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Abstract: Many articles have been published on scale-down concepts as well as additive manufacturing
techniques. However, information is scarce when miniaturization and 3D printing are applied
in the fabrication of bioreactor systems. Therefore, garnering information for the interfaces
between miniaturization and 3D printing becomes important and essential. The first goal is to
examine the miniaturization aspects concerning bioreactor screening systems. The second goal is
to review successful modalities of 3D printing and its applications in bioreactor manufacturing.
This paper intends to provide information on anaerobic digestion process intensification by fusion
of miniaturization technique and 3D printing technology. In particular, it gives a perspective
on the challenges of 3D printing and the options of miniature bioreactor systems for process
high-throughput screening.
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1. Introduction

The pressure to reduce bioreactor costs and accelerate the bioprocess development in the biotech
industry is ongoing and increasing [1]. The identification of optimal parameters for new biotechnological
processes is a costly and time-consuming part of the development process, due to the multiple
settings [2]. Since optimizing process conditions at a manufacturing scale are not practical and efficient,
the development of miniaturized models that represent the performance of the industrial process
is essential to achieve reliable process characterization [3]. Thus, parametric optimization through
process screening is urgently needed for bioprocess development [2]. Miniature bioreactors are useful
as such a process screening method, where multiple formulations or conditions are screened to identify
the optimal set of values [4]. Notably, the integration of engineering and biological principles is
essential for the scaling-down of bioreactors [5].

Similar to reactor performance in chemical research, in biochemical research, the term bioreactor
performance is often used. However, a rapid scan of the literature elucidated that bioreactor performance
is a well-known known concept, but it is never thoroughly explained [6,7]. In practice, the performance
of a biochemical conversion process, i.e., the bioreactor performance, is mainly determined by the
benefit/cost ratio [8]. For optimization purposes, the criteria for a high volume/low value-added
product are usually different from criteria used for the low volume/high value-added product. Thus,
a bioreactor’s performance can be either evaluated by the yield of the desired product on the substrate
(g product per g substrate), the productivity (g product per L reactor volume per hour) or the final titer
(g product per L reactor volume) [9].

However, process performance usually connects to a particular market price of the product.
On the other hand, there are also costs involved in the microbial conversion processes. The reduction
of costs is often the main objective of biochemical engineering [8]. The bioreactor vessel is the core
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part of the bioreactor system. Within the bioreactor vessel, the solution is mixed to maintain a
homogeneous solution, which affects the optimal performance. Different mixing methods [10,11]
are used to obtain the perfect mixing by looking at the fluid flow, mixing rate and mixing time as
parameters. Furthermore, the cultivation process needs to be carefully controlled. Sensors for pH,
temperature, dissolved oxygen concentration, and foam are necessary to maintain optimal conditions
for bacterial growth and/or synthesis of products. Contrary to conventional chemical reactors,
bioreactors must provide a higher degree of control over process upsets and prevent contaminations by
other microorganisms. These bioreactors are used to grow bacteria in a complex fluidic environment.
Before newly found bacteria can be used in biotechnological applications, the bacteria first need to be
characterized to determine in which environmental circumstances the bacteria will perform optimally.
It is also important to know how the bacteria will react to the different situations that are applied by
the operators.

Bioreactors can also be used for the production of cells where batch production is facilitated.
The problem is that these batch-wise operated bioreactors have a lower output per volume per hour unit
than with continuously operated bioreactors. On the other hand, continuously operated bioreactors
have more risk involved, because the impact of the failure is higher. However, if there is a way to
reduce the effect of failure in these types of bioreactors, then this can replace the batch-wise operated
bioreactor. Lowering the impact of failure can be achieved by spreading the risk. Such an approach
implies a system of many continuous bioreactors working independently. Hence, if one or more
bioreactor becomes contaminated, it can be shut down, and all other bioreactors remain in operation.
The approach in scaling-up by numbers instead of scaling-up by size reduces the risks in fermentation
processes but increases the amount of materials needed.

Biotechnological applications can differ significantly from each other. Therefore, a suitable process
screening system varies per specific application. A flexible and modular system deals with the variation
in applications. The 3D printing process helps to quickly manufacture the particular modules that
are necessary for the screening. Additive Manufacturing describes the 3D printing process in a larger
whole. The 3D printing is a crucial part of Additive Manufacturing as it enables the construction
of the design layer-by-layer rather than through molding or subtractive techniques [12]. Moreover,
this technique provides high customizability while producing small quantities at relatively low cost in
a short period [13].

This paper combines technological perspectives of fusion of miniaturization and 3D printing for the
development of multi-parallel bioreactor screening systems. This paper is a short and comprehensive
perspective of 3D printing technologies with a selection of references summarizing research progress
and challenges in applying miniature bioreactor systems. It reflects not only on miniaturization
concepts but also on 3D printing techniques, as well as on the auxiliary equipment that is part of the
screening system.

2. Miniaturization

2.1. Scale-Down Concept

According to Latterman and Buchs [14], the design of a bioreactor typically varies in shape,
material properties and instrumentation, which have a direct influence on the performance.
Miniaturization or else scaling-down of bioreactors is a current trend and promising solution for
optimization studies in biotechnology (e.g., fermentation, anaerobic digestion) [15,16]. Miniaturization
aims at replacing bench-scale bioreactors and ultimately pilot-scale bioreactors (Figure 1) [17].
Unfortunately, the current small-scale lab systems (e.g., shaken flask systems) lack automated feeding,
pH and/or oxygen control, a fact that is unfavorable for developing microbial fermentations [18,19].
Thus, the parallel running miniature system has become a more attractive method as they provide
early-stage process understanding during process development [20]. Miniature bioreactors must
mimic conditions that microbial communities or pure cultures experience in larger vessels [21,22].
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Figure 2 depicts important aspects that have to be considered for the optimal bioreactor design.
Reliability, cost-efficiency and process performance are the utmost important aspects of bioreactor
design, followed by sustainable reengineering (reactor and process redesign) and product innovation.
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Biotech enterprises have to compile current research and frontline developments in bioreactors and
make endeavors towards the design and application of sustainable principles though process intensification.
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2.2. Miniature Bioreactors

In the case of an anaerobic fermentation process, small anaerobic digesters (AD) can serve
as a screening tool for biogas production. A fermentation screening system using low-volume
reactors would be able to operate and control many parallel fermenters. Besides, parallelization of a
miniature AD system enables the monitoring of multiple operational parameters allowing detailed
process insight [17]. Currently, no minimum size of a commercial miniaturized bioreactor system has
been established. The operating volume of miniature systems preferably remains less than 20 mL.
An overview of the state-of-the-art miniature bioreactor systems and their main characteristics is
given in Table 1. The control of miniaturized bioreactor systems remains very complex and lacks
research. Due to the necessity of an anoxic environment, the downscaling of anaerobic digesters is
more challenging compared to other bioreactors, although mixing becomes less demanding.

Table 1. Miniature bioreactor systems and their main characteristics.

Reactor Volume Application Material Mixing Sensors Ref.

µBR (150 µL) Microbial fermentation PMMA 1,
PDMS 3

Magnetic pH, DO 2 [23]

µBR (150 µL) Fermentation PDMS Peristaltic
oxygenating

mixer

pH, DO [24]

µBR (150 µL) Cell cultivation Plastic Unknown pH, DO, dCO2 [25]

Milliliter scale tank BR (10 mL) Mycelium forming PEEK * Magnetic pH, DO [26]

Milliliter scale BR
(12 mL)

Measuring power
consumption/energy

dissipation

magnetic Torque, particle
size

[27]

SimcellTM (1 mL) Cell cultivation Sparging pH, DO [28]

MA (0.1–2.0 mL) Controlling cellular
microenvironment

PDMS Unknown Flow velocity [29,
30]

ambrTM (15 mL) Cell cultivation Sparging pH, DO [31]

ambrTM (15 mL) Cell cultivation Sparging pH, DO [32]

Mini bioreactor
(30 mL)

Mammalian cell
culturing

Angled disc
impeller

Temperature [33]

BioREACTOR48
(8–15 mL)

Parallel fermentation Autoinduction
impeller

pH, DO [34]

RoboLector
(800–2400 µL)

Parallel fermentation Shaking biomass, pH, DO,
fluorescence

[35]

micro-Matrix
(10 mL)

Parallel fermentation Shaking pH, DO,
Temperature

[36]

1 Polymethylmethacrylate; 2 Dissolved oxygen; 3 Polydimethylsiloxan; * Polyetheretherketone.

The materials employed for the manufacturing of the bioreactors may influence their applicability
(Figure 3). The thermal properties of the material, e.g., thermal conductivity, thermal expansion as
well as melting point, are important when the reactor vessel is exposed to high temperatures (121 ◦C).
The chemical properties, such as chemical resistance, are also crucial for the operation procedure.
Lastly, the physical properties of surfaces affect the reactor vessel performance as they are related to
bacterial adherence and biofilm formation [37].
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A continuous mini-bioreactor system may consist of multiple parts and the reactor vessel is one
of those parts. When scaling down the bioreactor, three main aspects must be taken into account.
These aspects are maintaining the possibility to sterilize the reactor, maintain perfect mixing and
options to measure and control, pH, dissolved oxygen (DO), temperature and level. These three aspects
have to be reevaluated when designing a continuous miniature bioreactor. Currently, relatively large
and expensive bioreactors are used in the laboratory. If cheaper and smaller bioreactors could replace
those bioreactors, while still maintaining the same performance, that would be ideal. A morphological
overview is depicted in Table 2 to give an overview of the possible solutions per subfunction.
This overview provides a systematic approach to combining solutions and deriving working structures.

Table 2. Morphological overview within the first column, the subfunctions with multiple suitable
solutions and in the remaining columns the different solutions.

Solutions 1 2 3 4 5
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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Table 2. Cont.

Solutions 1 2 3 4 5

Supply
substrate

Infusion pump Infusion
controller

Effluent and
pump

Piezoelectric
pressure sensor
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics 

The flow characteristics in a miniaturized bioreactor differ significantly from those in the 
laboratory scale reactor [49,50]. At the microscale, different forces become dominant over those 
experienced in everyday life [51]. Because of scaling, it is often counterproductive to simply shrink 
an existing large device and expect it to function properly at the micro-level [52]. Therefore, new 
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2.3. Fluid Dynamics

The flow characteristics in a miniaturized bioreactor differ significantly from those in the laboratory
scale reactor [49,50]. At the microscale, different forces become dominant over those experienced in
everyday life [51]. Because of scaling, it is often counterproductive to simply shrink an existing large
device and expect it to function properly at the micro-level [52]. Therefore, new designs must be
created to take advantage of forces that work on the microscale. Beebe et al. [49] describe different
effects that become dominant in microfluidics, including laminar flow, diffusion, fluidic resistance,
surface area to volume ratio, and surface tension. The small dimensions of miniaturized bioreactor
systems typically result in laminar fluid flow conditions of the fluid phase [53–56]. A cylindrical reactor
design, which is typical for continuously stirred tank reactors (CSTRs), enhances the predictability of
the laminar flow dynamics [57]. The rounding of the edges enables the flow to remain laminar and
predictable, rather than becoming a random and complicated flow structure of interacting vortices [51].
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Fluid dynamics have successfully integrated different stirring mechanisms and pumps to achieve
homogenous conditions [56,58–61].

2.4. Parallelization

Gathering comprehensive process information concerning the development of a bioprocess
requires several simultaneous experiments. Therefore, there is a demand for cost-effective, parallel,
and multiparametric systems with a high throughput [62]. Parallelization, in bioprocess development,
signifies the practice where multiple reactors are employed side by side, thus in parallel [4].
This utilization of multiple reactors in parallel, rather than one reactor, which is used sequentially,
increases the experimental throughput. Additionally, the time required for the process development will
reduce [2]. By setting the tested parameter differently for each reactor, high experimental throughput
is achieved regarding that parameter.

2.5. Sensor Capabilities

Online and in real-time monitoring of a bioprocess is inherently complex. However, it ensures
the control of the vessel conditions and the optimal use of raw materials. Thus, consistent quality
of the final product and a reduction in wastes and process cycle time can be reassured. Besides,
the replacement of costly and slow laboratory testing (screening systems) opens up the possibility of
bioprocess innovation [12,63]. When the bioreactors are scaled down, the sensors are also required
to decrease in size, to assure this detailed monitoring of the bioprocess in the miniature bioreactor.
A solution is integrating the sensor into small fabricated devices, which is indicated by [23]. Currently,
most of these microfabricated devices with integrated sensing capabilities solely monitor just the basic
culture conditions, such as temperature, DO, pH and optical density [62,64]. Besides sensors that
are integrated into miniature bioreactors, other available micro-sensors can be used. Examples are
MEMS-based chemical concentration sensors [65], gold-plated microscopic electrode needle arrays [66]
and miniaturized gas sensors [67].

3. Facets of 3D Printing

3.1. 3D Printing—Additive Manufacturing

The prospect of fabricating objects with the use of 3D printing has seen increased interest in
recent years [12]. Although the range of commercial products is still limited, 3D printing has potential
when considering design and fabrication. The potential of 3D printers explains the interest of multiple
research fields in 3D printing applicability. To date, 3D printing in life sciences is mainly used for
medical applications, but it has attracted the interest of researchers [68,69]. Essentially, 3D printing is
an additive manufacturing technique, which means that the object is fabricated layer-by-layer rather
than through molding or subtractive techniques like milling or turning. The variety of materials used
in 3D printing (e.g., plastic, stainless steel, ceramics, glass, paper, photopolymers and even living cells)
ensures opportunities for multiple applications [70–74]. These materials are in the form of powders,
filament, liquids and sheets as a starting product. Furthermore, there are multiple techniques used in
3D printing and their advantages and drawbacks are outlined in Figure 4.

It is found that different types of applications require different kinds of materials and various kinds
of 3D printing techniques. Fused deposition modeling (FDM) is a method that uses a polymer as the
main material and builds parts with a layer-by-layer-technique from the bottom to the top, by heating
and extruding a thermoplastic filament [75]. Benefits are low cost and simplicity of the process.
However, the results have weak mechanical properties, layer-by-layer appearances, poor surface
quality, low speed and a limited number of thermoplastic materials that can be used [76]. Therefore,
this type of 3D printing is not suitable for all applications. Stereolithography (SLA) is another form of
3D printing technology that uses photopolymerization, which is the curing of photo-reactive polymers
(resin) by using a visible or ultraviolet laser [75]. A thin layer (25–100 µm) of resin between the bottom
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of the resin reservoir and a support is cured by illumination with the laser according to a cross-section
of the object that needs to be printed. In the next step, the support lifts the object and new resin will
flow underneath the first layer that is cured. The next cross-section of the object is illuminated, and the
“drawing” process repeats until the object is printed. The unreacted resin is removed after completing
the printing. Drawbacks of this method are that it is relatively slow and more expensive than FDM.
However, the results are high-quality parts at a fine resolution [76].
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Figure 4. Advantages and limitations of 3D printing techniques. These techniques fabricate an object one
layer at a time and include fused deposition modeling (FDM), inkjet bioprinting, stereolithography (SLA),
laser sintering (SLS) and direct metal laser sintering (DMLS) [77–83].

Besides the pros and cons, 3D printing in general has some significant advantages over other
conventional constructional methods. The process of designing and fabricating an object overtakes
some traditional manufacturing steps, including procurement of individual parts, creation of parts
using molds, machining to carve parts from blocks of material, welding metal parts together and
assembly [12]. Another main advantage of 3D printing is the efficiency in which it uses its material.
In other words, 3D printing can not only fabricate internally complex objects that are difficult or
impossible to produce by traditional manufacturing techniques, but it can also create these objects with
fewer wasted materials [12]. On the other hand, 3D printing has some serious limitations, but some
of them have been overcome in the last couple of years. These limitations consist of the relatively
slow-building speed, limited object size and detail (resolution), high materials cost and, in some cases,
limited object strength (depending on which 3D printing technique) [12].

To show the increasing interest in 3D printing, an overview of the articles found on this subject is
given on the Web of Science (Web of science.2020). The search terms were 3D printing, 3D printing
+ reactor and 3D printing + materials, and the search was done on the topic of the publications.
An overview is given in Table 2. Most notable is the increase in the number of articles on all different
search terms. A vast difference appeared between the number of papers found in 2009 and 2019 about
3D printing.

However, the combination of “3D printing” and “reactor” is still not that common in the scientific
literature. Figure 5 shows that there is an increase, but it is yet to be further explored. This means that
a lot of research can and will probably be done in this area and also shows the need of this study.
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3.2. 3D Printed Bioreactors

The volumes of the 3D printed reactors vary widely: some are about 2.65 µL for the preparation
of perovskite nanocrystals [84], while others are 330 mL for chromatography [85]. This shows that 3D
printing can be applied to many different applications in many different sizes (Table 3). The conditions
also range widely between 37 ◦C for immobilizing enzymes in hydrogel lattices [86] and an injector
temperature of 200 ◦C for gas chromatography [85]. Two of the found researches are about bioreactors;
one of them is used for mechanical stretching and tissue engineering. The volume of this reactor is
1.35 mL, it is printed with FDM and it is fabricated of acrylonitrile butadiene styrene (ABS). There were
no malfunctions during testing [87]. The second bioreactor was also manufactured of ABS and it has a
volume of 129.9 mL. The application is maintaining cells and engineered tissue in culture medium and
custom grips for mounting 3D engineered tissue constructs and soft tissues. The device is sterilized
with 70% ethanol but can only withstand a maximum failure load of less than 10 Newton [88]. A mixed
flow reactor has been 3D printed with SLA using Clear Resin of Formlabs with a volume of 25 mL [89].
It was used for measuring mineral precipitation rates and can also be modified for use in mineral
dissolution experiments.
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Table 3. 3D printed (bio)reactors and their applications.

Type of Reactor 3D Printing
Technique Printing Material Volume (in mL) Conditions Application Remarks Ref.

Enzyme Reactor
Paper Spray

Autoclavable polylactic acid
plastic 3.5

Heated to 40 ◦C for 15 min, then
37 ◦C for 10 min. Then a voltage of

4 kV. Then heated to 68 ◦C for 5 min.

BuChE detection using a paper
strip coated with

4-mercaptobutyrylcholine
-functionalized gold nanoparticles

Easy preparation, low-cost,
facile modification. High

reliability and repeatability
[90]

Mechanical
Stretching
Bioreactor

FDM
ABS plus-P430 in

combination with SR30
soluble support material

1.35
Procedures of a cell biology/tissue

engineering laboratory. Laminar flow,
mechanical stimulation

Mechanical stretching,
tissue engineering No malfunctions during testing [87]

Mechanical
bioreactor

Acrylonitrile butadiene
styrene (ABS) 129.9

Cycle tensile strains are applied.
Force and displacement data

collection with ramp control program

Low-cost culture chamber for
maintaining cells and engineered

tissue in culture medium and
custom grips for mounting 3D

engineered tissue constructs and
soft tissues

Can be sterilized with 70%
ethanol. Maximum failure

loads of less than 10 Newton
[88]

Continuous flow
reactor SLA Methacrylate photopolymer

resin 0.00265 Stirring at 800 rpm
Preparation of perovskite

nanocrystals in the
full-emission range

[84]

CuO-nanoparticle
functionalized

flow reactor
FDM Poly(lactic acid) filaments 0.868

pH 10, reaction temperature = 50 ◦C,
reaction medium = 100 mM
phosphate-buffered saline

Online fluorometric monitoring
of glucose

The 3D printed flow reactor has
several advantages over the

conventional flow reactor
[91]

Hydrogel-based
enzyme reactor

Pneumatic
extrusion-based

printing
PEO and Laponite RD 0.507 T = 37 ◦C, pH 9. Centrifugation with

10,000 rpm, 4 min.

Immobilization of enzymes in
hydrogel lattices under

mild conditions
Mass transfer limitations occur [86]

Continuous
reactor FDM Acrylonitrile butadiene

styrene (ABS) 0.15
T = 60 ◦C, pH 10. Agitation at
400 rpm. Then centrifuged at

5500 rpm for 30 min.

Continuous precipitation of
hydroxyapatite nanoparticles for

potential tissue
engineering applications

[92]

Microfluidic
reactor SLA Clear methacrylate-based

resin 1.008 Plasma samples added, incubated at
56 ◦C for 15 min.

Carrying out extraction,
concentration and isothermal

amplification of nucleic acids in a
variety of body fluids

Cost-effective scalability.
PEG-coating resulted in the best

results. Suitable for all types
of detection

[93]

Tubular bent
reactor FDM Polylactic acid (PLA) 330 Injector T = 200 ◦C. Gas

chromatography

Redox-initiated continuous
emulsion copolymerization of

styrene-butyl acrylate and vinyl
acetate-neodecanoic acid vinyl ester

Narrow residence time
distribution, small dead

volumes and suitable flow
characteristics for emulsion
copolymerization processes

[85]
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Table 3. Cont.

Type of Reactor 3D Printing
Technique Printing Material Volume (in mL) Conditions Application Remarks Ref.

Mixed flow reactor SLA Clear Resin (Formlabs) 25 Curing treatment Measure mineral precipitation rates
Can also be modified for use in

mineral dissolution
experiments

[89]

Miniaturized
polypropylene

reactor
FDM Polypropylene 0.25 Magnetic stirring. Infusion rate of

125 µL min–1

Online analysis of a Diels-Alder
reaction and the subsequent retro

Diels-Alder reaction

Resistant to inorganic and
organic reagents and solvents [94]
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3.3. Biocompatibility

Williams [95] states that biocompatibility refers to “the ability of a material to perform with an
appropriate host response in a specific situation”. However, this definition is argued to be so general
and so self-evident that it is not of any real help in advancing knowledge of biocompatibility [96].
Therefore, Williams [97] redefined the definition of biocompatibility as “the ability of a biomaterial
to facilitate the most appropriate cellular or tissue response, while performing its desired function
concerning a medical therapy, while optimizing the clinically desired performance of the therapy,
without drawing out any undesired local or systemic effects in the beneficiary or recipient of the
therapy”. Black et al. [98] separated the definition of biocompatibility into a host response and a
material response. The host response is defined as “the local and systemic response, other than the
intended therapeutic response, of living systems to the material”, whereas the material response
is defined as “the response of the material to living systems” [98]. These definitions imply that
biocompatibility phenomena associated with a biomaterial will vary depending on the application,
meaning that biocompatibility is not a property of material but a biomaterial-host system [97]. Based on
the generic biocompatibility pathways described by Williams (2014) [99], three main biocompatibility
goals are defined as “defensive”, “target” and “interfering”.

For this particular research, biocompatibility is described by translating the three goals into
specific requirements: (1) the material surface area of the bioreactor has to be inert; (2) must be
non-biodegradable; and (3) bacteria must not adhere to the material. All three requirements are
important for research reproducibility and research integrity and these requirements should be
accurately tested and at all times kept in mind when doing microbial experiments.

In the microbial research, upcoming 3D printing techniques show opportunities for biomaterials
to fabricate miniature bioreactors. The interactions between microbes and biomaterial influence the
functionality of the bioreactors in terms of microbial growth. For the majority, this description can be
related to the definition of biocompatibility. Instead of having a local host in the system, the system
contains an inoculum or medium in which the microbes interact with the material substrate surface.
Now the question remains, is the general definition of biocompatibility limited to the medical point of
view and should the definition be overhauled or rephrased, or should another term be used to describe
the interactions that happen in microbial research?

3.4. Evaluation of Fabrication Techniques

Pahl and Beitz (2007) [100] distinguished two main types of criteria, namely, technical and
economic criteria. Both criteria consist of multiple aspects that can be modified to the product or
process under consideration. In general, the majority of the conventional bioreactors are fabricated
using glass, plastic or metal (Eppendorf, 2018). The most generic and applicable manufacturing
techniques concerning these materials are injection molding, casting and milling and turning [101].
The technical criteria cover the performance of the process to the final desired product. The overall
quality and lifespan are, therefore, included in the technical criteria aspects. Additionally, it is relevant
to how complex and accurate the process is. Thus, how complicated the overall process of producing
the product is and how detailed the product can be produced. Lastly, the maximum object size can be
included as a technical criteria aspect. Currently, the 3D printers entail a limited object size that can be
produced. This should also be considered when evaluating the technical performance.

The economic criteria firstly consider the costs. The costs can be separated into raw material
costs, production costs and general overhead costs [102]. Additionally, the time required to produce
one product is considered. Lastly, the flexibility of the production process entails is considered in
the economic criteria aspects. The information for the fabrication process can be obtained using
3D-printing software (e.g., Formlabs, 3D-simplify or Ultimaker Cura). The software calculates the
resources and time required per component. Table 4 shows indicative technical and economic criteria
that have to be considered for the selection of a reactor fabrication technique.
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Table 4. Indicative technical and economic criteria for manufacturing technique of reactors [101,103–106].

Technique Technical Economical

3D printing Quality Raw material costs
Injection molding Lifespan Production costs

Casting Process complexity Production time
Milling and turning Process accuracy Flexibility

Quality General overhead costs

4. Conclusions

In this paper, we discussed several important topics on scaling-down and manufacturing of
bioreactors. We brought up issues for combining miniaturization and additive manufacturing
techniques, culminating in 3D printing, and how this combination can affect the evolution of
biotechnology through the fabrication of advanced screening systems. These topics include the
future of the 3D printing application in bioprocess technology, potential for bioreactor miniaturization
and concurrent development of bioreactor screening systems for optimization studies. These topics are
essential for academics, entrepreneurs and policy makers to be aware of and consider as we usher in a
new bioprocess renaissance.
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