR-491-5p, hsa-miR-149-3p, hsa- 
miR-3934-5p, hsa-miR-3170 showed a significant difference between cancer and healthy groups with p-values of 2.99E− 08, 
4.47E− 07, 1.07E− 06, 5.97E− 09, 5.34E− 02, 3.60E− 03, 1.62E− 12, and 1.62E− 12, respectively. Box plot representation of miRNA 
expression difference between cancer and normal groups are shown in Supplementary Fig. S4. 

Further, we measured the relative expression difference of miRNA signature across different pathological stages of HNSCs. The 
significant expression of miRNAs were observed across different stages. The relative expression difference of the top 10 ranked miRNAs 
across stages of HNSC is shown in Supplementary Table S4. 

Table 3 
The miRNA signature association with HNSCs.  

Rank miRNA Disease Weighted frequency 

1 hsa-miR-3065-3p Head and Neck Neoplasms 10.5936 
2 hsa-miR-629-3p Head and Neck Neoplasms 31.9993 
3 hsa-miR-3127-5p Head and Neck Neoplasms 18.8977 
4 hsa-miR-221-3p Mouth neoplasms 8.63 
5 hsa-miR-126-3p Head and Neck Neoplasms 39.1751 
6 hsa-miR-501-5p Head and Neck Neoplasms 20.6326 
7 hsa-miR-491-5p Mouth Neoplasms 6.491 
8 hsa-miR-149-3p Mouth Neoplasms 7.54158 
9 hsa-miR-3934-5p NA NA 
10 hsa-miR-3170 NA NA 
11 hsa-miR-378a-5p Head and Neck Neoplasms 33.9768 
12 hsa-let-7d-3p Head and Neck Neoplasms 36.8654 
13 hsa-miR-616-3p Head and Neck Neoplasms 20.5316 
14 hsa-miR-363-3p Mouth Neoplasms 5.50785 
15 hsa-miR-129-5p Head and Neck Neoplasms 37.1912 
16 hsa-miR-130a-5p Head and Neck Neoplasms 20.248 
17 hsa-miR-627-5p Head and Neck Neoplasms 21.3615 
18 hsa-miR-200c-3p Head and Neck Neoplasms 14.8893 
19 hsa-miR-497-5p Head and Neck Neoplasms 40.7023 
20 hsa-miR-141-5p Mouth Neoplasms 7.89423 
21 hsa-miR-374a-5p Head and Neck Neoplasms 28.7938 
22 hsa-miR-181c-5p Head and Neck Neoplasms 29.726 
23 hsa-miR-625-5p Head and Neck Neoplasms 37.3419 
24 hsa-miR-3193 NA NA 
25 hsa-miR-760 Head and Neck Neoplasms 29.6151  
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4. Discussion 

Identifying right biomarker could be aid in personalize and improve treatment strategies in patients with HNSC. An increasing 
number of studies have discovered the miRNAs as potential biomarkers for cancer prognosis, diagnosis and therapeutic targets. HNSCs 
are one of the major leading causes of deaths worldwide. The major complications in treating HNSC are, therapies, such as radio-
therapy and chemotherapy affects the quality of life and also tumors relatively resistance to cytotoxic drugs [47]. Hence, treatment 
strategies has brought forward new therapeutic opportunities, where miRNAs are the key tools [48]. Identifying novel miRNA 
signature, and their biological functions and targets genes will advance our knowledge about the significance of miRNAs in tumori-
genesis as well as developing the miRNA-based cancer prognosis and diagnosis. We utilized optimized survival estimation method 
HNSC-sig to identify a potential survival miRNA signature in patients with HNSCs. 

HNSC-sig identified a miRNA signature consisted of 25 miRNAs that is associated with survival in patients with HNSC. The 
comparison of prediction performance results showed the estimation capability of HNSC-Sig was better when compared with some 
regression methods. We prioritize the miRNAs of the signature and analyzed further. The bioinformatics analysis revealed the miRNA 
signature involved in some significant pathways, biological process, cellular components, and molecular processes. 

Next, we verified the roles of the top 10 ranked miRNAs using literature. The significant expression of hsa-miR-3605 was observed 
in laryngeal carcinoma, one of the commonly occurred HNSCs [49]. Expression difference of hsa-miR-3605-3p was observed when 
compared the lung squamous cell carcinomas, with a fold change of − 1.9 [50]. A qRT-PCR study on laryngeal squamous cell carcinoma 
cells reported the up-regulation of hsa-miR-221 and its association with clinicopathelogical features of laryngeal squamous cell car-
cinoma [51]. Up-regulation of plasma miR-221 was also observed in larynx cancer [52]. Differential expression of hsa-miR-221 was 
observed in oral cancer, common type of HNSCs [53]. The increased expression level of hsa-miR-629-3p was associated with the poor 
survival in HNSC. A significant association between miR-126 and poor prognosis was observed in oral squamous cell carcinoma 
(OSCC) and decreased expression of miR-126 was correlated with disease-free survival [54]. The overexpression of miR-126 signif-
icantly regulate the expression of epidermal growth factor-like domain 7 in OSCC cell lines [55] and acts as a tumor suppressor in OSCC 
cells. A meta-analysis study on HNSC demonstrated the decreased expression of miR-126 is associated with poor prognosis [56]. 
Recent study on HNSC cells demonstrated that expression of miR-501-5p was up-regulated and targets calcium activated chloride 
channel A4 resulting poor outcome in patients with HNSC [57]. Hsa-miR-491 targets G-protein-coupled receptor kinase-interacting 
protein 1 and regulate migration and metastasis of OSCC cells, and lower expression of miR-419-5p was associated with poor sur-
vival in patients with OSCC [58]. A follow-up study on 97 laryngeal squamous cell carcinoma patients reported that lower expression 
of miR-149 was associated with the shorter survival [59]. The expression of miR-149 was found to be down-regulated and associated 
with poorer survival in patients with HNSC [60]. An array analysis study on laryngeal squamous cell carcinoma revealed an expression 
of miR-149a was up-regulated when compared to the healthy samples [61]. Hsa-miR-3170 is one of the novel seven-miRNA prognostic 
model in HNSC, which was identified by LASSO and Cox regression analyses. 

Fig. 4. The miRNA signature association with various diseases. The size of bubble correlates with the count of input miRNAs.  
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Among top 10 ranked miRNAs, eight miRNAs (hsa-miR-3065, hsa-miR-221, hsa-miR-629, hsa-miR-126, hsa-miR-501, hsa-miR- 
491, hsa-miR-149, and hsa-miR-3170) were involved in HNSC as well as other cancers. Two miRNAs, hsa-miR-3127 and hsa-miR- 
3934 were not involved in HNSC, but they are actively expressed in other cancer types. For instance, hsa-miR-629 targets FOXO3 
and promotes cancer progression in pancreatic carcinoma [62]. The expression of hsa-miR-3127 was upregulated in hepatocellular 
carcinoma cells and promotes tumorigenicity and proliferation in hepatocellular carcinoma cells [63]. The downregulation of 
hsa-miR-3934-5p regulated proliferation and apoptosis in non-small cell lung carcinoma cells [64]. Hence, the participation of these 
three miRNAs, hsa-miR-629, hsa-miR-3127, and hsa-miR-3934, were not previously reported in HNSC, we assume that these are the 
new targets to explore their roles in HNSC. 

Future research on miRNA signatures in HNSC should focus on several promising directions to advance our understanding and 
clinical applications [65–67]. Firstly, there is a need to investigate novel miRNAs that have not been extensively studied in this context. 
Utilizing high-throughput sequencing technologies, researchers can profile the expression and functional significance of these less 
characterized miRNAs. Secondly, integrating miRNA data with other omics data, such as gene expression profiles, DNA methylation 
patterns, and proteomic data, can provide a comprehensive molecular landscape of HNSC, allowing for the identification of novel 
regulatory networks and key molecular players. Longitudinal studies tracking miRNA expression changes throughout the course of 
treatment and disease progression can offer insights into the dynamic nature of miRNA regulation and its association with treatment 
response, therapy resistance, and disease recurrence [68,69]. Furthermore, conducting functional characterization and mechanistic 
studies to unravel the biological mechanisms underlying miRNA-mediated effects in HNSC is essential. Another important direction is 
the development of non-invasive diagnostic tools utilizing miRNAs present in body fluids such as blood, saliva, and urine, which show 
potential as minimally invasive biomarkers for cancer detection and monitoring. Lastly, translating miRNA signatures into clinical 
practice requires conducting large-scale clinical trials to validate their prognostic value, assess predictive accuracy, and determine 
their impact on treatment decision-making and patient outcomes. 

The use of miRNA signatures as prognostic markers for HNSC has shown promise in research studies. However, there are some 
limitations and challenges associated with their application, which need to be addressed for their effective utilization in clinical 
settings [70,71]. A key limitation is the inherent heterogeneity of miRNA expression within HNSC, which can vary across different 
subtypes and individual patients. This heterogeneity poses a challenge in developing an applicable miRNA signature that can accu-
rately predict prognosis for all patients. The lack of standardized protocols for miRNA detection and quantification hampers the 
reproducibility and comparability of results across different studies. Future research should aim to establish standardized method-
ologies for sample collection, RNA isolation, miRNA profiling, and data analysis to ensure consistent and reliable results. Many miRNA 
signature studies in HNSC have been conducted with relatively small sample sizes, which limits the statistical power and generaliz-
ability of the findings. Future studies should involve larger cohorts and independent validation sets to ensure the robustness and 
reliability of miRNA signatures as prognostic markers. Addressing these limitations and challenges would enhance the potential of 
miRNA signatures as prognostic markers for HNSC patients. 

Before miRNA signatures can be translated into clinical practice, several challenges related to clinical implementation need to be 
overcome. These challenges include the development of standardized assays, the establishment of cost-effectiveness, and the feasibility 
of incorporating miRNA signatures into routine diagnostic settings. Clinical trials and translational studies are necessary to evaluate 
the clinical utility, reliability, and potential impact of miRNA signatures as prognostic markers for HNSC patients. In conclusion, our 
findings provide an important resource for the exploration of survival specific transcripts that may guide target-based therapeutic 
strategies and future discoveries in HNSCs. 
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