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Machine learning and high-throughput computational screening have been valuable tools in

accelerated first-principles screening for the discovery of the next generation of functiona-

lized molecules and materials. The application of machine learning for chemical applications

requires the conversion of molecular structures to a machine-readable format known as a

molecular representation. The choice of such representations impacts the performance and

outcomes of chemical machine learning methods. Herein, we present a new concise mole-

cular representation derived from persistent homology, an applied branch of mathematics.

We have demonstrated its applicability in a high-throughput computational screening of a

large molecular database (GDB-9) with more than 133,000 organic molecules. Our target is

to identify novel molecules that selectively interact with CO2. The methodology and per-

formance of the novel molecular fingerprinting method is presented and the new chemically-

driven persistence image representation is used to screen the GDB-9 database to suggest

molecules and/or functional groups with enhanced properties.
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The increasing concentration of greenhouse gases has been
identified as a primary factor of many facets of environ-
mental degradation such as higher global temperature,

rising sea levels, increased ocean acidity, and more extreme
weather-related events. CO2 is the most prominent greenhouse
gas, and its atmospheric concentration has exceeded 400 ppm,
which is more than a 40% increase from pre-industrial condi-
tions, potentially leading to a rise in global temperatures of
more than 2 ∘C by the year 21001. Lowering CO2 emissions is
therefore mandatory to meet ambitions to limit temperature
increases to 1.5 ∘C2. Advancements in carbon capture and
storage technology are desired for meeting these goals of lowered
atmospheric greenhouse gas emissions and reduced global tem-
perature increases year to year. At an industrial level, liquid
amine-based solvents are used for separation and capture of CO2

via chemisorption, but the solvent regeneration step is an
energy intensive process. Membrane-based technologies offer an
alternative, cost-effective process for CO2. Unlike solvents, where
chemisorption involves a reaction with binding strengths
exceeding 20 kcal mol−1 through the creation of chemical bonds
between CO2 and solvent, membranes utilize much weaker
noncovalent interactions. Different types of materials have been
suggested for the fabrication of permeable membranes including
amorphous, non-porous polymeric membranes3–6, or crystalline
materials with permanent porosity such as metal-organic fra-
meworks (MOFs) or zeolites7.

The understanding of how the atomistic structure of materials
affects the gas selectivies is a crucial process for the development
of more efficient carbon capture technologies. Most often, this
involves the separation of CO2 from N2, which are two atmo-
spheric gases with similar kinetic diameters, making size-sieving a
challenging task. The introduction of functional groups which
selectively interact with CO2 has been a successful approach for
increasing membrane performance6,8. Such CO2-philic functional
groups (usually Lewis bases) can be either introduced into
the framework of porous crystalline materials (e.g., MOFs) or
functionalized into the repeat units of non-porous polymeric
membranes. Electronic structure theory calculations between
molecular units and the respective gases provide a quantification
of these noncovalent interactions, as well as elucidate their nature
and properties9–15. However, the number of potential CO2-philic
groups is intractably large, which leads to an excessive study of
such systems with accurate ab initio methods. In addition, the
determination of gas interaction energies may require multiple
calculations to evaluate competitive gas binding sites for every
structure, which further increases the computational cost and
expert intervention. However, high-throughput computational
screening can accelerate the discovery of new, functional mate-
rials for rational synthesis through the circumvention of the
expensive and time-demanding synthesis and testing process16,17.

High-throughput computational design has shown great success
in identifying new molecules18,19 and materials20–23 with enhanced
properties and advanced functionality. For many applications, first-
principles studies are essential to virtual screening, but the high
computational cost of these methods makes the search of large parts
of the chemical space cost-prohibitive. In recent years, machine
learning (ML) has become a valuable tool in reducing the cost of a
systematic chemical space exploration by enhancing the search for
structure-property relationships24–26, guiding molecular design27–30,
and predicting electronic structure properties31–35. ML algorithms
are used for their ability to learn complicated relationships in data
with high computational efficiency that can be systematically
improved through additional training data, but may require exten-
sive training set sizes before predicting out-of-sample properties
accurately. The efficiency of ML depends on how these data are
passed to the algorithm. For chemical applications, this occurs

through molecular representations, which are the featurization of
molecular compounds from their molecular structure into a vector
of values. The ML algorithm then infers the relation between the
structure and the property of interest. Recent developments in the
formulation of molecular representations, particularly in the realm
of quantum properties and structure-function relations, have
increased the efficiency of ML for chemical applications36–42. In
addition, such representations generalize to more complex instances
such as reaction barriers43. Despite the inherent ability of ML to
extract important features, ML-model accuracy is dependent on the
molecular representation.

A molecular representation reduces the dimensionality of a
molecular structure into a chemically meaningful format that
relays important chemical information. For example, a chemical
formula conveys a three-dimensional molecule as a string of
characters but it is an ambiguous input for ML. Atomistic and
molecular structure should be converted into a machine-readable
format that can be parsed efficiently to ML algorithms as input
features. One of the most prominent representations is the Cou-
lomb matrix (CM) introduced by Rupp et al., which is a square
atom-by-atom matrix containing an approximate potential energy
of the free atom along the diagonal and pair Coulombic potentials
on the off-diagonal terms33. An improvement over CM is typically
observed using the Bag-of-Bonds (BoB) representation, where
each atomic pair is placed in specific vectors (bags) based off the
elemental pairs and sorted by value34. Faber et al. have developed
FCHL, a representation based on Gaussian distribution functions
for the universal kernel ridge regression-based quantum machine-
learning models42. In addition, the smooth overlap of atomic
positions (SOAP) representation44 calculates the local density of
atoms around all atoms in a given chemical environment but
suffers from an increased computational cost over the pairwise
CM and BoB representations.

Herein, we present a new molecular representation scheme
based on persistent homology, a branch of computational topol-
ogy. Application of persistent homology on molecules encodes
three-dimensional structural data into two-dimensional persis-
tence images. Since persistence images hold topological features of
chemical structures, we are suggesting them as alternative mole-
cular fingerprints which are transposed into ML input and used to
identify relationships in the data. A molecular representation is
introduced for encoding chemical structures, which is applied in
the prediction of interaction energies of organic molecules with
gas molecules. Persistence images offer a similar-size ML vector-
ization regardless of system size, and a numerical example is given
as a proof of this concept. Whereas CM and BoB do not provide a
constant-size representation by this definition, it is effectively
achieved through padding empty cells. However, the input vector
space takes the dimensions of the largest molecule in the data and
requires significant padding for smaller molecules, whereas the
introduced method has a predefined vector size regardless of
number of atoms. It has been suggested that using feature vectors
with sizes independent of system size may result in improved
generalization between small and large systems45. The new
method is used for screening a large database of organic molecules
for the discovery of CO2-philic functional groups.

Results
Persistence diagrams. The mapping of molecular structure to a
chemically driven persistence image entails several steps. First, the
molecular homological features, which measure the connected-
ness, proximity, and the empty space among the atoms, are
computed and stored. These homological features are summar-
ized in a persistence diagram (PD)46–58. A PD encodes molecular
features such as bonds and rings. The PDs can then be vectorized
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into a persistence image59 (PI) for use as a molecular repre-
sentation. However, employing persistent homology and its
derivative, PI, purely focuses on detecting topological attributes
but lacks explicit incorporation of key chemical information such
as element identity, leading to limited applicability in molecular
systems. Here, we describe the application of persistent homology
with domain-specific knowledge for the generation of persistence
images based on atomic properties. The basic steps are presented
in the following paragraphs. Anisole was selected as a repre-
sentative example because it contains two distinct functional units
(phenyl- and methoxy groups).

To construct a persistence diagram for a given molecule,
spheres of a given radius centered at each atom are considered
and, as the radius increases, the spheres intersect and lead to the
evolution of homological features, called connected components
and holes. The connected components encode interatomic
distances, while holes describe molecular attributes such as rings
and functional groups.

The PDs hold information about the generation or birth and
the lifetime length or persistence of connected components and
holes. The placement of a birth is denoted by its location along
the x-axis of the PD, whereas the persistence is denoted by its
location on the y-axis. Birth of connected components occurs at 0,
since every atom is given an initial sphere with radius 0 at the
start of the algorithm (see anisole as an example on Fig. 1). The
spheres are then systematically expanded (Fig. 1a, d, g, j, and m)
until spherical intersections occur, which effectively generate a
new connected component by merging older ones. The

persistence of connected components is then recorded on the
associated PD. In some sense, a PD records the time in terms of
spheres’ radii for the atoms to form a single cluster. For anisole
that is used here as an example, four different types of connected
components are generated. The first two appear at ~1.1 and
correspond to the C–H bonds of the methoxyl and phenyl groups,
respectively. The other two appear at ~1.4 and correspond to the
C–O and C–C bonds, respectively. This means that the units of
the two axes are given in angstroms (Å). When sphere
intersections lead to the formation of connected atoms (con-
nected component) on a ring, for example when all the six
spheres of the phenyl carbons have met, a hole is generated
(Fig. 1l). The death of a hole occurs when all spheres that form a
given hole intersect, and its persistence is recorded on the
persistence diagram (Fig. 1o).

It becomes now evident that the connected components
depend on the distances of neighboring atoms and the holes
correspond to topological features of the functional groups. Two
holes are now formed for the anisole example of Fig. 1, which
correspond to the phenyl and methoxy groups. These holes are
unique for each respective unit and differentiate between different
conformations of the same molecule and subtle differences in
geometry60–63.

Chemically driven persistence images as molecular repre-
sentations. The PD is vectorized into a pixelized image, called
persistence image (PI), which is a stable, computationally
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Fig. 1 Graphical representation of the evolution of the persistent diagram (PD) for anisole. a Each atom of anisole is represented by a point. Each
connected component is born at time birth= 0 in the evolution of b homological features plot and c PD. Each bar at the evolution plot tracks the connected
components or holes. Note that there are 16 overlapping points in the PD associated with the number of atoms. d–f The radius of a sphere centered at each
atom is increased, and the connected components continue to persist so the persistence of a connected component is not in its final location. g–iWhen the
radius increase leads to sphere overlap between atom pairs, the connected components on the PD are finalized. A hole is created by the six carbon atoms
of the phenyl group, and a blue triangle appears in the persistence diagram to indicate its birth. j–l The radius is again expanded, and the hole (phenyl ring)
still persists. m–o A second hole is formed between the methoxyl group and the two carbons of the phenyl group. The death of both holes occurs when
their corresponding spheres intersect. The final PD is obtained when the death of all but one connected component and all holes are observed. Note that
the bottom bar never terminates and it is always excluded from the PD.
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tractable representation59. PIs are constructed by placing a
Gaussian kernel centered at each point on the PD as it is high-
lighted for anisole in Fig. 2, where the pixel intensity corresponds
to the multiplicity. For example, five C–H pairs in the phenyl
group, three C–H pairs in the methyl group etc. Next, the surface
is transferred into pixel values (Fig. 2b, c). The resulting image
effectively encodes the molecular geometry.

The transformation of a PD to a PI may lead to inconsistencies
if all atoms are treated identically, especially when molecular
structures with the same geometries but different atom types are
encoded into a PI. For example, the diatomic molecules HBr and
F2 have approximately the same bond distance (1.41 Å), and
therefore generate the same PI (Fig. 2f, g, respectively). To
ameliorate this shortcoming, we introduce atomistic information
in the variance of the Gaussian kernels that yielded a PI. The
variance determines the spread of the kernel, or how “smeared”
each point on the PD is when placed onto the PI. This variance is
chosen based on the atom type that created the point in the PD.
Specifically, we define the variance in the persistence images by
the difference in electronegativity for connected components.
Electronegativity differences are chosen because they provide a
general description between the nature of different bonds. For the
example of HBr and F2, HBr has a very polar chemical bond,
whereas molecular fluorine is nonpolar. Large variance is
provided to atom pairs with large electronegativity differences,
which ultimately generates unique PIs (Fig. 2h, i, respectively).
Our new chemically driven persistence image differentiates
between molecules which have similar geometric configurations
but different atomic compositions.

Another important feature is related to the dimensionality of
the PI molecular representation which remains of the same order
with respect to the molecular size as we show empirically in
Supplementary Figs. 2 and 3. This is what we call herein a similar-
size representation. For example, for a small molecule like anisole
that is composed of 16 atoms, a 3 Å × 3 Å PD was generated. The
equivalent PD of a medium-size molecule such as the tert-
butylcalixarene (105 atoms) is of comparable size (4 Å × 4 Å).
Similarly, the PD of a large structure, the main protease of the
new coronavirus identified as COVID-1964 in complex with an

inhibitor N3 (2500 non-hydrogen atoms) has size of 6 Å × 6 Å. A
detailed analysis is given in Supplementary Note 2. As it was
mentioned in the introduction, such a similar-size representation
is desirable for many chemical applications45.

Performance of persistence images as molecular representa-
tions. Here, we demonstrate the performance of the chemically
driven PIs on an application relevant to green chemistry. Our aim
is to screen a large molecular database in order to discover
molecular groups that show a stronger affinity for CO2 interac-
tion over N2. Such molecular groups can be introduced in poly-
meric materials for the development of the next generation of
functional gas separation membranes. Since it is desirable to
avoid any density functional theory (DFT)-optimized geometries
as input for ML models, which introduce a significant compu-
tational bottleneck for the screening of large molecular databases,
we resort to structures generated by the OpenBabel65 software
package (gen3d function). Our target is to train a ML model that
maps low-cost geometries with accurate quantum chemical data,
so it can provide reliable interaction energies for molecular spe-
cies with geometries generated on-the-fly.

We tested the performance of PI as alternative molecular
representations that effectively encode chemical structures. The
initial subset of 100 organic molecules was used, generated based
on the procedure described in Supplementary Note 3. The
interaction energies of each of these structures with CO2 and N2

were computed by means of DFT. We also wanted to compare PI
with the widely utilized Coulomb matrices (CM), Bag-of-Bonds
(BoB), FCHL, and Smooth Overlap of Atomic Positions (SOAP)
representations, since each of these are produced with little
computational burden and widely implemented in a number of
programming libraries66–68. PI, CMs, BoBs, FCHL, and SOAP
representations were generated for each structure and the
performance of each representation scheme was evaluated for
the prediction of gas interaction energies. For each scheme, a
variety of machine-learning algorithms were tested, including
random forest, Gaussian process regression, and kernel ridge
regression. A detailed analysis of the optimization process is given
in Supplementary Note 6. Overall, two machine-learning models
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were trained per molecular representation scheme, one for CO2

and one for N2 interaction energies. The 10-fold cross validation
root-mean-squared error (RMSE) for the five trained models on
the CO2 energies are shown in Fig. 3. The error bars represent the
standard deviation of the RMSE. Similar results were obtained for
N2 interaction energies (see Supplementary Note 7). Comparing
the best learners for each representation, CM showed the highest
deviation (RMSE of 0.63 kcal mol−1), followed by BoB and FCHL
(RMSE of 0.52 and 0.50 kcal mol−1, respectively). The most
accurate models were PI with kernel ridge regression (Laplacian
kernel, 0.44 kcal mol−1) and SOAP with kernel ridge regression
(linear kernel, 0.41 kcal mol−1), where PI showed a tighter
variance, yielding a higher confidence in the predictions.

Screening the GDB-9 database. High-throughput computational
screening using ML is an efficient method to survey molecules for
numerous chemical applications. Here, we are applying the PI
method for identifying molecules and functional groups that
enhance CO2 interactions with little computational cost. ML
models trained on DFT-quality data can estimate DFT-quality
results for hundreds of thousands of systems within seconds,
while the explicit computation at the DFT level is a cost-
prohibitive process. The GDB-9 database69 was screened, which
includes 133,885 organic molecules containing no more than nine

non-hydrogen atoms to determine the most promising molecules
for CO2 binding.

The data from the initial 100 organic molecules discussed in
the previous section do not adequately capture the properties of
the chemical space spanned by the GDB-9 database. The initial
training set can be considered as biased since it contains largely
N-containing heterocycles with small functionalizations on
aromatic carbons (see Supplementary Note 9). For surpassing
this limitation and reliably screening the full GDB-9 space, we
applied a methodology known as active learning. In active
learning, the training set is systematically expanded to capture the
necessary missing physics to accurately predict for the targeted
space. The top 40 molecules were selected with respect to
predicted CO2 interaction strength and further investigated by
the MD/DFT scheme described in the computational details
(Supplementary Note 4). Therefore, the training set was expanded
to better infer the relationship between the molecular representa-
tion and the chemical space spanning the GDB-9 database. We
have repeated this processes four times by considering different
yet optimized molecular representation methods (CM, BoB,
SOAP, and PI). The individual steps that were followed are shown
schematically in Fig. 4 and analyzed in the next paragraphs.

Three iterations were performed with each representation
scheme together with the optimized machine-learning algorithm,
as it is discussed in the previous section and in Supplementary
Note 6. Thus, the kernel ridge regression (Laplacian) was used for
CM and PI, Gaussian process regression for BoB, and kernel ridge
regression (linear) for SOAP. The active-learning process resulted
a total of 220 data points, i.e., 220 molecular structures with their
corresponding CO2 and N2 interaction energies computed by DFT
per method. The distributions of the interaction energies of these
molecules for each method are visualized in Fig. 5. We set a mark
at −6.0 kcal mol−1 for molecules with significantly strong CO2

interaction energy. For a detailed analysis of the mean and median
of each active-learning iteration per method, we refer the reader to
the Supplementary Note 8. The first iteration contains only the
original 100-molecule training set. By expanding the training set
with the 40 molecules from the first iteration, the next 40 best-
predicted molecules from the model that utilizes the PI
representation have significantly improved. On the contrary, no
significant changes were observed from the other three models. By
the third iteration, the CO2 distribution from CM, BoB, and PI
remained almost unchanged, while a small shift toward stronger
interaction energies was found for the SOAP model. Overall, PI
showed the greatest performance since each respective iteration
increased the number of promising structures, from 10 (first
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iteration) to 43 (second iteration), and ultimately to 75 out of 120
molecules. Active learning with the PI molecular representation
has systematically expanded the training set to better represent the
chemical space of the dataset, yielding more reliable predictions
every round. Since promising structures are rare within the
dataset, this strategy allows the model to account for these rare
instances within the training set in a way that would be impossi-
ble with a randomly chosen training set. In addition, the three top
candidates for CO2 separations were found to demonstrate
stronger interaction energies than −6.50 kcal mol−1, which are
shown in Fig. 4 (bottom, right). Our computational procedure
allowed us to discover new molecules with higher CO2 affinity that
combine previously unknown binding motifs. In particular, we
found that cooperative effects between N-containing heterocycles
with amino or hydroxo groups at ortho position increases the CO2

strength. The lone electron pair of nitrogen 6induces a dipole
moment on CO2 that allows stronger interactions with hydrogen
atoms of the NH2− and/or OH− functional groups.

After completing three iterations of active learning, the full dataset
(220 molecules) is used to create a ML model for predictions on the
whole GDB-9 database. For comparison, the database was screened
with the four different models, where each of them uses a different
molecular representation method (CM, BoB, SOAP, and PI) and data
generated from the corresponding active-learning steps. The
optimum learner for each method was used, as it was discussed in
the previous section, except for BoB, where the kernel ridge
regression (linear) was applied (for a detailed discussion, see
Supplementary Note 8). Figure 6 includes a plot for each model,
where all predicted N2 and CO2 interaction energies are on the x-
and y-axis, respectively. Only the method that utilized the PI
molecular representation was able to identify 4,5-diamino-1H-

imidazol-2-ol as one of the molecules with the strongest CO2 affinity
as indicated with an orange dot on each plot of Fig. 6. 4,5-diamino-
1H-imidazol-2-ol was part of the training set introduced in the
second step of the active-learning process (Fig. 4), and has a DFT
CO2 interaction energy of −7.41 kcal mol−1. All methods agree
that the majority of the molecular entries of the GDB-9 dataset have a
mean CO2 interaction energy centered between −3.0 and −4.0 kcal
mol−1 and a N2 interaction energy at −2.0 kcal mol−1. Most of the
molecules have predicted CO2 interaction energies between−3.0 and
−5.0 kcal mol−1, which emphasize the difficulty in determining new
molecules with high CO2 affinity. However, CM and BoB were less
effective in identifying rare instances. On the contrary, results from
SOAP were significantly scattered, and predicted many cases with
false CO2 interaction energies close to 0 kcalmol−1 (in a few cases,
SOAP even predicted repulsive interaction energies, Supplementary
Note 8). Interestingly, training of machine-learning models with the
CM, BoB or the SOAP representations that utilize the molecules
identified by active learning with the PI representation yielded more
concise distributions, while all models identified the molecular species
with the stronger CO2 interaction energy among the top candidates
(Supplementary Fig. 7). In other words, PI provided higher quality
data for all methods. Therefore, the model that utilizes PIs for
molecular representations provided the most consistent distributions
for both CO2 and N2 interaction energies. The PI screening revealed
a total of 44 of the 133,885 molecules with CO2 interaction energies
exceeding −6.5 kcalmol−1. DFT calculations were performed for
verification of these results. It should also be mentioned that SOAP
needed 88,287 s for screening the full GDB-9 database, while the
screening with the novel PI representation was almost 40 times faster
(only 2219 s). All screenings were performed on an Intel® i5-4278U
processor.
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Discussion
A novel molecular representation utilizing persistence images
with embedded chemical bonding information has been intro-
duced for predicting DFT-quality CO2/N2 interaction energies.
From our investigation, this new chemically driven persistence
image is a concise, computationally efficient, and effective
representation that generally outperforms other representations
for prediction of CO2 interaction energies since the computa-
tional cost is low and does not suffer from dimensionality pro-
blems. This representation accounts for underlying topological
structure in the molecule, providing a method to control uncer-
tainty due to differing geometric configurations. The new meth-
odology has been applied for the screening of the GDB-9 database
to suggest new CO2-philic moieties. By using an active-learning

approach, our ML-based screening was able to identify many
promising molecules in the GDB-9 database despite a very small
training set (220 molecules). Specifically, 44 molecules were
identified that exceed −6.5 kcal mol−1 CO2 interaction energy. In
addition, candidates that may exhibit strong CO2 interactions
while maintaining weak N2 interactions were examined, yielding
a strategy for identifying species with potentially strong gas
separation capabilities. Ultimately, chemically driven persistence
images are promising molecular representations for larger
supermolecular systems due to compact vectorization. Therefore,
we believe that the chemically driven PI molecular representa-
tions can be applied in a plethora of chemical problems.

The PI method described herein relies on a topological repre-
sentation of a molecular compound that allows a flexible summary

–8

–7

–6

–5

–4

C
O

2

–3

–2

–1

0
0.0 –0.5 –1.0 –1.5 –2.0

N2

–2.5 –3.0 –3.5 –4.0

–8

–7

–6

–5

–4

C
O

2

–3

–2

–1

0
0.0 –0.5 –1.0 –1.5 –2.0

N2

–2.5 –3.0 –3.5 –4.0

–8

–7

–6

–5

–4

C
O

2

–3

–2

–1

0
0.0 –0.5 –1.0 –1.5 –2.0

N2

–2.5 –3.0 –3.5 –4.0

–8

–7

–6

–5

–4

C
O

2

–3

–2

–1

0
0.0 –0.5 –1.0 –1.5 –2.0

N2

–2.5 –3.0 –3.5 –4.0

a b

c d

Fig. 6 Predicted CO2 and N2 interaction energies (in kcal mol−1) for all molecules in the GDB-9 database using four molecular representation models.
Only the model that utilized the PI molecular representation was able to identify 4,5-diamino-1H-imidazol-2-ol (inset) as the strongest CO2-philic groups
(shown with an orange dot on each plot).
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of the diversity of the atomic geometries. Due to this flexibility in
terms of topological equivalence, the PI is robust and provides
accurate predictions in contrast to other methods that need to
learn rigid geometric representations. We are currently expanding
the applicability of the novel molecular fingerprinting method to
high-throughput screening of molecular databases for catalysis
and ligand-based lanthanide/actinide separations. For this type of
chemical applications, additional features are taken into con-
sideration, such as intensity normalization when a PI is generated
from the corresponding PD and predictability of properties of
larger molecules from data generated from smaller ones.

Data availability
The data for the high-throughput computational screening are available in the
Supplementary Information.

Code availability
The code for the numerical simulations is available at https://gitlab.com/voglab/
PersistentImages_Chemistry.
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