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Abstract

Identification of somatic mutations with high precision is one of the major challenges in the prediction of high-risk liver cancer
patients. In the past, number of mutations calling techniques has been developed that include MuTect2, MuSE, Varscan2, and
SomaticSniper. In this study, an attempt has been made to benchmark the potential of these techniques in predicting the prognostic
biomarkers for liver cancer. Initially, we extracted somatic mutations in liver cancer patients using Variant Call Format (VCF) and
Mutation Annotation Format (MAF) files from the cancer genome atlas. In terms of size, the MAF files are 42 times smaller than VCF
files and containing only high-quality somatic mutations. Furthermore, machine learning-based models have been developed for
predicting high-risk cancer patients using mutations obtained from different techniques. The performance of different techniques
and data files has been compared based on their potential to discriminate high- and low-risk liver cancer patients. Based on
correlation analysis, we selected 80 genes having significant negative correlation with the overall survival of liver cancer patients.
The univariate survival analysis revealed the prognostic role of highly mutated genes. Single gene-based analysis showed
that MuTect2 technique-based MAF file has achieved maximum hazard ratio (HRLAMC3) of 9.25 with P-value of 1.78E-06. Further, we
developed various prediction models using risk-associated top-10 genes for each technique. Our results indicate that MuTect2
technique-based VCF files outperform all other methods with maximum Area Under the Receiver-Operating Characteristic curve of
0.765 and HR ¼ 4.50 (P-value ¼ 3.83E-15). Eventually, VCF file generated using MuTect2 technique performs better among other
mutation calling techniques for the prediction of high-risk liver cancer patients. We hope that our findings will provide a useful and
comprehensive comparison of various mutation-calling techniques for the prognostic analysis of cancer patients. In order to
serve the scientific community, we have provided a Python-based pipeline to develop the prediction models using mutation profiles
(VCF/MAF) of cancer patients. It is available on GitHub at https://github.com/raghavagps/mutation_bench.
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Introduction
According to the World Health Organization, cancer is a life-

threatening disease and the first leading cause of death worldwide.

Global cancer statistics estimate that in the Year 2020, 19.3 million

new cases and 10 million deaths have been occurred due to cancer

[1]. Cancer is extremely heterogeneous; therefore, the same treat-

ment strategy is not effective for individuals with similar types of

cancers. Till now, there is no universal treatment available for all

types of malignancies. However, several targeted therapies are avail-

able for cancer treatment, which majorly focus on the detection of

mutations at the genetic level [2]. In the last few years, several thera-

pies have been designed based on the mutated genes, for cancer

treatment. For instance, B-Raf Proto-Oncogene, Serine/Threonine

Kinase (BRAF) inhibitors (Sorafenib) are identified to treat melanoma

patients with V600E mutation in the BRAF gene [3, 4]. Drugs like afa-

tinib and erlotinib are used to target the mutation in the Epidermal

Growth Factor Receptor (EGFR) in non-small cell lung cancer [5, 6].

Moreover, BRCA1/BRCA2 gene mutations in ovarian cancer patients
have been treated by poly (ADP-ribose) polymerase inhibitor, i.e. ola-
parib [7]. Of note, research on the mutations associated with the
genes in cancer patients is essential for identifying the correct mech-
anism of the disease. Due to the advancements in next-generation
sequencing, such as whole-genome, whole-exome and mutation
calling techniques, the detection of >98% of mutations associated
with the disease using sequencing data is possible [8, 9]. The easy
availability and low cost of next-generation sequencing techniques
enable researchers to perform experiments on large cohorts of can-
cer patients [10].

The genetic variants are mainly categorized into single-nucleo-
tide variant (SNV), insertion/deletion (indel) and structural variants
(which incorporates copy number alterations, duplications and
translocations). In the recent years, a huge number of somatic mu-
tation calling algorithms (e.g. Mutect2, Varscan2, SomaticSniper,
MuSE, Strelka2, etc.) have been developed to identify mutations at
the genetic level using sequencing data [11–17]. Mutect2 calls
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somatic mutation such as single-nucleotide alterations and indels
using the local assembly of haplotypes. SomaticSniper pipeline
detects somatic SNVs using Bayesian algorithm to compare the ge-
notype likelihoods in the tumour and normal samples. However,
the Varscan2 mutation calling algorithm uses exomes, whole-
genome sequencing data to capture germline variants, somatic
mutations and copy number variants in tumour-normal data.
Moreover, MuSE is a Markov Substitution model for Evolution and
identify novel mutations in the large-scale tumour sequencing
data.

Liver cancer is one of the deadliest diseases which is the sev-
enth most common cancer among the 36 cancers reported by
Global Cancer Statistics 2020 [1]. Ample treatment methods were
developed in the past, but still the survival rate of liver cancer
patients is very low, leading to a high-mortality rate [18]. Being
the most comprehensive resource for cancer-related research,
The Cancer Genome Atlas (TCGA) provides two types of file for-
mats for mutation data such as Variant Call Format (VCF) and
Mutation Annotation Format (MAF). VCF files are the raw muta-
tion files that store and report the genomic sequence variations
that directly came out of the various automated variant calling
pipelines. On the other hand, MAF files are the processed version
of the VCF files, which are curated by removing the false positives
or by recovering the known calls that the automated pipelines
may have missed. VCF files report mutations irrespective of their
importance, but MAF files describe only the most affected ones
by removing the low-quality mutations. In Genomic Data
Commons (GDC) portal, both type of files available are generated
using the four major mutation calling techniques named as
MuTect2, MuSE, Varscan2 and SomaticSniper. Despite number of
techniques available, it is difficult to understand which method
and file is better to explore the role of mutations in cancer.

In this study, we have systematically evaluated the four muta-
tion calling tools which are widely used in TCGA, to identify
highly mutated genes associated with high-risk liver cancer
patients. For this, we have collected VCF and MAF files of 418
liver cancer patients for all the mutation calling techniques. The
gene-based annotations were identified using highly accurate
and widely used methods ANNOtate VARiation (ANNOVAR) [19]
and Maftools [20]. Correlation and survival analysis was per-
formed to identify the mutated genes that can impact the sur-
vival of liver cancer patients. Finally, we have developed survival
prediction and classification models using different machine
learning algorithms on highly significant top-10 risk-associated
genes, selected from four mutation calling techniques. Based on
the inferences, we benchmarked different techniques which can
provide a valuable reference and guidance to the researchers to

choose a reliable somatic mutation algorithm to determine the
mutation-associated genes having a significant impact on the
survival of the cancer patients.

Material and methods
Overall study design
The complete pipeline of the study is shown in Fig. 1 with the
step-by-step description.

Dataset collection
We obtained liver hepatocellular carcinoma (TCGA-LICH) and
cholangiocarcinoma (TCGA-CHOL) mutation data from GDC data
portal. Precisely, we collected the controlled access VCF files of
liver cancer patients under the approval of dbGap (Project No.
17674) according to the GDC protocols [21]. In addition to that, we
have also downloaded the MAF files of TCGA liver cancer patients.
TCGA generate mutation profiles of cancer patients using four dif-
ferent mutation calling techniques, i.e. MuSE, Mutect2, Varscan2,
and SomaticSniper. Currently, we have utilized VCF and MAF files
of 418 liver cancer samples generated from four different mutation
calling methods. Moreover, the clinical data like age, gender, tu-
mour stage, overall survival (OS) time, and vital status were col-
lected using TCGA assembler 2 [22].

Mutation annotations
We have used the ANNOVAR software (https://annovar.openbioin
formatics.org/en/latest/) for the functional annotations of genetic
variant mutations by utilizing the VCF files. First, we convert VCF
files into ANNOVAR genetic variant files using the
“convert2annovar.pl” script provided in the ANNOVAR package; the
processed file contains five major columns: chromosome number,
start position, end position, reference nucleotide, and altered
nucleotides. It also provides three major type of annotations (i.e.
gene-based, region-based, and filter-based annotations). Presently,
we have utilized only gene-based annotations, in which we
obtained mutations/gene/sample. We have developed an in-house
Python script to count the number of mutations per-gene for each
sample. Thus, we get per-gene mutations for each sample for the
different mutation calling techniques. Similarly, in the case of MAF
files, we counted the number of mutations/gene/sample. Finally,
we generated matrices for each mutation calling technique from
VCF and MAF files, in which number of mutations per gene per
sample were reported.

Correlation analysis
To understand the impact of genetic mutations on survival of
liver cancer patients, we have implemented correlation test.

Key Points

• Albeit number of mutations calling techniques are available, it is hard to choose one to explore the role of mutations in
cancer.

• MuTect2, MuSE, Varscan2 and SomaticSniper based VCF and MAF files were used to traverse the mutations in liver cancer
patients.

• Univariate survival analysis was used to explore the prognostic role of mutations in liver cancer.
• Various classification and regression models were developed to stratify patients with high- and low-risk of liver cancer.
• MuTect2 based VCF file outperformed other mutation calling techniques.

2 | Biology Methods and Protocols, 2022, Vol. 00, No. 0

https://annovar.openbioinformatics.org/en/latest/
https://annovar.openbioinformatics.org/en/latest/


After computing the correlation coefficient and P-value corre-
sponding to each gene, we filtered out the genes with the non-
significant P-value, i.e. >0.05, and ranked the remaining genes on
the bases of their correlation coefficients. We choose top-10 neg-
atively correlated genes with significant P-value (i.e. <0.05) from
each technique for VCF and MAF files for further analysis.

Survival analysis
In this study, we have performed survival analysis by the ‘sur-
vival’ package in R (version 3.5.1) using the cox proportional haz-
ard (Cox PH) model. We performed univariate survival analysis to
understand the overall impact of per-gene mutations on the sur-
vival of liver cancer patients. The log-rank test was used to esti-
mate the significant survival distributions between high- and
low-risk groups in terms of the P-value. In addition to that, we
have computed hazard ratio (HR), 95% confidence interval and
concordance index using the Cox PH model. Kaplan–Meier (KM)
survival curves were used for the graphical representation of
high-risk and low-risk groups [23].

Machine learning techniques
Classification models
In this study, we have implemented various machine learning tech-
niques for the classification of high-risk and low-risk samples based
on the number of mutations in the risk-associated genes.
Classification algorithms included decision tree, support vector
classifier, random forest, extreme gradient boosting, Gaussian naive
Bayes, logistic regression, k-nearest neighbours and extra tree was
implemented using scikit-learn library [24]. These classifiers belong
to different families, such as rule-based, decision-tree, Bayesian, lo-
gistic regression, support vector machines, nearest-neighbours and
boosting. Decision tree is a rule-based algorithm in which the out-
come or the class assignment is based on a set of rules which are
defined using the training dataset. This approach generates a model

by building a decision tree, in which each node represents an attrib-
ute that further splits the data into two classes, and this process
continues until all the instances belonging to a particular class get
secluded [25]. Random forest and extra tree classifier belong to the
ensemble family, in which numerous de-correlated decision trees
are built on various subsets of samples to make an overall classifi-
cation. These classifiers vary in terms of the construction of deci-
sion trees and the selection of thresholds to split the nodes [26, 27].

Moreover, logistic regression is a statistical approach that uses
the logistic function to model the probabilities of the output vari-
able using predictor variables [28]. Extreme gradient boosting al-
gorithm belongs to the boosting class and tree-based approach; it
implements an iterative process in which ensembles of decision
trees are created where one tree is added at a time and fit to re-
duce the errors in the predictions resulted due to previous models
[29]. Besides, k-nearest neighbour is a part of the nearest-neigh-
bours family that works on the principle of proximity and assigns
a class to the unknown variable based on its proximity to the
data points in the training dataset [30]. Gaussian naı̈ve Bayes is a
stochastic approach based on the Bayes theorem and assumes
that each feature is independent of the other with an equal con-
tribution to the predictions [31]. In addition, support vector clas-
sifier belongs to the support vector machines family, which
identifies the data points to create the hyperplanes that can sepa-
rate the n-dimensional space into different classes [32].

Regression models
Furthermore, we implemented several regressors to develop re-
gression models for the prediction of overall survival time of liver
cancer patients. These models were developed by implementing
various regressors including decision tree, random forest, linear,
ridge, lasso, elastic net and support vector regressor from
Python-library scikit-learn [24]. Decision tree regressor is a
supervised-learning algorithm that uses a tree-like structure to
predict the outcome. It utilizes the independent features to train

Figure 1: Pipeline illustrating the overall overflow of the study.
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a model in the design of a tree and make predictions for the un-
seen data [33]. Random forest regressor is an ensemble of multi-
ple decision trees where each tree provides an output. The final
output is derived by taking the average of all outcomes [34]. In
this study, we have implemented ordinary least squares linear re-
gression in which a linear model is developed with coefficients to
minimize the residual sum of squares between the predicted and
actual values [35]. Lasso or Least Absolute Shrinkage and
Selection Operator regressor is an extension of linear regression
with L1 regularization in which the loss function i.e. residual sum
of squares is extended by the sum of the absolute values of model
coefficients [36].

In addition, ridge regressor is also a modified version of linear
regression with L2 regularization in which the loss function is al-
tered to deal with the higher biasness of the model where the
penalty of the sum of squares of the model coefficients is added
to the loss function [37]. While, elastic net is the weighted combi-
nation of lasso and ridge regression, in which both L1 and L2 reg-
ularizations are considered [38]. Support vector regression
supports both linear and non-linear regression, as it tries to fit
the error between certain constraints. It is achieved by minimiz-
ing the coefficients to handle the error term in the constraints
where the absolute error is less than or equal to the maximum
error defined by a specified margin [39].

Performance evaluation
Cross-validation technique
We have implemented the 5-fold cross-validation to avoid over-
fitting, biasness and evaluate the performance of prediction mod-
els [40, 41]. In this method, the complete dataset was divided into
80:20 ratio, where 80% data called training dataset was used for
internal validation and 20% data called validation dataset was
used for external validation. The performance of the models on
the training dataset was evaluated using 5-fold cross-validation
technique. In this approach, the training dataset was divided into
five equal non-overlapping sets where four sets were used for
training the model and the remaining set was used for testing.
This process was repeated five times so that each set tested once.
We optimized the parameters of the model on the training data-
set during internal validation to achieve the maximum perfor-
mance. The overall performance or outcome was computed by
taking the average of all the five sets. Finally, for external valida-
tion the tuned models were further evaluated on the 20% un-
touched validation dataset. The process of evaluation of models
on the validation dataset is called external validation. The similar
process was repeated for the cross validation of regression
models, where the complete dataset was used for the 5-fold cross
validation.

Performance measure parameters
To evaluate the performance of classification models, we have
used standard parameters. We have calculated threshold depen-
dent such as sensitivity, specificity, accuracy, F1-score, kappa
and Matthews Correlation Coefficient (MCC), and independent
parameters like Area Under the Receiver Operating Characteristic
curve (AUROC). These parameters were calculated using the
following Equations (1–5).

Sensitivity ¼
Tp

Tp þ Fn
� 100 (1)

Specificity ¼ Tn

Tn þ Fp
� 100 (2)

Accuracy ¼ Tp þ Tn

Tp þ Fp þ Tn þ Fn
� 100 (3)

F1� score ¼
2Tp

2Tp þ Fp þ Fn
(4)

Matthews Correlation Coeffecient

¼ ðTp � TnÞ � ðFp � FnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTp þ FpÞðTp þ FnÞðTn þ FpÞðTn þ FnÞ

p (5)

where Tp ¼ True Positive; Tn ¼ True Negative; Fp ¼ False Positive;
Fn ¼ False Negative.

Similarly, to evaluate the regression models, we have used
parameters such as mean absolute error (MAE), root-mean-
square error (RMSE), correlation coefficient (R) and P-value; as
previously used in different studies [42–44].

Results
In this study, we have used 418 TCGA liver cancer patients’ so-
matic mutation data (VCF files and MAF files) and survival data
(OS time and vital status). The mutation data were taken from
four different mutation calling techniques, i.e. MuSE, Mutect2,
Varscan2 and SomaticSniper. ANNOVAR software and in-house
scripts were used to extract the number of mutations/gene/sam-
ple from the VCF and MAF files. The total number of genes and
mutations extracted from different techniques is shown in
Table 1. We observed that in VCF files Mutect2 and
SomaticSniper reported the highest number of genes and muta-
tion counts, i.e. more than 25 000 genes and 5 million mutations.
On the other hand, the reported number of genes and mutations
in MAF files are comparatively less for each technique.

Further, in order to understand and visualize the distribution
of genes corresponding to each technique, we developed an
UpSet plot [45] as shown in Fig. 2. According to the plots, in VCF
file, 18 758 genes were common in all the four techniques,
whereas 182, 5, 2 and 630 genes are uniquely reported by
MuTect2, MuSE, Varscan2 and SomaticSniper technique, respec-
tively. Similarly, in the case of MAF files, 14 585 genes were
shared by all the techniques, while 461 genes are unique in file by
MuTect2 technique, 73 by MuSE, 115 by Varscan2 and 41 unique
genes were reported by SomaticSniper technique.

Comparison of MAF files
To compare different mutation calling techniques, we have taken
processed and annotated MAF files from TCGA. We utilized the
Maftools package to comprehensively analyse the somatic variants

Table 1: Total number of genes and mutations for each gene
extracted from VCF and MAF files using different mutation
calling techniques

File type Technique Number of genes Number of mutations

VCF MuTect2 25 366 5 237 093
MuSE 19 425 379 368
Varscan2 19 422 576 231
SomaticSniper 25 785 5 003 969

MAF MuTect2 16 474 59 741
MuSE 15 712 51 184
Varscan2 15 950 54 877
SomaticSniper 14 979 44 102
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extracted from MuSE, Mutect2, Varscan2 and SomaticSniper muta-
tion calling technique. From the analysis, we observed few changes
in the mutation calling techniques for the same cohort of samples.
For example, MuSE and SomaticSniper MAF files (Fig. 3A and B)
only report SNPs on the other side Varscan2, and MuTect2 (Fig. 3C
and D) represent SNPs, INS and DEL under the variant type.

In Varscan2 and MuTect2, the variant classification distribution
represents nine types of mutations such as Missense_Mutation,
Nonsense_Mutation, Splice_Site, Translational_Start_Site, Frame_
Shift_Ins, Frame_Shift_Del, In_Frame_Ins, In_Frame_Del and
Nonstop_Mutations, while MuSE and SomaticSniper MAF files con-
sist of Missense_Mutation, Nonsense_Mutation, Splice_Site,
Translational_Start_Site and Nonstop_Mutations. The SNV class vis-
ualizes the single-nucleotide variants in the TCGA cohort, we ob-
served that all the methods present diverse distribution of SNV as

shown in (Fig. 3). Oncoplots generated by the Maftools visualization

module illustrating the somatic landscape of the cancer patients for

Varscan2, MuTect2, MuSE and SomaticSniper MAF files. In Fig. 4, we

display the topmost mutated genes with their mutation percentage

(�5%) in total number of samples. From the results, we observed

that TP53 is a highly mutated gene and have almost 20% or >20%

mutations among different techniques.

Correlation analysis
By implementing the correlation test we ranked the genes and

choose top-10 genes having significant negative correlation with

the overall survival time. The procedure was repeated for all the

four techniques using MAF and VCF files of liver cancer patients,

which lead to 80 genes in total. The complete correlation analysis

is provided in Supplementary Table S1.

Figure 2: Upset-plot for distribution of genes in four techniques. (A) From VCF files and (B) from MAF files.
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Prognostic biomarkers for high-risk
prediction
Single gene
Univariate survival analysis was performed using the Cox PH

model. We have measured the HR and P-value for the negatively

correlated genes obtained from each mutation calling technique.

In the case of VCF files, single gene-based analysis revealed that

the genes extracted from SomaticSniper technique has achieved

the maximum HR and P-value followed by Varscan2, MuTect2

and MuSE corresponding to genes CLDN20, FAM160A2, SNHG10

and CLMP, respectively (see Table 2). Similar analysis was done

for MAF files for each technique where HR, P-values was calcu-

lated. In the case of MAF files, Mutect2 technique achieved the

maximum performance followed by Varscan2, MuSE and

SomaticSniper for genes LAMC3, SYDE1, ITGB8 and CAD, respec-

tively (see Table 2). Supplementary Table S2 contains the com-

prehensive results for all the risk-associated genes derived from

each technique for VCF and MAF files.

Multiple gene
In order to explore the effect of mutations in the selected genes

altogether, we have predicted the survival time to estimate the

high-risk group in liver cancer patients. Using the predicted OS

time, HR and P-value was computed with Cox PH model for each

technique that corresponds to each file type. We achieved the

highest HR ¼ 4.50 with highly significant P-value of 3.83E-15 for

the VCF files generated using the MuTect2 technique (see

Fig. 5A). However, in the case of MAF files, MuSE technique per-

formed best among the other techniques with HR ¼ 2.47 and P-

value ¼ 9.64E-07 (see Fig. 5B). Additionally, KM survival plots

clearly represents the segregation of high- and low-risk groups;

the comparison of different mutation calling techniques based

on two file formats is shown in Fig. 5.

Prediction of overall survival of patients
To predict the overall survival for liver cancer patients, we have
used number of mutations in the top-10 genes as the input fea-
ture and developed regression models for VCF and MAF files for
each technique, using seven different regressors such as, random
forest, ridge, lasso, decision tree, elastic net, linear and support
vector regressor. Table 3 exhibits the performance of best per-
forming regressor in each file type. Performance of all the regres-
sors for each file type and technique is reported in
Supplementary Table S3. In the case of MuTect2 technique, the
predicted survival time using VCF files have achieved minimum
error in terms of MAE of 12.52 months and significant correlation
of 0.57 between the true and predicted OS, whereas in MAF file,
the MAE is 16.47 months with a correlation of 0.37. In addition,
MuSE technique also achieved the minimum MAE of
13.88 months for VCF files (See Table 3). Although, we observed
that in the case of other mutation calling techniques such as
Varscan2 and SomaticSniper, the error rate is comparatively
high. In addition, as shown in Table 3 for VCF as well as MAF files,
MuTect2 technique outperformed the other techniques in terms
of MAE, RMSE and R-value.

Discrimination of low- and high-risk patients
Initially, the dataset was divided into two groups, i.e. high-risk and
low-risk group based on the median OS. Samples with survival time
less than the median OS were designated to the high-risk group,
whereas the remaining was assigned to the low-risk group. To as-
sess the ability of the number of mutations/gene/sample and to
classify the patients into the high- and low-risk groups, various
classification models were developed on top 10 genes for each tech-
nique and file type. Number of mutations corresponding to each
gene reported through different technique was used to develop
models for the stratification of high- and low-risk group. In order to
compare the two file types derived from four different mutations

Figure 3: Visualization of mutation summary (variants classification, type and SNVs) for (A) MuTect2, (B) MuSE, (C) Varscan2 and (D) SomaticSniper
MAF files.
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calling techniques, we have reported the performance of models
based on the best classifier, i.e. logistic regression as shown in
Table 4. While the performance of all the other classifiers generated
on each technique for both the files were reported in
Supplementary Table S4. As shown in table below, in the case of
VCF as well as MAF file, Mutect2 outperformed the other techni-
ques by achieving highest AUROC of 0.765 and 0.659 on the valida-
tion dataset, respectively. In terms of average, VCF file-based
models have higher performance in comparison to the models de-
veloped on MAF files with an AUROC of 0.6996 0.061 on validation
dataset. In conclusion, for VCF and MAF files, MuTect2 technique
performed best among other techniques in terms AUROC, F1,
Kappa and MCC values (see Table 4).

Discussion
Liver cancer is a global problem and occurs after severe liver
diseases [46]. Chronic liver diseases are associated with cancer
development and prompt progressive mutations at the genomic
level [47, 48]. Previous studies report that liver cancer is associ-
ated with poor prognosis and a high mortality rate amongst the
most frequent cancer types [49, 50]. Nowadays, several muta-
tion calling techniques are available to identify the mutation

landscape in tumour/normal patients. Hitherto, there is not an
appropriate comparison of mutation detection methods for the
predictive and prognostic analysis. In this study, we examine
the performance of four widely used mutation calling techni-
ques such as MuTect2, MuSE, Varscan2 and SomaticSniper us-
ing TCGA liver cancer cohort. We have performed correlation
and survival analysis for the identification of prognostic bio-
markers (i.e. risk-associated genes) in liver cancer patients. In
addition, we have applied various machine learning techniques
in order to compare all the methods for predicting high-risk
liver cancer patients. First, we have used VCF and MAF files gen-
erated by the different mutation calling methods. We have used
the most popular software (ANNOVAR and Maftools) to identify
the gene-associated mutations in liver cancer samples. From
the analysis, we observed that the VCF files of Mutect2 and
SomaticSniper report highest number of mutated genes and
cover over 5 million mutations. Whereas, MAF files reports
comparatively less mutated genes for each technique as shown
in Table 1.

Then, we performed correlation analysis in order to under-
stand the impact of mutations on the survival of liver cancer
patients. The univariate survival analysis revealed that risk-
associated genes such as LncRNA SNGH10, CLMP, FAM160A2 and

Figure 4: Oncoplot visualization of mutation frequency of top-most mutated genes. The rows represented the genes with percent mutations, and
columns display the samples. (A) Illustrates the oncoplot of MuTect2 technique and indicates that 89.18% of samples having mutated genes. (B)
Illustrates the oncoplot of MuSE technique and shows that 80.29% of samples having mutated genes. (C) Presents the oncoplot of Varscan2 approach
and shows that 88.43% of samples having mutated genes. (D) Illustrates the oncoplot of SomaticSniper technique and indicates that 75.73% of samples
having alerted/mutated genes.
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CLDN20 achieved the highest HR value in MuTect2, MuSE,
Varscan2 and SomaticSniper technique, respectively. A study by
Lan et al. also strengthen our findings and revealed that onco-
genic lncRNA SNGH10 is associated with the poor survival in the
liver cancer patients [51]. In addition, the down-regulation of
SNGH10 is also associated with the poor survival in non-small
cell lung cancer patients with HR ¼ 2.09 and P ¼ 0.02 [52]. Our
study also corresponds with the previous studies and exhibits
that the mutations in SNGH10 gene is associated with poor out-
come in liver cancer patients with HR 5.49 and P-value 3.94E-06.
Whereas, the differential expression of CLMP gene is associated

with the progression of breast cancer [53]. Yang et al. also
reported the significance of CLDN20 gene in the survival of breast
cancer patients with HR 1.38 and P-value 0.047 [54]. Our analysis
also revealed the role of CLMP and CLDN20 gene in the survival of
liver cancer patients. Further, in the case of MAF files, the univar-
iate survival analysis reveals that SYDE1, LAMC3, ITGB8, CAD,
EVC2, NYNRIN, BRSK2 and TP53 genes significantly reduces the
overall survival. As shown by the recent study, the overexpressed
SYDE1 oncogene acts as an important diagnostic and prognostic
biomarker in glioma patients [55]. Moreover, the down-regulation
of LAMC3 is correlated with the poor prognosis and metastasis in

Table 2: HR for risk-associated top-10 genes from VCF and MAF files derived using MuTect2, MuSE, Varscan2 and SomaticSniper
technique

MuTect2 MuSE Varscan2 SomaticSniper

Gene HR Gene HR Gene HR Gene HR
(P-value) (P-value) (P-value) (P-value)

VCF files
SNHG10 5.49 (3.94E-06) CLMP 3.01 (1.67E-05) FAM160A2 6.81 (4.01E-05) CLDN20 7.06 (6.62E-07)
WIZ 2.69 (9.71E-07) BIRC6 2.80 (4.46E-04) LOC100420587 5.45 (1.31E-07) NR2C2AP 5.17 (3.16E-05)
MGAT4EP 2.49 (4.46E-04) LINC02210-

CRHR1
2.03 (6.42E-03) SPDYA 3.08 (7.70E-04) ATG9B 3.34 (2.59E-04)

LINC00304 2.39 (7.40E-05) DHX8 2.00 (2.90E-02) BRSK2 2.55 (1.01E-03) HAUS5 2.79 (2.22E-05)
CACNG7 1.93 (5.72E-04) LINC00972 1.91 (9.31E-03) ADGRF4 2.21 (1.23E-02) LOC100287329 2.58 (8.23E-04)
OR52B6 1.83 (1.12E-03) PAX7 1.90 (8.29E-04) LINC00972 2.11 (2.18E-03) P4HTM 2.18 (2.43E-02)
TYK2 1.80 (2.21E-03) TAS1R2 1.61 (2.63E-02) TM4SF18 2.07 (1.40E-02) OR6C76 2.12 (1.18E-03)
PIGO 1.79 (1.66E-02) SNTG1 1.53 (3.37E-02) OR5AS1 1.86 (1.43E-02) CLK2 1.94 (3.58E-02)
S100A12 1.71 (1.10E-02) CNTN5 1.34 (2.25E-01) PDE11A 1.72 (2.74E-03) FAM187B 1.64 (1.51E-02)
DNAJC9-AS1 1.08 (6.51E-01) ZNF521 1.26 (2.63E-01) LOC101929073 1.29 (2.98E-01) NOMO3 1.34 (1.45E-01)

MAF files
LAMC3 9.25 (1.78E-06) ITGB8 8.37 (5.69E-07) SYDE1 8.46 (3.71E-05) CAD 5.56 (8.10E-04)
EVC2 4.30 (8.66E-05) TBX3 8.10 (6.06E-05) ALPP 4.33 (1.44E-03) TOP2A 4.63 (2.73E-03)
NYNRIN 3.94 (1.22E-03) SIPA1L3 4.90 (5.54E-05) KIAA2026 3.85 (1.49E-03) KIAA2026 4.01 (2.62E-03)
KIAA2026 3.85 (1.49E-03) CAD 4.45 (3.58E-03) CAD 3.32 (1.91E-02) EVC2 4.00 (1.04E-03)
SUPT20H 3.41 (7.53E-03) EVC2 4.16 (2.97E-04) BRINP2 2.83 (2.43E-02) KTN1 2.56 (1.09E-01)
BRINP2 2.83 (2.43E-02) ARHGEF11 3.17 (2.37E-02) TP53 1.60 (9.85E-03) EPHA3 2.25 (1.67E-01)
LRP1B 1.93 (7.81E-03) BRINP2 2.80 (2.56E-02) PCDH15 1.48 (2.81E-01) KIF26B 2.03 (1.66E-01)
TP53 1.48 (3.60E-02) PCDH15 1.72 (1.20E-01) TG 1.46 (4.53E-01) PCDH15 1.76 (1.78E-01)
TG 1.46 (4.53E-01) TG 1.46 (4.55E-01) PLCB1 1.25 (7.00E-01) TP53 1.63 (1.20E-02)
PCDH15 1.43 (3.30E-01) CSMD3 1.24 (4.54E-01) XIRP2 1.11 (7.55E-01) TG 1.18 (8.17E-01)

Figure 5: KM survival curves for the risk estimation of liver cancer patients based on the combined effect of mutation. (A) Survival plots for the VCF files
and (B) survival plots for the MAF files.
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the ovarian cancer patients [56]. A study also reveals that muta-
tions associated with LAMC3 genes may cause paroxysmal noc-
turnal haemoglobinuria, a rare disorder of clonal stem cell in
foetus, which may lead to high mortality rate infection and pre-
mature birth [57, 58]. We also observed that mutations associated
with LAMC3 significantly reduce the survival of patients with
HR¼ 9.25 and P-value of 1.78E-06. In addition, ITGB8 is shown to
be highly upregulated in high-grade ovarian cancer patients,
which leads to shorter OS with significant HR ¼ 1.42 [59]. Paul et
al. also reveals that EVC2 gene is highly mutated in breast cancer
patients and dysregulates pathways like mTOR, CDK/RB, cAMP/
PKA, WNT, etc. [60]. Our study showed that mutations associated
with EVC2 genes reduce the overall survival of the patients with
HR¼ 4.3 and P-value of 8.66E-05.

Researchers have shown that the overexpression of BRSK2
gene is correlated with the patients survival and prognosis in
pancreatic cancer [61]. Of note, a number of studies report that
TP53 is the highly mutated gene among most of the human can-
cers and affect the survival of cancer patients [62–66]. In our
study, we also found that the number of mutations associated
with TP53 gene is very high among the liver cancer patients and
covers almost 20% mutations. Correlation and survival analysis
showed that the mutation associated with TP53 significantly
reduces the overall survival with HR¼ 1.63 and P ¼ 1.20E-02.
While considering the combined effect of the selected genes in
each file, MuTect2 technique outperformed all the other techni-
ques in VCF file with HR ¼ 4.50 (P ¼ 3.83E-15), whereas MuSE
technique outperformed other mutation calling methods with HR
¼ 2.47 (P ¼ 9.64E-07) in the case of MAF files (Fig. 5). Furthermore,
to compare the different mutation calling techniques, we develop
various survival prediction and classification models using the
top-10 risk-associated genes. Logistic regression-based model de-
veloped on 10 selected genes from VCF file of MuTect2 technique
performed best among the other techniques in stratification of
patients in high- and low-risk group with AUROC of 0.765 on

validation dataset. In addition, MuSE also perform quite well
with an AUROC of 0.735 on validation dataset, whereas Varscan2
and SomaticSniper-based models does not perform well on both
VCF and MAF files. We examined the models developed using dif-
ferent machine learning techniques, and the results indicate that
the error is not due to machine learning techniques as the perfor-
mance measure AUROC was similar on training and validation
dataset which signifies that these models are reliable, and no
overfitting has been observed. Similarly, Mutect2 technique-
based VCF reported the minimum error of 12.52 months using de-
cision tree regressor, while predicting the OS time using different
methods of regression (see Supplementary Table S3). Our results
revealed that the VCF file generated using MuTect2 mutation
calling technique provides the comprehensive information which
can be used for the risk estimation of liver cancer cohort.
Furthermore, this needs to be confirmed on the other cancer
cohorts to explore the prognostic potential of mutations in differ-
ent type of cancers. In order to aid the scientific community
working in this era, we have developed a complete Python-based
end-to-end pipeline (https://github.com/raghavagps/mutation_
bench), where users need to provide only VCF/MAF files and can
compare the performances of various prediction models devel-
oped on different mutation calling techniques.

Important findings
We examined the results to understand the limitations and pro-
pose some possible suggestions. We found that the classification
and regression models developed using VCF/MAF file obtained
from the MuTect2 technique performed better than the models
developed using other mutation calling techniques. Of note, we
can conclude that MuTect2 is a better mutation calling technique
than the other techniques compared in this study. Additionally,
our findings also indicate that the models based on VCF files per-
form better than models developed on MAF files for most of the
mutation calling techniques except Varscan2. Since VCF file com-
prises information in the raw form, it is bigger in size in compari-
son to the MAF file which is a processed version. Hence, the
number of mutations reduced drastically when we convert the
VCF to MAF, but at the same time, performances declined too, i.e.
during the conversion of VCF to MAF format, valuable and effi-
cient variants may get dropped. Therefore, there is a need to de-
velop an efficient method that converts VCF to MAF format
without dropping useful information. Moreover, we identify that
gene-based prognostic biomarkers are different for different tech-
niques as well as for VCF and MAF format. Ideally, these variant
calling techniques should display the same mutations in a given
gene as well as the same biomarkers. It exhibits that the set of

Table 4: Performance of logistic regression based models on top-10 genes from VCF and MAF files extracted using all techniques on
validation dataset

Technique File type AUROC F1 Kappa MCC

MuTect2 VCF 0.765 0.767 0.421 0.442
MAF 0.659 0.661 0.259 0.335

MuSE VCF 0.735 0.737 0.400 0.421
MAF 0.621 0.667 0.225 0.277

Varscan2 VCF 0.656 0.661 0.250 0.348
MAF 0.653 0.661 0.308 0.309

SomaticSniper VCF 0.638 0.672 0.276 0.277
MAF 0.617 0.667 0.225 0.243

Average VCF 0.699 6 0.061 0.709 6 0.051 0.337 6 0.086 0.372 6 0.075
MAF 0.638 6 0.022 0.664 6 0.003 0.254 6 0.039 0.291 6 0.040

Table 3: Performance of best regressors on top-10 genes from
VCF and MAF files extracted using all techniques

Technique File type MAE RMSE R P-value

MuTect2 VCF 12.52 19.58 0.57 7.00E-37
MAF 16.47 22.16 0.37 1.31E-14

MuSE VCF 13.88 20.38 0.51 1.38E-29
MAF 16.89 22.48 0.34 1.68E-12

Varscan2 VCF 14.57 20.78 0.48 4.77E-26
MAF 16.53 22.26 0.36 9.11E-14

SomaticSniper VCF 15.76 21.82 0.40 3.31E-17
MAF 16.72 22.26 0.33 8.46E-12
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mutations in a given gene varies with the mutation calling tech-

niques. Thus, there is a need to develop better variant calling

methods or to identify the consensus mutations. A recent study

[67] also revealed the importance of consensus mutations over

hybrid models.

Supplementary data
Supplementary data is available at Biology Methods and Protocols

online.
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