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ABSTRACT

Our web server, PIZSA (http://cospi.iiserpune.ac.in/
pizsa), assesses the likelihood of protein–protein in-
teractions by assigning a Z Score computed from
interface residue contacts. Our score takes into ac-
count the optimal number of atoms that mediate the
interaction between pairs of residues and whether
these contacts emanate from the main chain or side
chain. We tested the score on 174 native interactions
for which 100 decoys each were constructed using
ZDOCK. The native structure scored better than any
of the decoys in 146 cases and was able to rank within
the 95th percentile in 162 cases. This easily outper-
forms a competing method, CIPS. We also bench-
marked our scoring scheme on 15 targets from the
CAPRI dataset and found that our method had results
comparable to that of CIPS. Further, our method is
able to analyse higher order protein complexes with-
out the need to explicitly identify chains as receptors
or ligands. The PIZSA server is easy to use and could
be used to score any input three-dimensional struc-
ture and provide a residue pair-wise break up of the
results. Attractively, our server offers a platform for
users to upload their own potentials and could serve
as an ideal testing ground for this class of scoring
schemes.

INTRODUCTION

Protein-protein interactions (PPIs) are key to almost all cel-
lular functions. In order to better appreciate and/or get in-

sights into these cellular processes, it is crucial that we dis-
cover the entire network of underlying interactions. Deter-
mining protein interacting partners experimentally is both,
time-consuming and expensive. Also, given the magnitude
of the problem, where estimates say there could be upto
130,000 PPIs among the Human proteome alone (1–3), it
is imperative that we develop computational techniques to
predict such interactions (4–6).

Computational predictions usually consider geometric
and chemical complementarity of the interactors to sug-
gest viable PPIs. Typically, the problem involves sampling
various conformations of the interactors (with respect to
one another) and then scoring each of these proposed as-
sociations. In this manuscript, we present a platform for
scoring putative PPIs demonstrated with our newly devel-
oped statistical potential that builds on an older formula-
tion (7). Our scoring scheme, dubbed PIZSA for Protein
Interaction Z-Score Assessment, utilizes the fact that large
observed/expected ratios are indicative of favorable ener-
getics. Particularly, PIZSA makes use of pairwise associ-
ations of amino acids that are in close physical proximity
across the PPI interface.

Our scoring scheme involves the computation of three
matrices of amino acid pair preferences for interactions me-
diated by main chain–main chain, main chain–side chain
and side chain–side chain atomic contacts. We explored
and optimized values for the most effective contact dis-
tance based on a benchmark (8). We have also compared
ourselves with another method and demonstrated that we
perform at the same level if not better at identifying native
structures among a set of decoys (8–10).

In the analysis of our scoring scheme presented here,
we have compared its performance on two datasets of na-
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tive PPIs and decoys (11–14). We have compared our per-
formance to that of CIPS (10), which in turn was already
shown to outperform three other methods (15–17). We fur-
ther demonstrate PIZSA’s usability in assessing protein–
protein interfaces through two case studies. Particularly,
one of the crucial aspects of the way we have constructed the
scoring scheme is to enable the same evaluation to be car-
ried out for all oligomeric states and not restrict ourselves
to dimeric interactions.

MATERIALS AND METHODS

The PIZSA scoring scheme to assess protein complexes

Interacting residue pairs on the interface of protein–protein
complexes are identified based on a distance threshold.
Residues belonging to different chains of a multi-chain pro-
tein complex that are within a distance threshold of each
other are identified as interacting residue pairs. Users can
choose 4, 6 or 8 Å as the distance threshold that is oth-
erwise set to 4 Å by default. Interacting residue pairs are
assigned three different scores depending on the types of
atoms involved in the interaction (main chain - main chain,
main chain - side chain and side chain - side chain). Ev-
ery residue pair score is further normalized by their atomic
propensities and a clash penalty. Atomic propensities are a
measure of how frequently a specific number of atoms are
involved in a residue pair interaction and clash penalties are
used to penalize interactions with steric clashes. The final
score assigned to a protein–protein complex is the sum of
all the scores assigned to its interacting residue pairs. Ev-
ery protein complex is also assigned a Z score that predicts
the likelihood of a protein complex to form a stable associa-
tion by comparing its score to a background distribution of
scores obtained from non-native interactions. Protein com-
plexes are predicted to form stable associations if they ac-
quire Z scores above certain thresholds. Z score thresholds
have been optimized at different distance cut-offs, the de-
tails of which along with the details of our scoring functions
are reported elsewhere (8).

Identification of native complexes and stable associations

The ability of our method to identify the native complex
amongst a set of decoys was tested on the ZDOCK Dock-
ing Benchmark 4.0 (11,12) and CAPRI (13,14) decoy sets.
We used ZDOCK 3.0.2 with 6-degree sampling to gener-
ate 100 decoys for each of the 174 targets. We also used de-
coys from 9 separate CAPRI rounds (R8, R9, R10, R27,
R28, R29, R31, R32 and R34) that include 15 targets (T22,
T23, T24, T25, T26, T58, T61, T67, T95, T98, T99, T100,
T101, T104 and T105) and ∼5000 decoys. All decoys and
native complexes were evaluated using the PIZSA and CIPS
potentials. Further, complexes were rank-ordered accord-
ing to their respective scores and ranks obtained by the na-
tive complexes with PIZSA and CIPS potentials were com-
pared. We also tested the ability of PIZSA to classify na-
tive complexes as stable associations on the ZDOCK decoy
set. Classification performance was tested by evaluating the
accuracy, balanced accuracy and the Matthews correlation
coefficient (MCC).

Table 1. Comparison of the number of native target complexes ranked as
top scoring interactions

Rank (in top) PIZSA CIPS

1 146 26
3 160 50
5 162 59
10 166 79

RESULTS

Performance on ZDOCK Docking Benchmark 4.0

We tested our method’s ability to score native protein com-
plexes optimally on the ZDOCK Docking Benchmark 4.0
and compared our performance with that of CIPS. Of the
174 native protein complexes, we were able to correctly iden-
tify the native structure as the best scoring in 146 cases
(84%) whereas CIPS identified the native to be the best in
only 26 cases (15%). Furthermore, our method ranked na-
tive interactions among the top three interactions in 160
cases (92%), among the top 5 interactions in 162 cases
(93%) and among the top 10 interactions in 166 cases (95%)
whereas CIPS ranked the native complexes among the top
3, 5 and 10 interactions in 50 (29%), 59 (34%) and 79 (45%)
cases respectively (Table 1). PIZSA ranks the native inter-
action better than CIPS in 140 cases (81%), equal to that of
CIPS in 23 cases (13%) and worse than that of CIPS in 11
cases (6%) (Figure 1, Supplementary S1).

We also tested our method’s ability to classify native
protein–protein interactions as stable associations using a
Z Score assessment. Since the dataset has a larger repre-
sentation of the negatives as compared to the positives (100
decoys for a single native complex), we report our perfor-
mance in terms of rates instead of absolute numbers. We
were able to correctly predict 158 of 174 native structures as
stable associations at a distance threshold of 4 Å and a Z
Score threshold of 1.5 with a true positive rate of 0.91, true
negative rate of 0.89, false positive rate of 0.11 and false neg-
ative rate of 0.09. PIZSA achieved a classification accuracy
of 0.89, balanced accuracy of 0.90 and an MCC of 0.80 (cal-
culated using rates, Supplementary S2).

Performance on CAPRI targets

We tested our method’s ability to identify native struc-
tures among a set of decoys in different CAPRI rounds.
15 CAPRI targets were evaluated of which 12 were dimeric
complexes and 3 were higher order associations (>2 chains).
PIZSA was able to identify the native complex in the top
10% of the decoys in six cases and in the top 20% of the
decoys in 10 cases. We compared the ranks of native com-
plexes assigned by PIZSA with those assigned by CIPS (Ta-
ble 2). CIPS was able to identify the native complexes in
the top 10% of decoys for five cases and in top 20% of the
decoys in eight cases of the 12 evaluated targets. PIZSA as-
signed a rank better than or equal to that of CIPS in five
cases whereas CIPS assigned a rank better than PIZSA in
7 cases. However, three multimeric targets (T95, T99 and
T100) were not evaluated using CIPS as it requires inter-
actions to be dimeric, whereas, PIZSA can evaluate quater-
nary associations of multiple structures as a whole and does
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Figure 1. The percentile ranks of native protein–protein complexes in the ZDOCK Docking Benchmark 4.0 as calculated using PIZSA (y-axis) and CIPS
(x-axis) respectively. Points on the diagonal are instances where both PIZSA and CIPS assign equal ranks (green). Points above the diagonal are cases
where PIZSA assigned a better rank to the native complex (progressively bluer shades). Points below the diagonal are cases where CIPS assigned a better
rank to the native complex (progressively redder shades).

not require an explicit demarcation of receptor and ligand.
Although CIPS assigns better ranks to native complexes in
more cases than PIZSA, the overall difference in ranking
among the two methods is statistically insignificant (P-value
of 0.5 on a Wilcoxon signed-rank test).

WEB SERVER DESCRIPTION

The PIZSA web server provides an easy-to-use graphical
interface for the assessment of the stability of quaternary
protein assemblies. The web server is freely accessible with-
out login requirements at http://cospi.iiserpune.ac.in/pizsa/.
Users can either specify the four-letter PDB code of dimeric
or multimeric protein complexes or upload a complex as a
single file in PDB format. They have the option of choosing
between three distance thresholds (4, 6 and 8 Å) to define
amino acid interactions and also of using their own custom
scoring matrices for different modes of interactions. The
default settings for PIZSA utilize the pairwise amino acid
preferences defined for all atom types at a distance thresh-
old of 4 Å. The server also has a provision for carrying out
mutational analysis. In the current version of the server, this
utility has not yet been optimized and is currently being
tested and refined and as such the results produced by this
module is outside the consideration of this study. Copious
help pages guide users through the website. Finally, users of
the web server also have the option of providing an email
address to receive notifications especially for computation-
ally intensive analyses.

WEB SERVER OUTPUT

The output from PIZSA is presented in four tabs; ‘Sum-
mary’, ‘Score File’, ‘Interacting Interface Residues’ and
‘Mutational Analysis’. The first tab summarises the results
of evaluating the query protein complex. It displays the Raw
Score and the Z Score obtained by the protein complex and
also whether or not the complex was predicted as a stable
association (Figure 2). The ‘Score File’ tab provides a table
listing the different parameters used during the analysis and
the resulting scores (Raw Score, Normalized Raw Score and
Z Score) for the input protein complex. Individual scores
for every interacting residue pair are reported in the ‘In-
teracting Interface Residues’ tab. All interface residues are
listed by the residue number, residue name, the polypep-
tide chain that they belong to, their interacting partner and
their interaction score. Users have the option to filter this list
by searching for specific residue names or residue numbers.
Hovering the cursor over this list highlights the interacting
residue pairs on the structure that is displayed by default
as a ribbon diagram on the right side of the window and is
color-coded to distinguish different chains. Since the pro-
tein complex is rendered using JSmol (18), users are free to
interact with the structure and tweak the visuals as per their
liking. The results of an in silico mutational analysis are pro-
vided on the ‘Mutational Analysis’ tab. Data from the Score
File, Interacting Interface Residues and Mutational Analy-
sis can be downloaded as separate files. A stand-alone ver-
sion of PIZSA can be downloaded from the download link
provided on the web server.

http://cospi.iiserpune.ac.in/pizsa/
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Table 2. Percentile ranks of native complexes from CAPRI targets as evaluated using PIZSA and CIPS

CAPRI Target PDB ID Number of decoys PIZSA rank of native CIPS rank of native

T22 2J59 90 88 69
T23 2J59 98 90 74
T24 2HQS 355 97 98
T25 2ONI 396 95 98
T26 4AK2 426 77 84
T58 4G9S 230 71 84
T61 3ZIO 270 95 95
T67 4N7H 351 42 55
T95 4R8P 240 80 *
T98 4UEM 418 87 100
T99 4UEL 399 97 *
T100 4UF6 380 71 *
T101 4UF5 398 98 97
T104 4UHP 496 56 61
T105 4QKO 506 82 81

Unevaluated targets are indicated by * in the rank field.

Figure 2. PIZSA web server output for the evaluation of the tetrameric Haemoglobin complex (PDB code: 1GZX). Summary tab displays the number of
interacting residues, Raw Score and Z Score of interaction along with a binding prediction of stable association for all possible interfaces. The Haemoglobin
complex is rendered as a ribbon diagram with color-coded chains.

CASE STUDIES

The Ras:SOS:Ras ternary complex

Many a times, a set of proteins interact with each other in
more than one biologically meaningful way (19). An exam-
ple of this is the interaction between the Ras GTPase and
the nucleotide exchange factor Son Of Sevenless (SOS). Ras
catalyzes the dephosphorylation of guanosine triphosphate
to guanosine diphosphate (GTP to GDP). SOS is required
for release of GDP from the Ras-GDP complex. It has been

shown previously that Ras-GTP binds on a site orthogonal
to that of the SOS:Ras-GDP interface and accelerates the
release of GDP. Therefore, SOS has two spatially-separated
Ras binding sites and can form a ternary complex bind-
ing both Ras-GDP and Ras-GTP (PDB code: 1NVV, Fig-
ure 3) (20). We used PIZSA to evaluate the two orthogo-
nal SOS:Ras (interfaces QS and RS) interactions and the
ternary complex Ras:SOS:Ras. PIZSA classifies both the
dimeric SOS:Ras interactions as well as the ternary complex
as binders (Table 3). We constructed alternate docking con-
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Figure 3. The structure of Ras:SOS:Ras ternary complex (PDB code: 1NVV). The structure of SOS (S) has been represented with a solvent-excluded
surface in grey and Ras-GTPases (Q and R) have been represented as ribbons (salmon) with meshed surfaces. Representations were rendered using UCSF
Chimera (21).

formations for the SOS:Ras dimers using the ZDOCK web
server (22). The top 10 predicted poses for each SOS:Ras
dimer were all predicted as non-binders when evaluated us-
ing PIZSA (Supplementary S3).

The quaternary structure of Haemoglobin

The Human haemoglobin has a tetrameric structure con-
sisting of two �-globin subunits with 141 amino acids each
and two �-globin subunits with 146 amino acids each. The
quaternary structure of haemoglobin can be considered as a
dimer of two �� dimers (�1�1 and �2�2) that are rotated by
180© with respect to each other and acquire two-fold sym-
metry around a central water-filled cavity. The haemoglobin
molecule can exist in two states: oxygenated (or R-state)
and deoxygenated (or T-state). Upon the binding of oxygen,
the haemoglobin molecule transitions from the T-state to
the R-state undergoing a conformational change in which
the �2�2 dimer rotates ∼15© relative to the �1�1 (23).
This T to R-structure transition also leads to the disrup-
tion of old and generation of new interactions among the
amino acid residues in the �1�2 and �2�1 interfaces and
corresponds to a free energy difference of approximately
6 kcal/mole between the deoxy-haemoglobin tetramer and
the oxy-haemoglobin tetramer (−14 and −8 kcal/mol re-
spectively) arising from more extensive interactions in the
deoxy-haemoglobin (24).

We used PIZSA to evaluate the stability of the two
tetrameric conformations of the haemoglobin molecule. We
correctly classified both tetramers as binders. The deoxy-
genated state is thermodynamically more stable than the
oxygenated state due to the presence of more extensive

amino acid interactions in the deoxygenated haemoglobin.
Z Scores assigned to these states are in agreement with their
observed thermodynamic stabilities (Table 4). This is ex-
pected as higher Z Scores are associated with more stable
assemblies as per our scoring scheme (8).

DISCUSSION AND CONCLUSION

We have developed a knowledge-based statistical potential
that evaluates protein complexes based on the distribution
and type of pairwise residue contacts at the interface. Our
method explicitly accounts for the separate contributions of
different modes of interaction between contacting residue
pairs (main chain–main chain, main chain–side chain and
side chain–side chain). Such a distinction is necessary as the
same interacting residue pairs have varying preferences for
different modes of interactions (8). Interacting residue pairs
are defined on the basis of distance thresholds that can be
toggled by the user to account for short range direct inter-
actions at 4 Å to progressively longer range interactions at
6 and 8 Å such as water mediated interactions (25).

Amino acid pairs on the interface are scored based on
their pairing preferences and their tendencies to interact
with a certain number of atoms (8). These preferences have
been quantified in the form of 6 scoring matrices for every
distance threshold and can be customized at the user’s dis-
cretion. Our web server allows modularity in uploading one
or more custom scoring matrices alongside the default ones,
essentially allowing users to make use of our platform to test
various other scoring matrices. PIZSA not only provides a
cumulative score for all the pairwise interactions on an in-
terface but also classifies protein complexes as stable or un-
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Table 3. Evaluation of Ras:SOS dimeric (QS and RS) and Ras:SOS:Ras trimeric complexes with PIZSA

Protein complex
Number of interacting
pairs Normalized raw score Z Score Binding prediction

Ras:SOS:Ras
Trimer 139 −22.94 2.40 Binder
Ras:SOS (RS)
dimer 70 −24.99 2.37 Binder
SOS:Ras (QS)
dimer 69 −20.85 2.44 Binder

Table 4. PIZSA scores for the hemoglobin complexes in the oxygenated
(PDB code: 1GZX) and the deoxygenated (PDB code: 2HBB) states

Parameters Oxygenated Hb Deoxygenated Hb
(R-state) (T-state)

Number of interacting pairs 124 123
Raw score −2053.27 −1243.68
Normalized raw score −16.55 −10.11
Z-Score 2.51 2.60

stable assemblies. We have benchmarked our classification
performance on the ZDOCK decoy set with an accuracy of
0.89, balanced accuracy of 0.90 and an MCC of 0.80. We
have also previously benchmarked our classification with
similar levels of performance on the Dockground Docking
Decoy Set (8).

We demonstrated the ability of PIZSA to identify native
complexes and compared it with that of CIPS on two dif-
ferent datasets, the ZDOCK Docking Benchmark 4.0 and
the CAPRI decoy set. Our method identified 146 out of
174 native complexes as the best interaction in the ZDOCK
data set and outperformed CIPS that was able to iden-
tify only 26 native complexes as the best interactions. On
the CAPRI dataset, both methods had comparable results,
however CIPS can only score multimeric assemblies if they
are bifurcated into chains for receptors and chains for lig-
ands. The CAPRI dataset consists of many more decoys
that are close to the native structure, or in the immediate
proximity of the true binding site, than the ZDOCK de-
coys. This follows from the method ZDOCK uses to create
the decoys - by design 5/6 of the complexes have non-native
contact while the other 1/6 explore different conformations
in the true binding site. We believe that in comparison to
CIPS, PIZSA can better discern between completely non-
native structures and native like structures.

PIZSA successfully identified the native complexes of a
dodecamer (T95: 4R8P), and two trimers (T99: 4UEL and
T100: 4UF6) with percentile ranks of 80, 97 and 71 respec-
tively. Our method can potentially be used to assess mod-
els of higher order multimeric protein complexes such as
those constructed by fitting monomeric subunits onto elec-
tron density maps (26–28).

We have demonstrated the utility of PIZSA using two
case studies. In the first of the two, we show that PIZSA
is able to identify alternative binding modes of Ras with
SOS along with the Ras:SOS:Ras ternary complex. In the
second case study we demonstrate that our scores concur
with experimental observations in suggesting that the de-
oxygenated tetrameric complex of Haemoglobin is more
stable than its oxygenated counterpart.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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