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Background: Recent research has demonstrated that machine learning (ML) has the potential to improve 
several aspects of medical application for critical illness, including sepsis. This scoping review aims to 
evaluate the feasibility of probabilistic graphical model (PGM) methods in pediatric sepsis application and 
describe the use of pediatric sepsis definition in these studies.
Methods: Literature searches were conducted in PubMed, Scopus, Cumulative Index to Nursing and 
Allied Health Literature (CINAHL+), and Web of Sciences from 2000–2023. Keywords included “pediatric”, 
“neonates”, “infants”, “machine learning”, “probabilistic graphical model”, and “sepsis”.
Results: A total of 3,244 studies were screened, and 72 were included in this scoping review. Sepsis was 
defined using positive microbiology cultures in 19 studies (26.4%), followed by the 2005’s international 
pediatric sepsis consensus definition in 11 studies (15.3%), and Sepsis-3 definition in seven studies (9.7%). 
Other sepsis definitions included: bacterial infection, the international classification of diseases, clinicians’ 
assessment, and antibiotic administration time. Among the most common ML approaches used were logistic 
regression (n=27), random forest (n=24), and Neural Network (n=18). PGMs were used in 13 studies 
(18.1%), including Bayesian classifiers (n=10), and the Markov Model (n=3). When applied on the same 
dataset, PGMs show a relatively inferior performance to other ML models in most cases. Other aspects of 
explainability and transparency were not examined in these studies.
Conclusions: Current studies suggest that the performance of probabilistic graphic models is relatively 
inferior to other ML methods. However, its explainability and transparency advantages make it a potentially 
viable method for several pediatric sepsis studies and applications.
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Introduction

It is estimated that more than 50 million cases of sepsis are 
detected each year, and more than 40% of these cases occur 
in children under the age of five (1,2). Incidence of sepsis 
in newborns ranged from 1 to 22 per 1,000 births, with a 
mortality rate of 5–16% worldwide (1,3,4). Approximately 
77% of infants with sepsis require intensive care, while 
16% of term infants with sepsis die from this condition (4).  
Sepsis continues to be the primary cause of severe morbidity 
and mortality for children in pediatric intensive care 
units (PICUs), with several challenges to address (2,5,6). 
One of the most pressing challenges is the absence of an 
objective, robust and universal sepsis definition, while the 
existence of disparate variations in clinical presentation and 
variables (based on clinical, biochemistry and microbiology 
findings) complicates the diagnosis process (2,7). Moreover, 
adult-based sepsis definitions often do not apply to 
children, since physiological and laboratory parameter 
cutoffs need to be age-appropriate (8). The diagnostic 
challenge is further compounded by the fact that results of  
microbiological cultures are often unavailable at the time of 
sepsis evaluation (9).

In recent years, researchers have utilized machine 
learning (ML) and electronic health records (EHRs) 

in an attempt to address these challenges. ML is an 
interdisciplinary field combining knowledge from 
mathematics, statistics, and data analytics. It offers a wide 
range of established methods, including supervised learning 
(e.g., regression, classification) and unsupervised learning 
(e.g., clustering). Both supervised and unsupervised learning 
can be used to search for predictive patterns in health 
data to distinguish between patients with and without 
diseases. Using these methods, researchers have developed 
several models to diagnose sepsis at the early stages with 
high accuracy, often without the need for microbiology 
results (10-13). As a result, they have the potential to 
contribute towards patient care, reducing patient hospital 
stay and their medical costs (14-16). Amongst the ML 
methods, probabilistic graphical models (PGMs), a set of 
methodologies that uses graphs and probability theory, 
is one of the most robust approaches available (17,18). 
PGM constructs a complex network of knowledge 
and incorporates different information for inference 
and prediction. Informative graphical representation, 
intuitive uncertainty handling with conditional probability 
distributions and joint probability factors, and transparent 
explanation capabilities make PGM an attractive option 
in the field of medicine (19). Gupta et al. (20) developed a 
risk prediction model for coronary artery disease (CAD) 
using PGM with an area under the curve of 0.93±0.06 and 
demonstrated the possibility of personalized CAD diagnosis 
and therapy selection. The authors also emphasized the 
strength of PGM and its efficacy in handling data with 
uncertainty or missing information. Other investigators 
have exhibited that PGM could capture the underlying 
distribution of the dataset and generated the synthetic 
data effectively with transparency (21). Even though their 
applications in pediatric sepsis are currently limited, past 
studies suggest that PGM has the potential to improve 
several aspects of pediatric sepsis applications (19-21).

In this scoping review, we aim to (I) evaluate the 
feasibility of PGM in pediatric sepsis application and (II) 
describe how pediatric sepsis definitions are used in the 
ML literature. The result of this review will allow us to 
evaluate potential research opportunities to use PGM for 
various applications in pediatric sepsis as well as provide 
our perspective on the use of pediatric sepsis definition 
for these studies. We present this article in accordance 
with the PRISMA-ScR reporting checklist (available at 
https://tp.amegroups.com/article/view/10.21037/tp-23-
25/rc) (22).

Highlight box

Key findings
• Performance of probabilistic graphical model (PGM) is relatively 

inferior to other machine learning (ML) methods on the same 
dataset. 

• Considering their qualities in explainability and transparency, 
PGM can be useful in pediatric sepsis applications.

What is known and what is new? 
• ML demonstrates potential to in pediatric sepsis applications, with 

certain advantages. 
• PGM provides advantages of interactive representation, transparent 

reasoning, and missing data handling. There is, however, a lack of 
in-depth discussion of these aspects in comparison to other ML 
methods in the current literature.

What is the implication, and what should change now? 
• PGM is a potential candidate for pediatric sepsis applications, 

demonstrating efficacy, robustness, explainability, reliability, and 
trustworthiness. 

• More granular data should be collected to facilitate the extraction 
and application of multiple definitions of sepsis to enhance the 
predictive ability of ML models.

https://tp.amegroups.com/article/view/10.21037/tp-23-25/rc
https://tp.amegroups.com/article/view/10.21037/tp-23-25/rc
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Methods

The following medical databases (January 2000 to May 
2023) were used for this review: PubMed, Scopus, 
Cumulative Index to Nursing and Allied Health Literature 
(CINAHL+), and Web of Science.

The keywords used for the searches included “sepsis”, 
“neonates”, “infants”, “pediatric”, “machine learning” 
and “probabilistic graphical model”. Similar keywords 
were found by using the Thesaurus dictionary, and the 
keyword list was refined through several iterative rounds of 
preliminary searches. At each round, the abstracts and titles 
of the top search were screened to extract more keywords. 
The process was repeated until there was no new word to 
add, and the search results were sufficiently comprehensible. 
The same processes were applied to the Mesh terms in the 
PubMed database and subheadings in CINAHL+ and Web 
of Science. In Scopus, searches were conducted using only 
keywords. In PubMed, CINAHL+, and Web of Science, 
searches were conducted using keywords, Mesh terms, and 
subheadings. 

The search results were combined and imported into 
Covidence (Australia), a licensed literature review web 
application for screening and review (23). The screening 
included title/abstract, full-text screening and was 
completed by two authors (T.M.N., S.W.L. or Y.C.K.H.). 
They screened the publications independently, and conflicts 
were resolved by discussion or by involving a third author. 
Table 1 lists our inclusion criteria. Data charting was 
performed using a predetermined Microsoft Excel (United 
States) template and iteratively reviewed. Extracted data 
included: title, authors, publication year, objectives, patient 
characteristics, study design, data source, sepsis definition, 
sepsis incidence rate, ML variables, ML methodology, 
performance metrics, and results.

There are a number of metrics that can be used to 
measure the performance of ML models, depending on 
their characteristics. In supervised learning for classification 
task, sensitivity (SEN), specificity (SPE), accuracy (ACC), 
area under the receiver-operating curve (AUROC), positive 
predictive value (PPV), and negative predictive value (NPV) 
are often popular choices. These measurements evaluate 
how reliable the model is by calculating the proportion 
of correctly and incorrectly predicted cases on the given 
dataset. Their equations are derived from the confusion 
matrix, which comprises the true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN). AUROC 
is calculated by measuring the true positive rate against the 
false negative rate. An AUROC nearer to 1.0 represents 
a higher capability to distinguish between positive and 
negative cases. The choice of appropriate metrics depends 
on the nature of the problem and the dataset. In the event 
of an imbalanced dataset, the use of ACC, AUROC, or 
any single metric alone is not recommended because it 
does not accurately reflect the model’s predictive ability. 
A combination of them with additional F-score, G-mean, 
area under precision-recall curve (AUPRC), and various 
other metrics that provide different views on the predicted 
positives and negatives should be used instead. The most 
commonly used evaluation metrics for regression tasks in 
supervised learning are R squares or adjusted R squares, 
mean square errors (MSE) or root mean square errors 
(RMSE), and mean absolute errors (MAE). These metrics 
measure the fit between prediction values and ground truth 
values. As for unsupervised learning, performance evaluation 
is less straightforward as it often requires the evaluation of 
both the results and the unsupervised algorithms employed. 
Essentially, it seeks to determine whether the number of 
clusters discovered is optimal and reliable, as well as validate 
whether members within a cluster and between clusters are 
similar. Common metrics include the Davies-Bouldin Index, 
Calinski-Harabasz Index, and Silhouette Coefficient (24). 

The capabilities of ML extend far beyond those of 
conventional statistical methods. They are, however, 
difficult to interpret because of their mathematical 
complexity. A common question that arises when using such 
a model is why a particular result is reached. One way to 
approach this question is by examining the features involved 
in the learning process and the extent to which they 
contribute to the final result, as seen in some explainable 
artificial intelligent (XAI) tools. In particular, Shapley 
additive explanations (SHAP) and local interpretable 
model-agnostic explanations (LIME) have been gaining 

Table 1 Inclusion criteria for title/abstract screening

Inclusion criteria

(I) Year: 2000–2022

(II) Journal articles

(III) Study contains the predefined keywords 

(IV) Study in English

(V) Pediatric study

(VI) Study conducted on humans

(VII) Real data use
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popularity due to their model-agnostic nature and user-
friendly interfaces that work on several ML models. Other 
approaches of XAI can be referred to (25).

In this review, we present the performance comparison 
in two approaches: (I) an overall qualitative comparison 
between PGM and other ML methods, and (II) a deeper 

comparison based on studies using both PGM and other 
ML methods on the same dataset. Performance was assessed 
using AUROC, SEN, SPE, NPV, and PPV, as these metrics 
have been reported commonly across several studies. In 
addition to the performance comparison, an analysis of 
pediatric sepsis definitions was also conducted from selected 
publications. 

Results

Our search identified 3,244 studies, with 2,483 remaining 
after duplicate removal. Following title/abstract screening, 
1,968 irrelevant studies were filtered. An additional 443 
were excluded after the full-text screening, leaving 72 studies  
that met our inclusion criteria (Figure 1, Table S1). Among 
them, 59 studies (81.9%) were published after 2018 with 
most studies published in 2021 (n=19, 26.4%). There 
was a total of 57 retrospective studies (79.2%) conducted 
using EHR, eight literature reviews, one randomized 
controlled clinical trial, three observational cohort studies, 
a derivation-validation, a case-control and a prospective 
study. We analyzed the use of different pediatric sepsis 
definitions and classified them into four major categories: (I) 
positive cultures (n=19, 26.4%), (II) systemic inflammatory 
response syndrome (SIRS) with suspected or proven 
infections (IPCSS, 2005, n=11, 15.3%), (III) dysregulated 
infection response with organ dysfunction criteria (Adapted 
Sepsis-3, 2016, n=7, 9.7%), and (IV) general infections, 
including bacteremia, bacterial, viral, or fungal infections, 
(n=3, 4.2%) (Table 2). The remaining definitions vary 
from international classification of disease codes, clinician 

Figure 1 PRISMA-ScR flowchart of the study selection process. A 
total of 3,244 studies were screened and 72 of them were included 
in the scoping review. 

3,244 studies imported 
from PubMed, Scopus, 

Web of science, CINAHL+

2,483 studies for screening

515 full-text studied 
assessed for eligibility and 

read in full text

72 studied included in the 
scoping review

761 duplicates removed

1,968 irrelevant studies 
excluded

443 studies excluded:
•  315 wrong methods
•  75 wrong outcomes
•  14 no access to papers
•  10 not in English
•  29 Others (animal, adult 

population, etc.)

Table 2 Pediatric sepsis definition

Definitions Description

IPSCC [2005] SIRS and presence of suspected or proven infections

Positive cultures Positive cultures of blood, CSF, etc.

Adapted Sepsis-3 [2016] Dysregulated host response to infection and dysfunctional organs measured by age-based pSOFA

General infections

Bacteremia Blood stream infections with positive cultures

Bacterial infection Bacterial infection with or without positive cultures

Viral infection Viral infection with or without positive cultures

Fungal infection Invasive fungal infection with or without positive cultures

In this review, asymptomatic patients with culture positive are not considered to have sepsis. CSF, cerebrospinal fluid; IPSCC, international 
pediatric sepsis consensus conference; SIRS, systemic inflammatory response syndrome; pSOFA, pediatric sequential organ failure 
assessment.

https://cdn.amegroups.cn/static/public/TP-23-25-Supplementary.pdf
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reviews, to the time of antibiotic administration (26-33). 
We observed an increase in Sepsis-3 use (n=1 before 2020, 
n=6 after 2020), even though positive cultures continue 
to be the most widely used definition (n=8 before 2020, 
n=11 after 2020). Most studies utilized only one definition 
to identify the sepsis cohort, and some did not provide a 
rationale as to why a particular definition was chosen (n=11, 
15.3%). Number of study participants ranged from 15 to 
35,074, with a number of studies focusing on infants (n=25, 
34.7%). The incidence of sepsis ranged from 1.2–81%. 
Among the 25 studies focusing on infants, the common 
sepsis definitions used were positive cultures (n=14, 56%), 
bacterial sepsis (n=3, 12%), time of antibiotic administration 
(n=3, 12%). The study objectives in this group of studies 
mostly focused on identifying early and late onset sepsis or 
distinguishing between sepsis and other signs of infection 
such as SIRS. 

The application of ML models in pediatric sepsis is 
limited to early prediction, risk calculation, and biomarker 
identification, while studies on sepsis treatment and 
progression remain relatively scarce. Among the most 
common ML approaches used were logistic regression (LR, 
n=27), random forest (RF, n=24), and neural network (NN, 
n=18). In addition, other tree-based models, including 
classification and regression tree (CART, n=6), decision 
tree (DT, n=5), gradient boosted decision tree (GBDT, 
n=8), extra trees (ET, n=3), bagged trees (n=1), are also 
frequently used. Commonly chosen performance metrics 
were AUROC (n=49, 68.1%), and SEN/SPE (n=29, 40.3%) 
(Table S1). PGM models were used in 13 studies (18.1%, 
Table 3). PGM methods used included naïve Bayes (NB, 
n=9), tree augmented naïve Bayes (TAN, n=2), hidden 
Markov model (HMM, n=2), and Markov chain (n=1). 
Overall, the performance of PGM (AUROC: 0.59–0.91, 
SEN: 0–0.84, SPE: 0.18–0.99, NPV: 0.31–0.98, PPV: 
0.28–0.80) vary on different settings and datasets. When 
comparing PGM and other MLs on the same dataset, PGM 
showed a relatively inferior performance to other MLs 
in most cases (Tables 3,4). Furthermore, the studies that 
used both PGM and other MLs examined and compared 
only the quantitatively measurable aspects of the methods 
(e.g., AUROC, SEN, SPE), whereas other attributes, such 
as explainability and visualization, were not examined. 
Otherwise, only three studies (34-36) utilized XAI tools, 
such as SHAP or LIME, to enhance the interpretation of 
the ML process/models. 

Discussion
 

In this review of ML-based pediatric sepsis literature, we 
found that most studies used retrospective EHR data and 
incorporated multiple ML methods to develop predictive 
models. LR, RF, and NN were the most frequently used 
ML methods, while positive cultures and IPSCC were the 
most widely used sepsis definitions. Our findings suggests 
that PGM performs relatively inferior compared to other 
ML techniques in most cases. In this section, we review the 
general ML approaches and assess the potential of PGM in 
pediatric sepsis.

ML approaches in pediatric sepsis

We observed that in pediatric sepsis, LR, RF, and NN were 
the most common ML methods, followed by the tree-based 
models. Similar to linear regression (fitting of a regression 
line to the data), the LR concept uses the sigmoid function 
in order to fit an S-curve to the data and determine the 
probability of the outcome. The RF consists of several 
small decision trees that work together as an ensemble, 
where the final decision is determined by a majority vote. 
Finally, a neural network is a structure of interconnected 
nodes nested in several layers, where each node is associated 
with a weight and an activation function. Secondly, the ML 
studies follow a similar structure for data processing, feature 
selection, model fitting, testing, and sensitivity analysis. 
Data is usually divided into training and testing subsets for 
model learning and validation. To reduce biases during the 
learning process, k cross-validations can be performed on 
the whole dataset or the training set. Model fitting is often 
preceded by feature selection methods such as Elastic Nets, 
RF, and Lasso when a number of variables are involved (37).  
Metrics of performance are carefully considered in ML 
tasks, and sensitivity analyses are usually required for 
studying the behavior of models under different conditions.

The application of ML models in pediatric sepsis is 
limited to early prediction, risk calculation, and biomarker 
identification, while studies on sepsis treatment and 
progression remain relatively scarce. It is expected that 
these topics should be explored further, especially in 
the area of sepsis management. Furthermore, research 
based on physiological markers, laboratories, heart rate 
variability, and genes are promising areas for future 
endeavors (38). Likewise, image and text data should be 
examined in pediatric sepsis in the same manner as they 

https://cdn.amegroups.cn/static/public/TP-23-25-Supplementary.pdf
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Table 3 An overview of PGM studies in the selected articles

Authors, year (number 
of patients)

Objectives ML methods PGM methods
Performance  
metrics

Other ML results PGM results
PGM and ML methods performance 
comparison 

Mani et al., 2014 
(N=299)

To develop non-invasive predictive models for late-onset neonatal 
sepsis from off-the-shelf medical data and EHR

SVM, AODE, K-NN, DT, CART, 
RF, LR, LBR

NB, TAN SEN, SPE, AUC,  
PPV, NPV

SEN (0.75–0.88), SPE (0.18–0.36),  
PPV (0.68–0.71), NPV (0.24–0.38),  
AUC (0.54–0.65)

SEN (0.75–0.84), SPE (0.18–0.32), 
PPV (0.7), NPV (0.31–0.32),  
AUC (0.59–0.64)

PGM (NB, TAN) yielded comparable results 
with other ML methods in all performance 
metrics

Stanculescu et al., 2014 
(N=36)

To use Autoregressive HMM to model the distribution of the 
physiological events to detect early neonatal sepsis

Autoregressive HMM AUC, EER AUC (0.72 to 0.8), EER (0.27–0.34) PGM (autoregressive HMM) yielded high 
AUC (0.72–0.8) in all reported models

Gomez et al., 2019 
(N=79)

To develop a minimally invasive and cost-effective tool, based 
on HRV monitoring and ML algorithms, to predict sepsis risk in 
neonates within the first 48 hours of life

RF, LR, SVM, AdaBoost, 
Bagged Trees, Classification 
Tree, K-NN

NB SEN, SPE, PPV,  
NPV, AUC

SEN (0.57–0.94), SPE (0.72–0.95),  
PPV (0.67–0.95), NPV (0.62–0.94),  
AUC (0.64–0.94)

SEN (0.43), SPE (0.9), PPV (0.8),  
NPV (0.6), AUC (0.67) 

PGM (NB) yielded comparable SPE, PPV, 
NPV with other ML methods. However, the 
yielded NPV, SEN and AUC were lower

Masino et al., 2019 
(N=1,188)

To develop a model using readily available EHR data capable 
of recognizing infant sepsis at least 4 hours prior to clinical 
recognition

LR, RF, SVM, K-NN, Gaussian 
process, AdaBoost, GBDT

NB AUC, SPE, NPV, PPV SPE (0.6–0.74), PPV (0.39–0.53),  
NPV (0.9–0.93), AUC (0.79–0.87)

SPE (0.73), PPV (0.52), NPV (0.92), 
AUC (0.84) 

PGM (NB) yielded comparable results 
with other ML methods in all performance 
metrics

Honore et al., 2020 
(N=3,501)

To explore the use of traditional and contemporary HMM for 
sequential physiological data analysis and sepsis prediction in 
preterm infants

GMM-HMM, Flow-
HMM, DFlow-HMM

ACC ACC (0.69–0.75) PGM (HMMs) yielded relatively high ACC 
(0.69–0.75)

Song et al., 2020 To examine the feasibility of a prediction model by using 
noninvasive vital sign data and machine learning technology

LR, RF, DT, ET, GBDT, 
AdaBoost, Bagging Classifier, 
multilayer perceptron

Gaussian NB AUC, ACC, F1,  
PPV, NPV

ACC (0.81–0.87), AUC (0.77–0.86),  
F1 (0.13–0.52), PPV (0.28–0.53),  
NPV (0.87–0.96)

ACC (0.69), AUC (0.82), F1 (0.42), 
PPV (0.28), NPV (0.96)

PGM (GNB) yielded comparable results with 
other ML methods in most performance 
metrics. The yielded ACC, PPV were lower

Cabrera-Quiros et al., 
2021 (N=64)

To predict late-onset sepsis in preterm infants, based on multiple 
patient monitoring signals 24 hours before onset

LR, nearest mean classifier NB SEN, SPE, PPV SEN (0.68–0.82), SPE (0.75–0.8),  
PPV (0.73–0.82)

SEN (0.68±0.09), SPE (0.74±0.15), 
PPV (0.73±0.13)

PGM (NB) yielded comparable performance 
compared to other ML methods

Ying et al., 2021 (N=364) To develop an optimal gene model for the diagnosis of pediatric 
sepsis using statistics and machine learning approaches

ET, RF, SVM, GBDT, NN NB AUC AUC (0.8–0.94) AUC (0.8–0.91) PGM (NB) yielded comparable AUC with 
other ML

Kausch et al., 2021 
(N=1,425)

To use Markov chain modeling to describe disease dynamics over 
time by describing how children transition between illness states

Markov chain Markov chain AUC AUC (0.750, 95% CI: 0.708–0.809) PGM (Markov chain) yielded relatively high 
AUC (0.75)

Chen et al. 2023 (N=677) To develop and validate a predictive model for postoperative 
sepsis within seven using ML

SVM, RF, GBM,  
AdaBoost, MLP

GNB AUC, SEN, SPE, F1 AUC (0.71–0.73), SEN (0.26–0.65),  
SPE (0.71–0.94), F1 (0.37–0.58)

AUC (0.724), SEN (0), SPE (1), F1 (0) PGM (GNB) did not perform well in this 
study compared to other MLs

Mercurio et al. 2023 
(N=35,074)

To identify sepsis risk factors among children presenting to a 
pediatric emergency department

SVM, LR, CART NB SEN, SPE, PPV,  
AUC, F1

AUC (0.77–0.81), SEN (0.7–0.93),  
SPE (0.7–0.92), PPV (0.02–0.05), F1 (0.04–0.1)

AUC (0.65), SEN (0.37), SPE (0.94), 
PPV (0.04), F1 (0.07)

PGM (NB) yielded lower performance 
compared to other ML methods

Nguyen et al. 2023 
(N=3,014)

To explore the utility of PGM in pediatric sepsis in the pediatric 
intensive care unit

TAN ACC, SEN, SPE, AUC, 
PPV, NPV

ACC (0.77–0.97), SEN (0.2–0.48),  
SPE (0.89–0.99), AUC (0.74–0.89), 
PPV (0.24–0.53), NPV (0.79–0.98)

PGM (TAN) yielded high SPE, AUC, and NPV 
but low SEN and PPV

Honore et al. 2023 
(N=325)

To investigate the predictive value of ML-assisted analysis of 
non-invasive, high frequency monitoring data and demographic 
factors to detect neonatal sepsis

NB AUC, LR+, LR− AUC (0.69–0.81), LR+ (1.7–3.5),  
LR− (0.2–0.5)

PGM (NB) yielded relatively high AUC

PGM, probabilistic graphical model; ML, machine learning; EHR, electronic health records; SVM, support vector machine; AODE, averaged one dependence estimators; K-NN, K-Nearest Neighbor; DT, decision tree; CART, classification and regression tree; RF, random forest; LBR, Lazy Bayesian rules; NB, 
naïve Bayes; TAN, tree augmented naïve Bayes; SEN, sensitivity; SPE, specificity; AUC, area under the curve; PPV, positive predicted value; NPV, negative predicted value; HMM, hidden Markov model; EER, equal error rate; HRV, heart rate variability; LR, logistic regression; GMM-HMM, Gaussian mixture 
model-hidden Markov model; Flow-HMM, flow-based hidden Markov model; DFlow-HMM, discriminate flow-based hidden Markov model; ET, extra trees; GBDT, Gradient Boosting Decision Tree; ACC, accuracy; CI, confidence interval. 
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Table 4 Performance comparison of PGM and other MLs on the same dataset

Publication Methods used AUROC SEN SPE NPV PPV

Mani et al., 2014 RF 0.57–0.65 0.82–0.94 0.18–0.47 0.28–0.73 0.55–0.70

SVM 0.61–0.68 0.79–0.88 0.18–0.26 0.27–0.59 0.51–0.69

KNN 0.54–0.62 0.83–0.86 0.18–0.29 0.30–0.55 0.52–0.70

CART 0.65–0.77 0.75–0.81 0.18–0.30 0.23–0.51 0.51–0.68

LR 0.61 0.86–0.87 0.18–0.33 0.35–0.57 0.52–0.72

LBR 0.58–0.62 0.86–0.85 0.18–0.33 0.36–0.52 0.52–0.72

AODE 0.53–0.61 0.85–0.88 0.18–0.36 0.38–0.54 0.52–0.73

NB* 0.64–0.78* 0.83–0.95* 0.18–0.47* 0.31–0.76* 0.55–0.72*

TAN* 0.53–0.59* 0.84* 0.18–0.32* 0.32–0.52* 0.50–0.72*

Gomez et al., 
2019

Adaboost 0.943 0.944 0.944 0.942 0.945

Bagged trees 0.88 0.901 0.858 0.896 0.866

RF 0.84 0.861 0.818 0.853 0.827

LR 0.787 0.771 0.804 0.777 0.8

SVM 0.755 0.641 0.868 0.705 0.831

DT 0.751 0.816 0.687 0.788 0.726

KNN 0.64 0.565 0.715 0.62 0.667

NB* 0.666* 0.431* 0.901* 0.61* 0.814*

Masino et al., 
2019

Adaboost 0.83–0.85 0.8 0.72 0.92 0.51

GB 0.8–0.87 0.8 0.74 0.92 0.53

GP 0.75–0.79 0.8 0.6 0.9 0.44

KNN 0.73–0.79 0.8 0.55 0.9 0.39

LR 0.83–0.85 0.8 0.74 0.93 0.52

RF 0.82–0.86 0.8 0.74 0.92 0.53

SVM 0.82–0.86 0.8 0.72 0.92 0.51

NB* 0.81–0.84* 0.8* 0.73* 0.92* 0.52*

Song et al., 
2020

LR 0.86 – – 0.94–0.96 0.4–0.5

DT 0.6–0.84 – – 0.84–0.95 0.39–0.57

AdaBoost 0.81–0.83 – – 0.91–0.94 0.41–0.53

ET 0.80 – – 0.81–0.88 0.53–0.68

Bagging 0.77–0.81 – – 0.83–0.88 0.45–0.59

RF 0.81–0.82 – – 0.83–0.88 0.51–0.66

GB 0.86–0.87 – – 0.92–0.94 0.45–0.56

GNB* 0.81–0.82* –* –* 0.95–0.96* 0.28–0.38*

Table 4 (continued)
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have been examined in adult sepsis (13,39,40). Finally, 
while traditional methods like LR and RF continue to be 
the popular choices in pediatric sepsis, a growing number 
of studies are incorporating deep learning into diagnostic 
models of sepsis (15,31,40,41). Despite the remarkable 
performance compared to traditional models, deep learning 
still falls short in several areas. To start, a large sample size 
is required for training. As for its models, they may have 
been termed ‘black boxes’, raising questions about whether 
the produced predictions can be trusted. Nevertheless, we 
cannot deny the growing potential and achievements of 
deep learning methods. Therefore, it is necessary to obtain 
additional evidence and validation before drawing any 
definitive conclusions about this controversial issue (42). 

Even though most ML studies seek to improve 
performance, their biggest drawback perhaps lies in the 
lack of transparency in reasoning and interpretation. 

An “ideal” ML study in medicine must demonstrate 
trustworthiness, explainability, usability, reliability, 
transparency, and fairness (43). The literature has shown 
that although several ML approaches excel in terms of 
usability, performance, and proof-of-concept, not many are 
proficient in trustworthiness, transparency or explainability. 
Unfortunately, it is these areas that are crucial for ML 
studies to be accepted by the medical community (14). This 
problem applies not only to the entire field of medicine, 
but also to pediatric sepsis applications. We propose that 
future pediatric sepsis ML studies should consider methods 
that demonstrate not only efficacy and robustness, but also 
explainability, reliability, and trustworthiness A further layer 
of explainability can be achieved by using additional XAI 
tools, such as SHAP or LIME, to enhance interpretation 
of the model results. This is a realistic attempt to bridge 
the gap between theoretical ML frameworks and practical 

Table 4 (continued)

Publication Methods used AUROC SEN SPE NPV PPV

Cabrera-Quiros 
et al., 2021

LR 0.79 0.78 0.8 – 0.82

NN 0.7 0.67 0.74 – 0.73

NB* 0.71* 0.68* 0.74* –* 0.73*

Mercurio et al., 
2023

RF 0.81 0.93 0.84 – 0.04

CART 0.77 0.85 0.7 – 0.02

LR 0.82 0.76 0.88 – 0.04

SVM 0.81 0.7 0.92 – 0.05

GNB* 0.65* 0.37* 0.94* –* 0.04*

Chen et al., 
2023

LR 0.726 0.541 0.786 – –

SVM 0.71 0.648 0.706 – –

RF 0.731 0.621 0.761 – –

GBM 0.716 0.257 0.944 – –

AdaBoost 0.723 0.258 0.937 – –

MLP 0.718 0.343 0.877 – –

GNB* 0.724* 0* 1* –* –*

In this table, PGM methods are marked with “*”. Metrics presented in the table (AUROC, SEN, SPE, NPV, PPV) were those reported 
in the respective studies. We excluded Stanculescu et al. (2014), Honore et al. (2020), Ying et al. (2021), Kausch et al. (2021), Nguyen  
et al. (2023), and Honore et al. (2023) from this table because they only use single ML model or reported only AUROC. PGM, probabilistic 
graphical model; ML, machine learning; AUROC, area under the receiver-operating curve; SPE, specificity; SEN, sensitivity; NPV, negative 
predicted value; PPV, positive predicted value; RF, random forest; SVM, support vector machine; KNN, K-Nearest Neighbour; LR, logistic 
regression; LBR, Lazy Bayesian rules; AODE, averaged one dependence estimators; NB, naïve Bayes; TAN, tree augmented naïve 
Bayes; DT, decision tree; GB, Gradient Boosting; GP, Gaussian Process; ET, extra trees; NN, neural network; CART, classification and  
regression tree.
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applications. In this paper, we assess PGM as an approach 
among the ML methods that can potentially meet these 
requirements. 

PGM in pediatric sepsis

A total of 13 PGM studies were included in our review (nine 
NB, three HMM, and one TAN) (33,44-55). Comparing 
these studies with other ML methods, we observed the 
following points. As anticipated, the utilization of PGM 
in pediatric sepsis remains low. A low number of PGM 
studies may lead to the premature perception that PGM 
is an unreliable tool; however, this may not be the case 
as it has been shown to be effective in some precedent 
studies (42,43). In general, the performance of PGM, with 
NB being the most used model, appeared relatively less 
efficient compared to other models. NB may not be the 
most suitable prediction model for complicated medical 
conditions, such as pediatric sepsis. As its name suggests, 
the NB model is based on the naïve assumption that all 
variables are independent of each other (56). While NB is 
known to produce remarkable results when dealing with 
data with less associated variables and outcomes, it is not 
suitable for describing data with complex relationships. 
Pediatric sepsis is an excellent example of having such data, 
where the associations between variables such as history and 
physical examination findings, vital signs, and laboratory 
markers are highly correlated. As a result, NB performance 
was relatively inferior, whereas other models showed 
better results because they were able to describe the data 
more accurately. We observed the same situation in other 
diseases (e.g., adult sepsis, cancer, or cardiovascular) that 
NB performance is inferior to its PGM relative methods, 
such as Bayesian network (BN), dynamic Bayesian network 
(DBN) or HMM (38-40,57).

A comparison of the characteristics of PGM and other 
ML methods is presented in Table 5. Among the popular 
methods that are often used in the literature for PGM, 
we selected BN, NB, TAN, HMM, DBN, and influence 
diagram (ID). Other ML methods that we chose from our 
review include LR, RF, support vector machine (SVM), 
NN, extreme gradient boosting (XGBoost), and DT. 
We observed that all methods exhibit different strengths 
in different areas. For instance, several of the other ML 
methods shown in Table 5 are capable of performing 
both classification and regression, while PGM can only 
perform classification. The NN and the SVM excel on 
several criteria; however, they require longer training 

time, hardware dependence, and additional aids for 
visualization and interpretation. Additionally, certain 
limitations highlighted in some areas can be overcome 
through alternative solutions and additional assistance, 
such as pre-data processing, visualization aids, and XAI. 
For instance, continuous data and time series data can be 
broken down into categorical and sliding-window data to 
use with methods that do not natively support them. The 
main disadvantage of all methods is that they are sensitive 
to outliers, imbalanced data, and easily prone to overfitting 
when the model settings are not probably figured. The 
complexity of the model, the training time, and the 
interpretability of the results are also subjected to trade-
offs. It is likely that highly complex models will require a 
larger amount of training time and be more challenging to 
interpret.

In comparison with other ML methods, PGM has 
certain advantages and is particularly appealing with 
an interactive graphical representation, a wide range of 
methods, transparent reasoning, the ability for causal 
inference and handling missing data (Table 5). While there 
are presentation elements for other MLs (e.g., LR, SVM, 
NN), these are often confined to two or three dimensions 
requiring additional visualization aid (saliency maps, 
activation maximization). PGM, in contrast, is able to 
present high-dimensional data in the form of a compact and 
friendlier network, in which variables and their relationships 
are represented as nodes and edges. This representation 
allows clinicians to conduct causal inference and prediction 
tasks simultaneously, allowing them to diagnose as well as 
investigate the interactions between variables. As a result, 
this can facilitate the study of sepsis recognition, the 
calculation of sepsis risk, and the identification of sepsis 
biomarkers. Additionally, PGM has an extensive body of 
established methods that can be applied to a wide variety of 
data types (e.g., text, images, tabular data, and time series 
data), and can be tailored to meet various requirements (e.g., 
prediction, inference, and decision making) (18). In this way, 
PGM is capable of processing clinical images, physician 
notes, and the creation of monitoring and decision-support 
tools together with the causal inference ability. Figure 2 
illustrates several PGM methods for sepsis applications, 
including TAN, NB, Markov models, and ID for assessing 
sepsis, monitoring the disease’s progression, and making 
clinical decisions. Finally, PGM provides transparency in 
reasoning, which is one of the most desirable characteristics 
for medical applications (43). At any point in time, the 
mechanism by which it produces its predictions can be 
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Table 5 Characteristic comparison between PGM methods and other ML methods

Characteristics 
PGM method Other ML methods

TAN NB HMM ID BN DBN LR RF SVM NN XGBoost DT

Data handling

Handling small data size * * * * * * *

Handling big dataset * * * * * * * *

Handling missing data * * * * * * * * * *

Handling imbalance data

Handling noisy data * * * * * * * *

Handling outliers * * * *

Usage on continuous data * * *

Usage on category data * * * * * * * * *

Usage on time-series data * * * *

Variable selection * * * * *

Presentation

Visualization * * * * * * * * *

Capability

Classification * * * * * * * * * * *

Regression * * * * *

Causal inference * * * * * *

Support decision-making * * * *

Natural language processing * * * * * * * * * *

Image processing * * * * * * * * * *

Interpretation

Explainable method * * * * * * * * * *

Computational requirement

Require hardware dependency * * *

Require more training time * * *

Prone to overfitting * * * * * * * * * * * *

An asterisk “*” indicates that the respective characteristic is available. It is important to note that each method exhibits different strengths 
in different areas. In this table, the characteristics described are not meant to be exhaustive. Additionally, certain limitations highlighted in 
some areas can be overcome through alternative solutions. It has been demonstrated that some of the characteristics of data handling, 
visualization, and explainability can be overcome through the use of additional assistance, such as pre-data processing, visualization aids, 
and explainable artificial intelligence (XAI). For instance, continuous data and time series data can be broken down into categorical and 
sliding-window data to use with methods that do not natively support them. PGM, probabilistic graphical model; ML, machine learning; 
TAN, tree augmented naïve Bayes; NB, naïve Bayes; HMM, hidden Markov model; ID, influence diagram; BN, Bayesian network; DBN, 
dynamic Bayesian network; LR, logistic regression; RF, random forest; SVM, support vector machine; NN, neural network; XGBoost, 
extreme gradient boosting; DT, decision tree.
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Figure 2 Example of different PGM methods in sepsis application. Different PGM method can be utilized to model sepsis diagnosis 
problem. For example: (A) tree augmented naïve Bayesian network; (B) naïve Bayes; (C) Markov model; (D) influence diagram. PGM, 
probabilistic graphical model; CRP, C-reactive protein; HR, heart rate; Pct, procalcitonin; SIRS, systemic inflammatory response syndrome; 
WBC, white blood cell count.

explained using probability and graph theory; therefore 
there is no need to apply additional XAI tools. Considering 
the transparency requirement of the medical application 
and the future direction for pediatric sepsis research, we 
recommend that PGM be considered as a potential tool 
in pediatric sepsis diagnosis application among other ML 
methods.

While PGMs have many benefits, the following 
drawbacks should be considered prior to selecting them 
as the prediction model for sepsis diagnosis. PGM does 
not support variable selection or regression. Despite the 
fact that it is capable of handling missing data, it may be 
necessary to perform pre-data processing in order to remove 
outliers and convert continuous variables into categorical 

variables. Furthermore, PGM faces the same limitations 
as other ML methods when dealing with imbalance 
data, which will require additional treatment before the 
model can be trained. Conventional PGMs also have the 
disadvantage of requiring expertise to select the variables 
and define their relationships during the model construction 
phase. While these models can leverage domain knowledge 
from experts, they are prone to bias and are difficult to 
modify. Moreover, it is impractical and time-consuming for 
experts to construct networks containing many variables, 
as is typically the case with sepsis diagnosis. Today, PGM 
structure is primarily extracted directly from data. However, 
these data-driven models, much like other ML data-
driven models, are often data-specific and may suffer from 
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poor generalization to another dataset. Moreover, even 
though explainability and transparency give PGM more 
advantages from other methods in ML, these qualities may 
have contributed to some degradation of its performance as  
well (58).

Pediatric sepsis definitions used in ML research

Sepsis definition plays a significant role in determining 
the study cohort and has a direct impact on ML model 
performance to detect actual cases of sepsis. In this 
subsection, we evaluate the use of pediatric sepsis definitions 
in ML studies.

Since the publication of the revised adult sepsis definition 
in 2016 and the launch of the Surviving Sepsis Campaign 
in 2020, an increasing number of studies have incorporated 
dysfunctional organ criteria as a means to detect sepsis 
in children (59,60). Several reasons may account for the 
preference for positive cultures in these studies, including 
the fact that infants exhibit non-specific clinical symptoms 
of sepsis. Moreover, it is possible that the selection of sepsis 
definitions in ML-based studies may be constrained by the 
information contained in the dataset, with the absence of 
certain variables preventing researchers from considering 
certain definitions. For instance, Sepsis-3 cannot be used if 
there is insufficient data to measure the organ dysfunction 
criteria. More importantly, we observed that most studies 
utilized only one definition to identify the sepsis cohort, 
and some failed to provide a rationale as to why a particular 
definition was chosen (34,50,61). 

Table 2 shows the categories of the pediatric sepsis 
definition we analysed from the ML studies. These 
categories overlapped with one another, and a patient with 
sepsis might fall into either of them, as demonstrated by the 
Sepsis Prevalence, Outcomes, and Therapies (SPROUT) 
study involving 128 PICUs from 26 countries (Figure 3) (6).  
This indicates that pediatric sepsis cannot be reliably 
identified through a single definition and that utilizing 
more than one definition could increase the likelihood to 
identify sepsis cases. As for ML models, given that no single 
definition is capable of identifying sepsis effectively, a model 
trained on a singular definition may not be sufficiently 
generalizable. In contrast, a model trained on multiple 
definitions will be exposed to different characteristics of 
sepsis, thereby increasing its ability to recognize one later 
on. We hypothesize that, with a proper structure and set 
up, ML methods may have the capability to learn the 
characteristics of these subgroups. However, this approach 
needs to be tested and validated in future studies.

Recommendation

In view of the PGM’s inherent qualities and potential 
for clinical use, we recommend that researchers consider 

Figure 3 Pediatric sepsis population identified by different 
definitions. (A) Sepsis-3 in 2016, (B) IPCSS in 2005, and (C) the 
combined pediatric sepsis distribution of several pediatric sepsis 
(highlighted area). IPSCC, international pediatric sepsis consensus 
conference; SIRS, systemic inflammatory response syndrome.
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using PGM methods in future studies of pediatric sepsis. 
Additionally, we recommend that ML studies include more 
than one definition of sepsis in order to enhance their 
predictive capabilities. In the event that a dataset does 
not contain enough information to extract more than one 
definition, researchers may consider combining several 
datasets. More granular data should also be collected in 
future original studies on sepsis to facilitate the extraction of 
multiple sepsis definitions. Finally, it would be desirable to 
conduct studies that could compare single definition-learned 
model with the multiple definitions-learned model in order 
to validate our hypothesis that combining two or more sepsis 
definitions will improve performance of ML methods. 

Study limitations

There are several limitations to this scoping review. 
Our review included only articles published in PubMed, 
Scopus, Web of Science, and CINAHL+. Therefore, it is 
possible that we have missed some publications in other 
databases. Moreover, given the pace of ML advancement, 
our results could be quickly complemented by new studies. 
For evaluation of ML models, it is recommended to use a 
number of different metrics, including AUROC, AUPRC, 
F1-score, G-mean, and more. Ideally, our performance 
comparison should have been conducted using these 
metrics. However, not all of the metrics mentioned above 
were reported in the selected studies. Comparing models 
in this manner may not represent all aspects of their 
performance accurately. Finally, we did not assess the 
quality of the selected studies, which could have provided 
readers with a broader perspective and evaluation. However, 
the quality assessment of included studies is not considered 
mandatory in the PRISMA-SCr guidelines (23).

Conclusions

This scoping review summarizes ML and PGM approaches 
in pediatric sepsis over the past two decades and discusses 
how sepsis definitions were applied in these studies. The 
performance of PGM was relatively inferior to other ML 
methods. However, with the advantages of explainability 
and transparency, PGM can be considered as a viable tool 
for future pediatric sepsis studies and application.
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