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A Hybrid Monkey Search Algorithm for Clustering Analysis

Xin Chen,1 Yongquan Zhou,1,2 and Qifang Luo1

1 College of Information Science and Engineering, Guangxi University for Nationalities, Nanning Guangxi 530006, China
2Guangxi Key Laboratory of Hybrid Computation and Integrated Circuit Design Analysis, Nanning Guangxi 530006, China

Correspondence should be addressed to Yongquan Zhou; yongquanzhou@126.com

Received 6 November 2013; Accepted 22 January 2014; Published 4 March 2014

Academic Editors: M. Lopez-Nores, D.-C. Lou, L. Mart́ınez, D. Wu, and L. Xiao

Copyright © 2014 Xin Chen et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Clustering is a popular data analysis and data mining technique. The 𝑘-means clustering algorithm is one of the most commonly
used methods. However, it highly depends on the initial solution and is easy to fall into local optimum solution. In view of the
disadvantages of the 𝑘-means method, this paper proposed a hybrid monkey algorithm based on search operator of artificial bee
colony algorithm for clustering analysis and experiment on synthetic and real life datasets to show that the algorithm has a good
performance than that of the basic monkey algorithm for clustering analysis.

1. Introduction

Cluster analysis or clustering is the task of grouping a set of
objects in such a way that objects in the same group (called
cluster) are more similar (in some sense or another) to each
other than to those in other groups (clusters). It is a main
task of exploratory data mining and a common technique
for statistical data analysis used in many fields, including
machine learning, pattern recognition, image analysis, infor-
mation retrieval, and bioinformatics. Cluster analysis was
originated in anthropology by Driver and Kroeber in 1932
and introduced to psychology by Zubin in 1938 and Tryon
in 1939 and famously used by Cattell beginning of 1943 [1]
for trait theory classification in personality psychology. Many
clusteringmethods have been proposed; it is divided into two
main categories: hierarchical and partitional. The 𝑘-means
clustering method [2] is one of the most commonly used
partitional methods. However the results of 𝑘-means solving
the clustering problem highly depend on the initial solution
and it is easy to fall into local optimal solutions. Zhang et
al. have proposed an improved 𝑘-means clustering algorithm
called 𝑘-harmonic means [3]. But the accuracy of the results
obtained by the method is not high.

In order to overcome this problem, many scholars began
to solve the problem using metaheuristic algorithms. In 1991,
Colorni et al. have presented ant colony optimization (ACO)

algorithm based on the behavior of ants seeking a path
between their colony and a source of food. Then Shelokar et
al. and Kao and Cheng solved the clustering problem using
the ACO algorithm [4, 5]. Niknam et al. have proposed an
efficient hybrid evolutionary algorithm based on combining
ACO and SA (simulated annealing algorithm, 1989 [6])
for clustering problem [7, 8]. Kennedy and Eberhart have
proposed particle swarm optimizer (PSO) algorithm which
simulates the movement of organisms in a bird flock or fish
school in 1995 [9]. The algorithm also has been adopted to
solve this problem by Omran et al. and Merwe and Engel-
brecht [10, 11]. Kao et al. have presented a hybrid approach
according to combination of the 𝑘-means algorithm, Nelder-
Mead simplex search, and PSO for clustering analysis [12].
Niknam et al. have presented a hybrid evolutionary algorithm
based on PSO and SA to solve the clustering problem [13].
Niknam has proposed an efficient hybrid approach based on
PSO, ACO, and 𝑘-means called PSO-ACO-K approach for
cluster analysis [14]. In 2005, the artificial bee colony (ABC)
algorithm is described by Karaboga [15] and it has been
adopted to solve this problem by Karaboga and Ozturk [16].
Zou et al. have proposed a cooperative artificial bee colony
algorithm to solve the clustering problem and experiment on
synthetic and real life datasets to evaluate the performance
[17]. Voges and Pope have used an evolutionary-based rough
clustering algorithm for the clustering problem [18].
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Monkey algorithm (MA) is a new type of swarm intel-
ligent algorithm. It was put forward by Ruiqing and Wan-
sheng [19] in 2008 which is used in solving large-scale,
multimodal optimization problem.Themethod derives from
the simulation of mountain-climbing processes of monkeys.
It consists of three processes: climb process, watch-jump
process, and somersault process. In the originalMA, the time
consumed mainly lies in using the climb process to search
local optimal solutions.The essential feature of this process is
the calculation of the pseudogradient of the objective func-
tion that only requires two measurements of the objective
function regardless of the dimension of the optimization
problem. The purpose of the somersault process is to make
monkeys find new search domains and this action primely
avoids running into local search. Therefore, MA has been
successfully applied to solve various optimization problems,
such as the transmission network expansion planning [20],
the intrusion detection technology [21], the optimal sensor
placement in structural health monitoring [22], and the
optimization of gas filling station project scheduling problem
[23]. In view of the characteristics of the clustering problem,
this paper proposed amonkey algorithmwith search operator
of artificial bee colony algorithm (ABC-MA). The algorithm
introduced the ABC search operator before the climb process
to strengthen the local search ability and to improve the
somersault process combined with the 𝑘-means method.The
algorithm improves the calculation accuracy in a certain
degree. The numerical experiment results show that the
proposed algorithm has good performance than that of the
basic monkey algorithm for solving the clustering problem.

2. The 𝑘-Means Clustering Algorithm

The goal of data clustering is grouping data into a number of
clusters. 𝑘-means is one of the simplest unsupervised learning
algorithms that solve the well-known clustering problem. It
was proposed by MacQueen in 1967 [24]. The procedure
follows a simple and easy way to classify a given data set
𝐷 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} through a certain number of clusters

𝐺
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(assume 𝐾 clusters) fixed a priori; each data
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The 𝑘-means clustering algorithm is as follows.
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1
, 𝑐
∗

2
, . . . , 𝑐

∗

𝐾
:

𝑐
∗

𝑖
=
1
󵄨󵄨󵄨󵄨𝐺𝑖
󵄨󵄨󵄨󵄨

∑

𝑥𝑗∈𝐺𝑗

𝑥
𝑗
, 𝑖 = 1, 2, . . . 𝐾, (1)

where |𝐺
𝑖
| is the number of the points in the classified
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.

(5) Repeat steps 2 and 4 until the centroids no longer
move.

The main idea is to define 𝐾 centroids, one for each
cluster. These centroids should be placed in a cunning way
because a different location causes different result. So, the
better choice is to place them as much as possible far away
from each other. In this study, we will use Euclidian metric as
a distance metric. The expression is given as follows:
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Finally, this algorithm aims at minimizing an objective
function, in this case, a squared error function.The objective
function

𝑓 (𝑋, 𝐶) =

𝑛

∑

𝑖=1

min {󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑐𝑘
󵄩󵄩󵄩󵄩
2

| 𝑘 = 1, 2, . . . , 𝑝} . (3)

3. Description of Modified Monkey Algorithm

TheMA is a novel kind of evolutionary algorithm which can
solve a variety of difficult optimization problems featuring
nonlinearity, nondifferentiability, and high dimensionality.
The difference from the other algorithms is that the time
consumed by the MA mainly lies in using the climb process
to search local optimal solutions. So according to the charac-
teristics of the clustering problem, a new monkey algorithm
with the search operator of artificial bee colony is proposed.
In this section, we mainly describe the main components
of the algorithm, representation of solution, initialization,
climbprocess, watch-jumpprocess, and improved somersault
process and search operator. The details are listed as follows.

3.1. Representation of Solution. At first an integer𝑀 is defined
as the population size of monkeys. And then, for the monkey
𝑖, its position is denoted as a vector𝑋

𝑖
= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐾∗𝑝
),

where 𝐾 is equal to the number of the cluster centroids, and
each cluster centroid includes 𝑝 components. The position
will be employed to express a solution of the optimization
problem.

3.2. Initial Population. Initialization of the population will
have great effect on the precision. In the original MA,
the initial populations of possible solutions are generated
randomly in the solution interval. However, for the clustering
problem, each component of the data has different intervals.
So, for monkey 𝑖, we randomly choose𝐾 of the samples (each
sample includes 𝑝 components) from the data set.
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3.3. Climb Process. The climb process is a step-by-step pro-
cedure to change the monkeys’ positions from the initial
positions to new ones that can make an improvement in the
objective function. The climb process is designed to use the
idea of pseudo-gradient-based simultaneous perturbation
stochastic approximation (SPSA) [27, 28], a kind of recursive
optimization algorithm. For themonkey 𝑖, its position is𝑋
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, . . . , 𝑥
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the corresponding fitness value. The improved climb process
is given as follows.
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𝑗 = 1, 2, . . . , 𝐾 ∗ 𝑝, respectively. The parameter
𝑎 (𝑎 > 0), called the step of the climb process,
can be determined by specific situations. The step
length 𝑎 plays a crucial role in the precision of the
approximation of the local solution in the climb
process. Usually, the smaller the parameter 𝑎 is, the
more precise the solutions are.
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(4) Update 𝑋
𝑖
with 𝑌 provided that 𝑌 is feasible. Other-

wise, we keep𝑋
𝑖
unchanged.

(5) Repeat steps (1) to (4) until the maximum allow-
able number of iterations (called the climb number,
denoted by𝑁𝑐) has been reached.

Figure 1 shows the climb process of the monkey seeking
the local optimal solution of 𝑓(𝑥) = 𝑥2 with climb step 0.001
and climb number 1000 in 3d space. The red point represents
the initial position and the green is the end.

3.4. Watch-Jump Process. After the climb process, each mon-
key arrives at its own mountaintop. And then it will take a
look and determine whether there are other points around it
being higher than the current one. If yes, it will jump there
from the current position and then repeat the climb process
until it reaches the top of the mountain. For the monkey 𝑖,
its position is 𝑋

𝑖
= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐾∗𝑝
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watch-jump process is given as follows.
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Figure 1:The climb process with climb step 0.001 and climb number
1000 for solving 𝑓(𝑥) = 𝑥2 in the 3d space.
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Figure 2: The somersault process of the original MA.

(1) Randomly generate real numbers 𝑦
𝑗
from (𝑥

𝑖𝑗
−

𝑏, 𝑥
𝑖𝑗
+ 𝑏), 𝑗 = 1, 2, . . . , 𝐾 ∗ 𝑝, respectively. Let

𝑌 = (𝑦
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, 𝑦
2
, . . . , 𝑦

𝐾∗𝑝
). The parameter 𝑏 is called

the eyesight of monkeys which can be determined
by specific situations. Usually, the bigger the feasible
space of optimal problem is, the bigger the value of 𝑏
should be taken.

(2) Update 𝑋
𝑖
with 𝑌 provided that both 𝑓(𝑌) ≥ 𝑓(𝑋

𝑖
)

and 𝑌 are feasible. Otherwise, repeat step (1) until
an appropriate point 𝑌 is found. For the clustering
problem, we only replace 𝑋

𝑖
with 𝑌 whose function

value is smaller than or equal to 𝑓(𝑋
𝑖
).

(3) Repeat the climb process by employing 𝑌 as an initial
position.

3.5. Somersault Process Based on the 𝑘-Means. After repeti-
tions of the climb process and the watch-jump process, each
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Table 1: Results obtained by the algorithms for 20 different runs on Art1 data.

Algorithm Best Worst Mean Standard
ABC-MA 1743.9470 1743.9486 1743.9478 4.9797𝑒 − 04

MA 1743.9482 1744.0183 1743.9587 1.8684𝑒 − 02

CABC 1743.9861 1744.1944 1744.1231 7.1472𝑒 − 02

ABC 1743.9483 1745.3097 1744.2735 3.2737𝑒 − 01

CPSO 1746.6026 1996.9473 1866.8777 85.2485
PSO 1829.0508 2259.0049 2015.4896 125.1365
𝑘-means 1747.3859 2507.9091 1991.93511 342.2974

Table 2: Results obtained by the algorithms for 20 different runs on Art2 data.

Algorithm Best Worst Mean Standard
ABC-MA 515.7616 515.7628 515.7618 3.5234𝑒 − 04

MA 515.7635 515.7691 515.7670 1.4338𝑒 − 03

CABC 515.7616 515.7764 515.7643 3.8176𝑒 − 01

ABC 515.7616 515.7702 515.7636 2.4925𝑒 − 01

CPSO 516.6214 529.5846 520.3385 3.9261
PSO 515.9581 571.7869 532.6543 18.6271
𝑘-means 525.5957 907.1413 694.4421 191.4831

Table 3: Results obtained by the algorithms for 20 different runs on Iris data.

Algorithm Best Worst Mean Standard
ABC-MA 96.6555 96.6563 96.6558 3.2699𝑒 − 04

MA 96.6614 96.6685 96.6651 2.0573𝑒 − 03

CABC 96.6555 96.6599 96.6561 1.1685𝑒 − 03

ABC 96.6566 96.7547 96.6659 2.1388𝑒 − 02

CPSO 96.6580 97.5211 96.9721 2.9666𝑒 − 01

PSO 96.6556 105.1528 99.7345 2.2431
𝑘-means 97.1901 121.3554 100.8866 8.7805

Table 4: Results obtained by the algorithms for 20 different runs on TAE data.

Algorithm Best Worst Mean Standard
ABC-MA 1490.9258 1491.0790 1490.9456 3.7515𝑒 − 02

MA 1491.0358 1491.9663 1491.4607 2.8608𝑒 − 01

CABC 1490.9276 1492.6488 1491.3099 5.1724𝑒 − 01

ABC 1490.9808 1491.5794 1491.2134 2.0420𝑒 − 01

CPSO 1493.3281 1556.9044 1520.8073 21.4859
PSO 1498.6798 1585.0317 1526.7752 25.3170
𝑘-means 1504.9535 1603.4106 1529.6406 29.7491

Table 5: Results obtained by the algorithms for 20 different runs on wine data.

Algorithm Best Worst Mean Standard
ABC-MA 16292.1846 16292.6691 16292.2583 1.7657𝑒 − 01

MA 16302.7254 16467.6147 16366.5331 52.4132
CABC 16292.1849 16294.5850 16292.7695 6.8036𝑒 − 01

ABC 16293.1685 16310.0568 16298.7961 4.2321
CPSO 16306.2966 16378.3972 16324.8760 18.7122
PSO 16296.4829 16590.2685 16435.4557 71.3194
𝑘-means 16325.1202 18436.9520 1745.9957 1003.6327
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Table 6: Results obtained by the algorithms for 20 different runs on seeds data.

Algorithm Best Worst Mean Standard
ABC-MA 311.7978 311.7981 311.7979 1.0051𝑒 − 04

MA 311.8099 311.8378 311.8199 5.3510𝑒 − 03

CABC 311.7978 311.8947 311.8040 2.1581𝑒 − 02

ABC 311.8520 312.2110 312.0027 1.0135𝑒 − 01

CPSO 314.3565 326.2359 318.4564 2.8999
PSO 320.9687 343.4317 332.0422 6.0131
𝑘-means 313.1428 313.7343 313.4977 2.6879𝑒 − 01

Table 7: Results obtained by the algorithms for 20 different runs on Ripley’s glass data.

Algorithm Best Worst Mean Standard
ABC-MA 210.0222 212.9732 210.7160 8.6924𝑒 − 01

MA 210.4653 212.8722 211.6582 7.4809𝑒 − 01

CABC 210.1789 213.6339 212.4594 1.0456
ABC 210.5709 213.8141 212.3449 6.9175𝑒 − 01

CPSO 228.4131 251.9513 238.4607 6.3469
PSO 234.5158 254.8014 244.8992 6.1038
𝑘-means 215.3043 252.9382 225.4963 12.2847

Table 8: Results obtained by the algorithms for 20 different runs on Statlog (Heart) data.

Algorithm Best Worst Mean Standard
ABC-MA 10622.9824 10622.9826 10622.9824 3.0810𝑒 − 05

MA 10623.9587 10623.9595 10623.9587 1.7418𝑒 − 04

CABC 10622.9824 10623.6762 10623.0458 1.5981𝑒 − 01

ABC 10623.4498 10631.6522 10625.7100 1.9917
CPSO 10649.3132 10747.7609 10688.1370 30.1221
PSO 10671.7870 10935.5974 10787.0485 63.3449
𝑘-means 10682.0809 10700.8385 10691.7056 8.2080

Table 9: Results obtained by the algorithms for 20 different runs on Haberman’s survival data.

Algorithm Best Worst Mean Standard
ABC-MA 2566.9888 2566.9903 2566.9890 3.4388𝑒 − 04

MA 2566.9893 2566.9901 2566.9897 2.2211𝑒 − 04

CABC 2567.0055 2567.9275 2567.3581 3.5868𝑒 − 01

ABC 2566.9888 2566.9894 2566.9890 1.2646𝑒 − 04

CPSO 2566.9953 2569.7188 2567.8713 8.5878𝑒 − 01

PSO 2567.0100 2568.4420 2567.3347 3.9103𝑒 − 01

𝑘-means 2625.1076 3193.5941 2655.1274 126.7500

Table 10: Results obtained by the algorithms for 20 different runs on balance scale data.

Algorithm Best Worst Mean Standard
ABC-MA 1423.8205 1424.1142 1423.8507 9.0004𝑒 − 02

MA 1423.8243 1423.8306 1423.8267 1.7049𝑒 − 03

CABC 1423.8206 1424.2445 1423.9109 1.4053𝑒 − 01

ABC 1423.8308 1424.1153 1423.9238 7.5022𝑒 − 02

CPSO 1425.4801 1437.6195 1431.8260 2.9772
PSO 1430.4749 1447.6403 1437.1546 4.3708
𝑘-means 1423.8514 1434.0441 1426.7539 3.1208
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Table 11: Results obtained by the algorithms for 20 different runs on cancer data.

Algorithm Best Worst Mean Standard
ABC-MA 2964.3870 2964.3883 2964.3871 3.1550𝑒 − 04

MA 2964.4246 2964.4870 2964.4408 1.7096𝑒 − 02

CABC 2964.3870 2964.5529 2964.4179 5.8314𝑒 − 02

ABC 2964.5864 2967.2566 2965.1858 6.4821𝑒 − 01

CPSO 2964.4533 2973.6011 2966.3690 2.4351
PSO 2970.4416 3021.1441 2981.1603 11.1527
𝑘-means 2976.9441 2988.4278 2983.3164 4.8661

Table 12: Results obtained by the algorithms for 20 different runs on CMC data.

Algorithm Best Worst Mean Standard
ABC-MA 5693.7240 5693.7418 5693.7264 5.3604𝑒 − 03

MA 5693.7297 5693.8736 5693.8414 2.9889𝑒 − 02

CABC 5693.7240 5694.1452 5693.8912 1.5250𝑒 − 01

ABC 5694.2996 5699.5063 5696.6457 1.4885
CPSO 5699.2901 5739.9530 5709.5340 8.9130
PSO 5766.6412 6059.5781 5906.2983 82.5753
𝑘-means 5703.3444 5705.2747 5704.0770 9.0121𝑒 − 01

monkey will find a locally maximal mountaintop around its
initial point. In order to find a much higher mountaintop,
it is natural for each monkey to somersault to a new search
domain. In the original MA, the monkeys will somersault
along the direction pointing to the pivot which is equal to the
bar center of all monkeys’ current positions. Figure 2 shows
the somersault process of the original MA [19]. The points
𝐴, 𝐵, 𝐶, and 𝐷 represent monkeys. The point 𝑃 is the center
of all monkeys, the somersault interval [𝑐, 𝑑] = [−1, 1]. For
example, the monkey 𝐴 can reach any point (such as points
𝑃, 𝐴1, and 𝐴2) within the circle 𝑟1 because of the somersault
interval [𝑐, 𝑑] = [−1, 1].

However, themonkey is easy to leave the solution interval
for the clustering problem and all monkeys will lose the pop-
ulation diversity because of somersaulting along the direction
pointing the pivot after many iterations. Here we choose
the center of objects belonging to the cluster as the pivot to
replace the center of all monkeys by the 𝑘-means algorithm.
For the monkey 𝑖, its position is 𝑋

𝑖
= (𝑥
𝑖,1
, 𝑥
𝑖,2
, . . . , 𝑥

𝑖,𝐾∗𝑝
);

the improved somersault process is given as follows.

(1) Assign each object to the group that has the closest
centroid 𝐺

1
, 𝐺
2
, . . . , 𝐺

𝐾
according to the location of

the monkey 𝑖.

(2) Randomly generate real numbers 𝜃 from the interval
[𝑐, 𝑑] (called the somersault interval, which decides
the maximum distance that monkeys can somer-
sault).

(3) Calculation the 𝐾 positions 𝑐∗
1
, 𝑐
∗

2
, . . . , 𝑐

∗

𝐾
which

are the centers of objectives belonging to centroid
𝐺
1
, 𝐺
2
, . . . , 𝐺

𝐾
according to the formula (1), respec-

tively.The𝐾 positions form a vector which represents
the pivot to replace the center of monkeys. Let 𝑐 =
(𝑐
∗

1
, 𝑐
∗

2
, . . . , 𝑐

∗

𝐾
) = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝐾∗𝑝
).

(4) Set

𝑦
𝑗
= 𝑥
𝑖𝑗
+ 𝜃 (𝑐
𝑗
− 𝑥
𝑖𝑗
) , (6)

𝑗 = 1, 2, . . . , 𝐾 ∗ 𝑝, respectively.
(5) Update 𝑋

𝑖
with 𝑌 provided that both 𝑓(𝑌) ≥ 𝑓(𝑋

𝑖
)

and𝑌 are feasible. Otherwise, generate a new solution
to replace𝑋

𝑖
.

3.6. Search Operator. The original MA mainly lies in using
the climb process to search local optimal solutions.The climb
step plays a crucial role in the precision of the approximation
of the local solution. The smaller the climb step is, the bigger
the climb number is and the higher precision the solution is;
it will spend a lot of time to calculate the objective value. For
example, the climb step is 0.01; the climb number should be
set 100, so it needs to calculate 200 times objective function
value every climb process. When we set the climb step 0.001,
the climb number should be set 1000; we need to calculate
2000 times objective function value every climb process. In
order to reduce the computing time, this paper introduced
search operator of artificial bee colony algorithmbefore climb
process.

The artificial bee colony optimization algorithm (ABC)
is described by Karaboga based on the foraging behavior of
honey bees [29]. In the ABC, the colony consists of three
groups of bees: employed bees, onlookers, and scouts. Each
employed bee seeks a food source according to the search
operator (7) nearby its current food source then evaluates its
nectar amount and determines whether to update the food
source by greedy strategy. After all employed bees complete
the search process, they share the position information of
the food sources with the onlookers on the dance area.
Each onlooker watches the dance of employed bees and
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Table 13: Results obtained by the algorithms for 20 different runs on all data sets.

Data Algorithm Best Worst Mean Standard

Art1
ABC-MA 1743.9480 1744.3474 1743.9808 9.7602𝑒 − 02

CABC 1744.3744 1806.3827 1761.7068 18.5067
CPSO 1809.5543 2286.7642 2047.9576 124.0067

Art2
ABC-MA 515.7625 515.7789 515.7666 4.2299𝑒 − 03

CABC 515.7630 516.5988 515.9431 2.3931𝑒 − 01

CPSO 516.0698 545.4675 528.0076 9.3073

Iris
ABC-MA 96.6555 96.6669 96.6585 3.4742𝑒 − 03

CABC 96.6628 97.0046 96.7316 7.8682𝑒 − 02

CPSO 96.7162 98.6912 97.5429 5.1969𝑒 − 01

TAE
ABC-MA 1490.9267 1492.0138 1491.2534 4.9518𝑒 − 01

CABC 1491.4669 1496.5907 1492.9128 1.3067
CPSO 1496.5634 1569.6627 1527.5663 21.1686

Wine
ABC-MA 1629.23445 16297.4038 16293.9540 1.4439
CABC 16293.2331 16362.7169 16319.2327 21.3326
CPSO 16314.9904 16466.6525 16348.7576 38.2761

Seeds
ABC-MA 311.7978 311.8233 311.8022 6.0881𝑒 − 03

CABC 311.8818 312.9164 312.3053 2.5000𝑒 − 01

CPSO 313.7370 329.2068 319.9072 4.5295

Glass
ABC-MA 210.6761 215.4373 212.9199 1.3425
CABC 211.8449 224.0604 218.1447 2.8634
CPSO 229.3021 259.5530 241.4084 7.1331

Heart
ABC-MA 10622.9825 10626.6454 10623.1926 8.1864𝑒 − 01

CABC 10623.3633 10638.2251 10628.6231 4.5226
CPSO 10662.0268 10942.4004 10776.0596 78.6768

Haberman’s survival
ABC-MA 2566.9889 2567.0176 2566.9935 8.1381𝑒 − 03

CABC 2566.9889 2567.8249 2567.1982 3.7121𝑒 − 01

CPSO 2567.0174 2586.5513 2568.7706 4.2520

Balance scale
ABC-MA 1423.8243 1425.6662 1424.3613 8.1978𝑒 − 01

CABC 1424.0427 1426.2748 1424.8791 7.6287𝑒 − 01

CPSO 1430.1559 1461.8830 1438.6882 7.8186

Cancer
ABC-MA 2964.3870 2964.7352 2964.4065 7.7529𝑒 − 02

CABC 2964.3870 2969.6338 2965.9663 1.6876
CPSO 2968.3197 2982.2263 2975.5734 3.8311

CMC
ABC-MA 5693.7360 5694.4571 5693.9155 2.1077𝑒 − 01

CABC 5695.5832 5733.9873 5705.0531 10.7000
CPSO 5787.0284 6149.9020 5945.6423 95.2041

chooses one of their sources with a probability depending on
the nectar amounts of sources. If a food source cannot be
improved through predetermined cycles, called “limit,” it is
removed from the population, and the employed bee of that
food source becomes scout.The search operator of employed
bees is as follow:

𝑧
𝑖𝑗
= 𝑥
𝑖𝑗
+ 𝜙
𝑖𝑗
(𝑥
𝑖𝑗
− 𝑥
𝑘𝑗
) , (7)

where 𝑘 ∈ {1, 2, . . . ,𝑀} and 𝑗 ∈ {1, 2, . . . , 𝑝∗𝐾} are randomly
chosen indexes. Although 𝑘 is determined randomly, and it
is different from 𝑖, 𝜙

𝑖𝑗
is a random number between [−1, 1].

The experimental results show that it has a good optimization
performance in optimizing complex multimodal problems

[29] due to the strong local exploration ability of search
operator.

In the MA, the local exploration ability of the climb
process is weak and the somersault process has strong
global search ability. Here we introduced the ABC search
operator before the climb process to strengthen seeking the
local optimal solution. For each monkey, each component
is updated once adopting the ABC search operator. So each
monkeywillmove𝑝∗𝐾 times.The local search process before
the climb process is as shown in Algorithm 1.

To sum up, the whole flowchart of ABC-MA to find
the optimal solution of the clustering problem is shown in
Figure 3.
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Figure 3: The flow chart of ABC-MA.

4. Simulation Experiment

In this section, the experiments were done using a desk-
top computer with a 3.01 GHz AMD Athlon(tm) II X4640
processor, 3 GB of RAM, running a minimal installation of
Windows XP. The application software was Matlab 2012a.

The experimental results comparing the ABC-MA clus-
tering algorithmwith six typical stochastic algorithms includ-
ing the MA [19], PSO [30], CPSO [1, 17], ABC [16, 17],
CABC [17], and 𝑘-means algorithms are provided for two
artificial data sets and ten real-life data sets (Iris), Teaching
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Figure 4: The distribution image of Art1.
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Assistant Evaluation (TAE), wine, seeds, Ripley’s glass, Statlog
(heart), Haberman’s survival, balance scale, Contraceptive
Method Choice (CMC), and Wisconsin breast cancer which
are selected from the UCI machine learning repository [31].

Artificial data set one (𝑁 = 250, 𝑑 = 3, 𝐾 = 5): this is a
three-featured problem with five classes, where every feature
of the classes was distributed according to Class 1-Uniform
(85, 100), Class 2-Uniform (70, 85), Class 3-Uniform (55, 70),
Class 4-Uniform (40, 55), and Class 5-Uniform (25, 40) [12,
14]. The data set is illustrated in Figure 4.

Artificial data set two (𝑁 = 600, 𝑑 = 2, 𝐾 = 4). This is a
two-featured problemwith four unique classes. A total of 600
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Figure 7: The convergence curve of the Art2 data.

patterns were drawn from four independent bivariate normal
distributions, where classes were distributed according to

𝑁
2
(𝜇 = (

𝑚
𝑖

0
) , Σ = [

0.5 0.05

0.05 0.5
]) , (8)

𝑖 = 1, 2, 3, 4,𝑚
1
= −3,𝑚

2
= 0,𝑚

3
= 3,𝑚

4
= 6, 𝜇 and Σ being

mean vector and covariance matrix, respectively [12, 14]. The
data set is illustrated in Figure 5.

Iris data (𝑁 = 150, 𝑑 = 4, 𝐾 = 3): this data set with
150 random samples of flowers from the Iris species setosa,
versicolor, and virginica were collected by Anderson (1935).
From each species there are 50 observations for sepal length,
sepal width, petal length, and petal width in cm. This data
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Figure 8: The convergence curve of the Iris data.
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set was used by Fisher (1936) in his initiation of the linear-
discriminant-function technique [14, 17, 31].

Teaching Assistant Evaluation (𝑁 = 151, 𝑑 = 5, 𝐾 =

3): the data consist of evaluations of teaching performance
over three regular semesters and two summer semesters
of 151 teaching assistant (TA) assignments at the Statistics
Department of the University of Wisconsin-Madison. The
scores were divided into 3 roughly equal-sized categories
(“low,” “medium,” and “high”) to form the class variable [31].

Wine data (𝑁 = 178, 𝑑 = 13,𝐾 = 3): this is the wine data
set, which is also taken from MCI laboratory. These data are
the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The
analysis determined the quantities of 13 constituents found
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in each of the three types of wines. There are 178 instances
with 13 numeric attributes in wine data set. All attributes are
continuous. There is no missing attribute value [14, 17, 31].

Seeds data (𝑁 = 210, 𝑑 = 7, 𝐾 = 3): this data set consists
of 210 patterns belonging to three different varieties of wheat:
Kama, Rosa, and Canadian. From each species there are 70
observations for area 𝐴, perimeter 𝑃, compactness 𝐶 (𝐶 =
4 ∗ 𝑝𝑖 ∗ 𝐴/𝑃

2), length of kernel, width of kernel, asymmetry
coefficient, and length of kernel groove [31].

Ripley’s glass (𝑁 = 214, 𝑑 = 9, 𝐾 = 6): for which
data were sampled from six different types of glass: building
windows float processed (70 objects), building windows non-
float processed (76 objects), vehicle windows float processed
(17 objects), containers (13 objects), table ware (9 objects),
and headlamps (29 objects) each with nine features, which
are refractive index, sodium, magnesium, aluminum, silicon,
potassium, calcium, barium, and iron [14, 17, 31].

Statlog (heart) data (𝑁 = 270, 𝑑 = 13, 𝐾 = 2): this data
set is a heart disease database similar to a database already
present in the repository (heart disease databases) but in a
slightly different form [31].

Haberman’s survival (𝑁 = 306, 𝑑 = 3,𝐾 = 2): the dataset
contains cases from a study that was conducted between 1958
and 1970 at the University of Chicago’s Billings Hospital on
the survival of patients who had undergone surgery for breast
cancer. It records two survival status patients with the age of
patient at time of operation, patient’s year of operation, and
number of positive axillary nodes detected [31].

Balance scale data (𝑁 = 625, 𝑑 = 4, 𝐾 = 3): this
data set was generated to model psychological experimental
results. Each example is classified as having the balance scale
tip to the right, tip to the left, or balanced. The attributes are
the left weight, the left distance, the right weight, and the
right distance. The correct way to find the class is the greater
of (left-distance ∗ left-weight) and (right-distance ∗ right-
weight). If they are equal, it is balanced [31].

Wisconsin breast cancer (𝑁 = 683, 𝑑 = 9, 𝐾 = 2):
which consists of 683 objects characterized by nine features:
clump thickness, cell size uniformity, cell shape uniformity,
marginal adhesion, single epithelial cell size, bare nuclei,
bland chromatin, normal nucleoli, andmitoses.There are two
categories in the data: malignant (444 objects) and benign
(239 objects) [14, 17, 31].

Contraceptive Method Choice (𝑁 = 1473, 𝑑 = 10, 𝐾 =
3): this data set is a subset of the 1987 National Indonesia
Contraceptive Prevalence Survey. The samples are married
women who were either not pregnant or do not know if they
were at the time of interview. The problem is to predict the
current Contraceptive Method Choice (no use, long- term
methods, or short-term methods) of a woman based on her
demographic and socioeconomic characteristics [14, 17, 31].

Here we set the parameters of ABC-MA and MA as
follows: the climb number of ABC-MA 𝑁𝑐 = 10 and the
climb number of MA is set 200, climb step 𝑎 = 0.01, watch-
jump number 𝑁𝑤 = 2, the eyesight 𝑏 = 0.5, somersault
interval [𝑐, 𝑑] = [0, 2], and the population size𝑀 = 5. For
the PSO, inertia weight 𝑤 = 0.729, acceleration coefficients
𝑐1 = 2, 𝑐2 = 2, and population size 𝑀 = 100. The
population size of the CPSO is set 20. The population size of
the ABC and CABC is set at 50 and 10, respectively. In order
to compare with other algorithms, the maximum generations
of all algorithms are set at 100.

4.1. Algorithm Comparison. For every data set, each algo-
rithm is applied 20 times individually with random initial
solution. For the art1 and art2 data set, once the randomly
generated parameters are determined, the same parameters
are used to test the performance of three algorithms.The best
value, theworst value, themean value, and standard deviation
are recorded in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. The
results are kept four digits after the decimal point.

The simulation results given in Tables 1–12 show that
ABC-MA is very precise. As seen from results, the ABC-MA
algorithm provides the optimum value and small standard
deviation in compare to those obtained by the othermethods.
For Iris data set, the optimum value, the worst value, the
average value, and the standard deviation of ABC-MA are
96.6555, 96.6563, 96.6558, and 3.2699𝑒 − 04, respectively.
CABC also seeks the optimum solution 96.6555, but the
standard deviation is bigger than ABC-MA. While the best
solutions ofMA, ABC, CPSO, PSO, and 𝑘-means are 96.6614,
96.6566, 96.6580, 96.6556, and 97.1901, respectively. Table 4
shows the results of algorithms on the TAE dataset. The
optimumvalue is 1490.9258which are obtained only byABC-
MA. Noticeably other algorithms fail to attain this value
even once within 20 runs. The mean value of ABC-MA is
1490.9456 which are smaller than that of MA, CABC, ABC,
CPSO, PSO, and 𝑘-means. Table 5 provides the results of
algorithms on the wine dataset. As seen from the results, the
ABC-MA algorithms are far superior to those obtained by the
others. For the seeds data set, the best value, the worst value,
the worst value, and the standard deviation of ABC-MA are
311.7978, 311.7981, 311.7979, and 1.0051𝑒 − 04. That means
ABC-MA converges to the global optimum value 311.79 in
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(1) Set parameters:𝑀, 𝐾, 𝑝
(2) For 𝑖 = 1 to𝑀 do
(3) For 𝑗 = 1 to 𝑝 ∗ 𝐾 do
(4) Randomly generate a integer 𝑘 and a real 𝜙 {1 ≤ 𝑘 ≤ 𝑀, 𝜙 ∈ [−1, 1]};
(5) 𝑇𝑒𝑚𝑝 = 𝑋

𝑖
; 𝑇𝑒𝑚𝑝

𝑗
= 𝑥
𝑖𝑗
+ 𝜙 ⋅ (𝑥

𝑘𝑗
− 𝑥
𝑖𝑗
);

(6) Calculate the objective function value 𝑓(𝑇𝑒𝑚𝑝);
(7) If 𝑓(𝑇𝑒𝑚𝑝) < 𝑓(𝑋

𝑖
) do

(8) Update𝑋
𝑖
with 𝑇𝑒𝑚𝑝;

(9) End if
(10) End for
(11) End for

Algorithm 1
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Figure 11: The convergence curve of the CMC data.
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Figure 12: The convergence curve of the seeds data.
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Figure 13: The convergence curve of the glass data.

all of runs. The standard deviations for them are 5.6510𝑒 −
03, 2.1581𝑒 − 02, 1.0135𝑒 − 01, 2.8999, and 2.6879𝑒 − 01,
respectively. From the standard deviation, we can see that
the ABC-MA algorithm is better than the other methods.
For Ripley’s glass data set, the optimum value of ABC-MA is
210.0222 which aremuch better than that of other algorithms.
The standard deviations of ABC-MA, MA, and ABC are
8.6924𝑒−01, 7.4809𝑒−01, and 6.9175𝑒−01. On Statlog (heart)
dataset results given in Table 8, the best value, the worst
value, the worst value, and the standard deviation of ABC-
MA are 10622.9824, 10622.9826, 10622.9824, and 3.0810𝑒−05,
respectively. It means that the ABC-MA algorithm is able to
converge to the global optimum 10622.982 in all of runs, while
𝑘-means, PSO, and CPSO may be trapped at local optimum
solutions. For the Haberman’s survival data set, the optimum
value 2566.9888 can be obtained by ABC-MA and ABC. But
the standard deviation of ABC is 1.2646𝑒 − 04 which is a
little smaller than that of ABC-MA. The standard deviation
of PSO is a little smaller than that of CPSO. Table 10 shows
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Figure 14: The convergence curve of the heart data.
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Figure 15: The convergence curve of the survival data.

the results of algorithms on the balance scale dataset. As
seen from the results, the best value, the worst value, and
the mean value of ABC-MA algorithm are much better than
those obtained by the others. For Wisconsin breast cancer
data set, the best value and the worst value are 2964.3870
and 2964.9883. They are just very close, so the standard
deviation is very small. The globe optimal value also can be
obtained by the CABC algorithm. But the standard deviation
5.8314𝑒 − 02 is poorer than that of ABC-MA and MA.
On Contraceptive Method Choice data set, the optimum
value, the worst value, the average value, and the standard
deviation of ABC-MA are 5693.7240, 5693.7418, 5693.7264,
and 5.3604𝑒−03, respectively.The best globe solution also can
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Figure 16: The convergence curve of the scale data.
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Figure 20: The survival data distribution.

be obtained by the CABC algorithm. The best value and the
worst value of PSO are 5766.6412 and 6059.5781. That means
PSO may fall into local optimum solutions.

From Table 1 to Table 12, we can conclude that the results
obtained by ABC-MA are clearly better than the other
algorithms for most of data sets; CABC is a little better than
ABC and CPSO is a little better than PSO; the 𝑘-means is the
worst for most of data sets.

Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show
the convergence curves of different data sets for various
algorithms. As seen from the figures, the convergence rate of
MA is the fastest. Figures 18, 19, 20, and 21 show the original
data distribution of Iris andHaberman’s survival data sets and
the clustering result by ABC-MA algorithm.

4.2. Algorithm Evaluation. In the original MA, the climb step
plays a crucial role in the precision of the approximation
of the local solution in the climb process. For example, for
wine data set, when the climb step is 0.01, the optimum
value, the worst value, the average value, and the standard
deviation of MA are 16302.7254, 16467.6147, 16366.5331, and
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Figure 21: The survival data clustering result.

52.4132, respectively. The reason is that the climb step is too
small so that sometimes the monkeys cannot arrive at their
mountaintops at all in the climb process before the maximal
climber number is reached. Here, we replace 0.01 with 0.1 and
keep the climb number unchanged. The revised parameters,
the optimum value, the worst value, the average value, and
the standard deviation are 16293.9147, 16296.2676, 16295.2160,
and 5.2270𝑒 − 01, respectively. The results are better. For the
ABC-MA algorithm, the result is not affected by climb step.

In the original MA, the time consumed mainly lies in
using the climb process to search local optimal solutions.
When we set the climb number 200, it needs computing
function values 400 times for every monkey in the climb
process. Each iteration needs to calculate about 2000 times
function values. For ABC-MA, the computing time is deter-
mined by the number of the clusters and the dimensions of
the object. For example, for the Iris data set, the number
of the clusters is 3 and the dimensions of the object is 4;
each iteration needs to calculate the objective values about
160 times which is far less than that of MA. For PSO and
ABC, the number of function evaluations is 100 at every
iteration, but the results are poor. Because of introducing the
cooperative strategy, CPSO [32] and CABC [17] increased
a lot of computation time compared with PSO and ABC
with the same population size. For example, for Iris data set,
when the population size is 100, the numbers of the function
evaluations of CABC, CPSO, ABC, and PSO are about 1400,
1300, 200, and 100, respectively. However, CABC and CPSO
are difficult to convergence and the result of CPSO is not
good.

In order to compare the performance of the three kinds
of improved algorithms, the ABC-MA, CABC, and CPSO
algorithms are run 20 times individually with 10000 function
evaluations.The results are recorded in Table 13. As seen from
the results, the results of the ABC-MA algorithm are better
than CABC and CPSO. The better solution and the smaller
standard deviation can be obtained most of data sets.

The results of CPSO and CABC have apparent difference
between the 100 iterations and 10000 function evaluations.
However, the difference ofABC-MA is small between the two.
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Figure 22: Continued.
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Figure 22: The boxplots of distribution of the objective values obtained by CPSO, CABC, and ABC-MA over 20 independent executions.

We can conclude the ABC-MA has faster convergence speed
than CABC and CPSO. The simulation results in the tables
demonstrate that the proposed hybrid evolutionary algo-
rithm converges to global optimum with a smaller standard
deviation and better globe value and leads naturally to the
conclusion that the ABC-MA algorithm is a viable and robust
technique for data clustering. Figure 22 shows The boxplots
of distribution of the objective values obtained by CPSO,
CABC, and ABC-MA over 20 independent executions. We
can see that ABC-MA can obtain smaller upper bound,
smaller average, and lower bound of objective values.

5. Conclusions

Monkey algorithm is a new swarm intelligence algorithm;
its outstanding advantage is that it can effectively avoid
falling into local optimal solutions through the somersault
process. In the original MA, the precision of the problem is
decided by climb step and climb number of the climb process.
Because climbing number is large, a lot of running time is
consumed in the climb process. In this paper, an improved
MA is proposed, artificial colony algorithm search operator is
introduced on the basis of the original MA; the local optimal
solution can be found by the climb process combined with
the artificial colony algorithm search operator, so the climb
number is reduced and the running time is far less than the
original MA. In view of the clustering problem, we choose
the center of objects belonging to the cluster as the pivot to
replace the center of all monkeys by the 𝑘-means algorithm
in the somersault process. In this paper, 10 real instances are
tested to compare with other algorithms by 100 iterations
and 10000 function evaluations. The numerical experiment
results show the improved MA has better results than the 𝑘-
meansmethod, PSO, ABC, CPSO, CABC, andMA; especially
the testing results of 10000 function evaluations are better,
and running time is far lower than the original algorithm. So
the improved MA has a good performance than that of the
basic monkey algorithm for clustering analysis.
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