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A simple yet efficient approach 
for electrokinetic mixing 
of viscoelastic fluids in a straight 
microchannel
C. Sasmal

Many complex fluids such as emulsions, suspensions, biofluids, etc., are routinely encountered in 
many micro and nanoscale systems. These fluids exhibit non-Newtonian viscoelastic behaviour 
instead of showing simple Newtonian one. It is often needed to mix such viscoelastic fluids in small-
scale micro-systems for further processing and analysis which is often achieved by the application 
of an external electric field and/or using the electroosmotic flow phenomena. This study proposes 
a very simple yet efficient  strategy to mix such viscoelastic fluids based on extensive numerical 
simulations. Our proposed setup consists of a straight microchannel with small patches of constant 
wall zeta potential, which are present on both the top and bottom walls of the microchannel. This 
heterogeneous zeta potential on the microchannel wall generates local electro-elastic instability and 
electro-elastic turbulence once the Weissenberg number exceeds a critical value. These instabilities 
and turbulence, driven by the interaction between the elastic stresses and the streamline curvature 
present in the system, ultimately lead to a chaotic and unstable flow field, thereby facilitating the 
mixing of such viscoelastic fluids. In particular, based on our proposed approach, we show how one can 
use the rheological properties of fluids and associated fluid-mechanical phenomena for their efficient 
mixing even in a straight microchannel.

A wide variety of complex fluids such as polymer solutions, emulsions, suspensions, foams, etc., are frequently 
used in various microfluidic applications1,2. Additionally, various biofluids, such as blood, saliva, cerebrospinal 
fluid, DNA and protein suspensions, etc., are also routinely used in microfluidic and nanofluidic processes, 
for instance, diagnostics and biochemical analyses. These fluids, very often, do not show the simple Newto-
nian behaviour (which is described by the well-known Newton’s law of viscosity), but show various complex 
non-Newtonian behaviour, for example, shear-thinning, shear-thickening, yield stress, etc. Apart from these, 
many experimental investigations have also found that most of these fluids exhibit a great extent of viscoelastic 
properties3–7. The transportation as well as mixing of such fluids is often needed in various small-scale micro and 
nanofluidic systems for further processing and analysis8. In doing so, an electroosmotic flow (EOF) technique is 
often used wherein the fluid motion is created due to the interaction between the electrical double layer (EDL) 
developed along a charged surface and an externally applied electric field9. From the past several decades, a sig-
nificant body of literature, comprising of both theoretical (analytical and numerical) and experimental investiga-
tions, is present on how different factors, such as wall zeta potential, applied voltage, patterned surface, rotating or 
non-rotating surface, system size and structure, electric field type, i.e., AC or DC, presence of obstacles, etc., can 
influence this electrokinetic transport of various simple Newtonian as well as complex non-Newtonian fluids10–16.

The flow dynamics during the electrokinetic transport of complex fluids, particularly for viscoelastic fluids, 
is found to be much more complex and rich in physics than that seen either for simple Newtonian or non-
Newtonian generalized Newtonian fluids (GNFs). For instance, some numerical and experimental studies have 
found the existence of an instability, known as the electro-elastic instability (EEI), in electrokinetic flows of 
viscoelastic fluids in various systems. These instabilities are associated with an unstable and fluctuating flow field 
and originated once the Weissenberg number, Wi, (which is a dimensionless number defined as the product of 
the fluid relaxation time � and the characteristic strain rate γ̇ . It signifies the relative importance of the elastic 
and viscous forces) exceeds a critical value. This critical value depends on many factors such as geometry, rheol-
ogy of working fluids, external forces to induce the flow field, etc. For example, Afonso et al.17 was probably the 
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first who found the existence of these electro-elastic instabilities in their numerical simulations of electrokinetic 
flows of viscoelastic fluids in a cross-slot micro-geometry. Later, Pimenta and Alves18 experimentally verified the 
existence of these instabilities for the same geometry. Recently, Sadek et al.19 and Ji et al.20 also observed these 
kinds of instabilities during the flow through a contraction and expansion micro-geometry in their experimental 
and numerical analysis, respectively. Only recently, Datta et al.21 presented an extensive discussion and review 
on the origin, mechanism and properties of these elastic instabilities originated in various systems ranging from 
simple cross-slot geometry to complex porous media. They discussed both the experimental and numerical 
perspectives of these elastic instabilities and provided the future scope for studying and applying them in many 
practical applications in detail. Although, the studies reviewed by Datta et al. are based on pressure-driven flows; 
however, the origin and mechanism of these elastic instabilities should be independent of the external agency for 
driving the flow, i.e., whether it is pressure-driven or electrokinetic-driven. The number of corresponding studies 
on these elastic instabilities in electrokinetic flows is very limited as compared to that available for pressure-
driven flows. Also, note that these instabilities are different from that of electrokinetic instability (EKI)22, which 
is also often seen during the electrokinetic flows. The former one is originated in viscoelastic fluids due to the 
interaction between the elastic stresses generated in the system and the presence of streamline curvature in the 
system23,24, whereas the latter one is generally developed in Newtonian fluids due to the presence of electrical 
conductivity gradient25–27.

After the onset of this elastic instability, as the Weissenberg number further increases, the unstable flow field 
ultimately transits to a more chaotic and turbulent-like flow state. This is known as the elastic turbulence (ET) 
regime, which is already seen in many pressure-driven flows28–31. The origin of this elastic turbulence is totally dif-
ferent from that of regular hydrodynamic turbulence. While the former is originated due to the presence of elastic 
stresses and in the presence of negligible inertial forces (mainly due to the small-scale of these systems), the latter 
is established due to the instability driven by the inertial forces. However, these two types of turbulence show 
some similarities in their spatio-temporal fluctuation hydrodynamics28. Therefore, likewise the regular hydrody-
namic turbulence, one can also expect that the elastic turbulence will increase the mixing or the rate of transport 
processes. This is, indeed, found in many recent studies32–34. However, all of these studies were conducted for 
pressure-driven flows, and there is no corresponding study available for electrokinetic flows. It is imperative to 
investigate as the mixing and heat/mass transfer rate enhancement in micro-scale systems is often a challenging 
task regardless of the external driving agency (pressure or electric field) due to the existence of the laminar flow 
condition. Therefore, over the years, many designs and techniques based on both passive and active modes have 
been developed to enhance the mixing efficiency in various micro-scale systems; for instance, see some excellent 
review articles present on the same in the literature35,36. In this study, we aim to propose a simple yet efficient 
strategy for the mixing of complex viscoelastic fluids based on the numerical investigation. In particular, we aim 
to show how the mixing process of these complex fluids can be achieved even in a straight microchannel based 
on our proposed technique by using the phenomena of electro-elastic instability and electro-elastic turbulence.

Proposed approach and governing equations
As mentioned in the preceding section, in this study, we aim to propose a simple yet efficient strategy for mixing 
viscoelastic fluids in a straight microchannel. The schematic of the proposed setup is shown in Fig. 1. It consists 
of a straight microchannel of the height of H(= 50µm) and of the total length of 27H. The microchannel has 
four patches on the surface: two on the top surface (Patch 1 and Patch 2) and two on the bottom surface (Patch 
3 and Patch 4). These patches have a constant negative wall zeta potential of ζ0 , as schematically shown in Fig. 1. 
The rest of the microchannel surface possesses a zero wall zeta potential. We have placed two electrodes at the 
channel inlet and outlet, and an external potential bias and/or voltage V0 is applied between the two electrodes. 
This, in turn, generates an electric field strength Ex = V0

L  between the two electrodes, where L is the total distance 
between the inlet and outlet of the microchannel. The electroosmotic flow will happen from the anode towards 

Figure 1.   Schematic of the proposed setup for efficient electrokinetic mixing of viscoelastic fluids.
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the cathode due to the interaction between the external applied electric field and the net charges accumulated 
within the EDL that is formed in the proximity of the patches on the microchannel surface. To facilitate this 
electrokinetic flow, the viscoelastic fluid should be mixed with a binary monovalent electrolyte, for example, KCl 
or NaCl. The fluid is assumed to be incompressible in nature. The flow field induced by the electric field will be 
governed by the following equations, namely,

Continuity equation:

Cauchy momentum equation:

In the above equation, u is the velocity vector, t is the time, p is the pressure, ηs is the solvent viscosity, ρe is 
the charge density, �ext is the potential originated due to the application of an external electric field and τ p is the 
extra stress due to the presence of viscoelastic microstructure like polymer molecules. Various relations for the 
evaluation of τ p are present in the literature depending upon the type of the viscoelastic constitutive equation. In 
the present study, we have used the Oldroyd-B viscoelastic constitutive equation to evaluate τ p . This particular 
viscoelastic constitutive equation mimics the rheological behaviour of a constant shear viscosity viscoelastic 
fluid or the so-called Boger fluid37. This model was derived based on the kinetic theory of polymers in which 
a polymer molecule is assumed to be a dumbbell with two beads connected by an infinitely stretchable elastic 
spring38. According to this model, the polymeric stress components are evaluated as follows38,39

where ηp is the polymer viscosity, � is the polymer relaxation time, A is the polymeric conformation tensor and 
I is the identity tensor. The evaluation equation for the conformation tensor for an Oldroyd-B fluid is given as

The total electric potential (�) in the system is computed by solving the Gauss’s law as follows

The charge density is calculated as ρe = F
∑N

i=1 zici where F is the Faraday’s constant (96485.33289 C · mol−1 ), 
zi is the charge valence on species i and ci is the concentration of species i. The electric field is calculated as 
E = −∇� . Furthermore, the total electric potential in the system is decomposed into two components, namely, 
one originating due to the externally applied electric field (�ext) and the other arising due to the presence of 
charge on the microchannel walls (ψ) , i.e., � = �ext + ψ . After the decomposition, the following equations are 
solved to get the potential distribution in the system

In the present study, the thickness of the electric double layer (EDL) formed along the microchannel wall is 
much smaller than the height of the microchannel, and hence we have used the Poisson-Boltzmann (PB) equation 
to calculate the ion distribution in the system. Under this assumption, the Gauss’s law becomes

where ci,0 is the bulk concentration of ion species i in the system, e is the electron charge (1.6021766341×10−9 C), 
k is the Boltzmann’s constant (1.380649×10−23 J ·K−1 ) and T is the absolute temperature of the fluid. The present 
study has been carried out for the following values of these parameters: ci,0 = 9.44× 10−5 mol/m3 , T = 298 K, 
ε = 7.0922× 10−10 F/m, ζ0 = 20 mV, Ex = 10000 V/m. In order to quantify the viscoelasticity of the complex 
fluid, we have used the Weissenberg number defined as �U0

H  . In the present study, the value of this number is 
varied in between 0 and 3. This range of the Weissenberg number is physically justified under the current con-
ditions for various viscoelastic fluids such as polyethylene oxide (PEO), polyacrylamide, etc40,41. Here U0 is the 
Helmholtz-Smoluchowski velocity9 defined as εζ0Ex

η0
 , where η0 (= 0.0015 Pa· s) is the zero-shear rate viscosity of 

the complex fluid. This study has simulated a perfect creeping flow condition (i.e., Re = 0 ) by setting the inertial 
terms of the momentum equation equal to zero. 

Dye transport equation: The following convective-diffusive equation has been solved to track the dye con-
centration inside the microchannel in the case of evaluation of the mixing phenomena.

(1)∇ · u = 0

(2)ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ ηs∇
2
u +∇ · τ p − ρe�ext

(3)τ p =
ηp

�
(A− I)

(4)
∂A

∂t
+ u · ∇A = A · ∇u+ (∇u)T · A−

1

�
(A− I)

(5)∇ · (ε∇�) = ρe

(6)∇ · (ε∇ψ) = ρe

(7)∇ · (ε∇�ext) = 0

(8)∇ · (ε∇ψ) = F

N
∑

i=1

zici,0 exp
(

−
ezi

kT
ψ

)

(9)
∂c

∂t
+ u · ∇c = D∇2c
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In the above equation, c is the dye concentration and D is the diffusivity of the dye. In this study, the Peclet 
number (Pe = HU0

D ) is chosen much larger than one so that the mixing phenomena of dye due to the convection 
becomes dominant over due to the diffusion.

Results
After solving the aforementioned governing equations based on the open-source CFD code OpenFOAM (the 
details are provided in the Methods section), we now discuss the corresponding flow and mixing phenomena 
results. First, we present the results on the flow dynamics inside the microchannel. The results for the simple 
Newtonian fluids are also considered in this study. This is to show how the flow and mixing phenomena can 
become complex for viscoelastic fluids in comparison to that seen for Newtonian fluids under otherwise identi-
cal conditions. Figure 2 shows the streamlines and velocity magnitude plots inside the microchannel both for 
Newtonian and viscoelastic fluids. For simple Newtonian fluids (sub-Fig. 2a), two vortices (namely, one rotat-
ing clockwise and another rotating counter-clockwise formed near the upper and lower halves of the channel, 
respectively) are seen to present between the region of patches 1 and 3. The size and shape of these two vortices 
are exactly the same. Similarly, two vortices with the same shape and size are also formed between the region 
of patches 2 and 4. Therefore, a perfect symmetry (along both the horizontal and vertical mid-planes passing 
through the origin of the microchannel) in the flow field can be seen for Newtonian fluids, which is expected for 
such fluids under the creeping flow condition. The velocity magnitude is seen to be high near the regions where 

Figure 2.   Representative streamlines and velocity magnitude plots both for Newtonian (a) and viscoelastic 
fluids at (b) Wi = 1 (c) Wi = 2 (d) Wi = 3.
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the patches are present. This is due to the formation of EDL in these regions, which eventually drives the flow 
from the left-hand side towards the right-hand side of the microchannel. The regions between the two vortices 
become highly extensional in nature because of their rotation in clockwise and counter-clockwise directions, 
resulting in the formation of a high-velocity magnitude zone in these regions also.

On the other hand, for viscoelastic fluids, a similar kind of trend in the flow profile is observed as that seen for 
Newtonian fluids at low values of the Weissenberg number (results are not shown here). This is mainly because 
of the presence of low elastic stresses at these low values of the Weissenberg number. However, as the Weis-
senberg number gradually increases to higher values, the flow dynamics inside the microchannel progressively 
becomes complex. For instance, at Wi = 1 (Fig. 2b), the vortices formed between the two patches become more 
concentrated and shorter in size than that seen for Newtonian and viscoelastic fluids at low Weissenberg num-
bers. Furthermore, the vortices lost the symmetry in their shape along the vertical mid-plane passing through 
their centers. Therefore, the symmetry in the flow profile breaks down as the Weissenberg number gradually 
increases. All these happen due to the increase in the elastic forces with the Weissenberg number, which have 
a tendency to suppress the vortex formation. Once again, high-velocity magnitude zones are formed near the 
patches and between the regions of two vortices at y = 0, as observed for Newtonian and viscoelastic fluids at low 
Weissenberg numbers. Up to this value of the Weissenberg number for viscoelastic fluids and also for Newtonian 
fluids (for which the Weissenberg number is essentially zero), the streamlines present either in the upper half or 
lower half of the microchannel never cross the horizontal plane present at y = 0. Therefore, one can expect no 
mixing of fluids (if two viscoelastic fluids are present in the upper and lower halves of the microchannel) up to 
this value of the Weissenberg number.

As the Weissenberg number further increases to 2, the regular shape (kidney-like shape) of vortices is now 
totally destroyed, and their size and shape become unequal and irregular from each other, see Fig. 2c. Most 
importantly, one can see that the streamlines now cross the horizontal mid-plane passing through the origin of 
the channel. This could facilitate mixing, which will be discussed later in this section. All these suggest that the 
flow field inside the microchannel becomes unstable and chaotic at this value of the Weissenberg number. As 
the Weissenberg number further increases to 3, the vortices become more distorted, and the flow field becomes 
more chaotic, as can be seen from Fig. 2d. The fluctuating and chaotic nature of the flow field inside the micro-
channel is more evident in Fig. 3a, wherein the temporal variation of the non-dimensional stream-wise velocity 
component (obtained at a probe location placed at the origin) is plotted against the time both for Newtonian 
and viscoelastic fluids with various Weissenberg numbers. From this figure, it can be clearly seen that the veloc-
ity reaches a steady value with time both for Newtonian and viscoelastic fluids with Wi = 1 , thereby suggesting 
the presence of a steady flow field inside the microchannel. However, as the Weissenberg number increases to 2, 
the stream-wise velocity shows a fluctuating behaviour. It becomes more intensified as the Weissenberg number 
further increases to 3. Therefore, it clearly suggests that the flow field inside the microchannel becomes unsteady 
and chaotic at these values of the Weissenberg number.

To analyze the nature of this unsteadiness in the flow field, we have presented the power spectral density 
plot of these velocity fluctuations in Fig. 3b. The excitation of the fluid motion over a wide range of continuum 
frequencies can be seen from this Figure. This is one of the characteristic features of the elastic turbulence21,28. 
The amplitude of the power spectrum is higher at Wi = 3 than that obtained at Wi = 2 . Therefore, it suggests that 
the intensity of the velocity fluctuations gradually increases as the Weissenberg number progressively increases. 
A plateau in the power spectrum is seen in the low-frequency range. Whereas, at high frequencies, a power-law 
decay (ωα) is seen in the power spectrum, which covers almost a decade of the frequency range. The fitted values 
of the power-law exponent α are –3.16 and –3.78 for Weissenberg numbers 2 and 3, respectively. The range of 
values of the power-law exponent seen in the present study is the same as that seen in the elastic turbulence 

Figure 3.   (a) Temporal variation of the stream-wise velocity at a probe location placed at the origin (b) The 
corresponding power spectral density plot of the velocity fluctuations for viscoelastic fluids at two different 
Weissenberg numbers, namely, 2 and 3.
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originated in various pressure-driven flows21,28. All these suggest that a turbulence-like flow field is generated 
inside the microchannel, which is purely driven by the elastic stresses of the viscoelastic fluid. A discussion on 
this electro-elastic turbulence is presented in the subsequent section in detail.

Therefore, one would expect this locally generated electro-elastic turbulence to increase the mixing of two 
fluids even in this straight microchannel. To show this, we have used the same fluid which fills up the whole 
microchannel instead of using two different fluids. The fluid in the upper half of the microchannel is mixed with 
a dye of finite concentration, whereas the fluid in the lower half has a zero dye concentration. This will allow us 
to directly visualize the mixing phenomena of the fluids present in the upper and lower halves of the microchan-
nel. The governing equation to track the evaluation of the dye concentration inside the microchannel is written 
in the preceding section. The results are presented in Fig. 4. For Newtonian fluids, it is found that the fluids that 
are present in the two halves of the microchannel are not mixed up, Fig. 4a. A similar pattern is also seen for 
viscoelastic fluids with low Weissenberg numbers, for instance, see the results at Wi = 1 in Fig. 4b. This is due to 
the absence of elastic instability and elastic turbulence at this Weissenberg number. However, as the Weissenberg 
number further increases to 2 (Fig. 4c), one can see the mixing of dye, particularly at the downstream section of 
the microchannel. It is thereby suggesting that the fluids which are present in the two halves of the microchannel 
are also mixed up. To quantitatively show the mixing efficiency of the two fluids, we have calculated the mixing 
index η defined as35,36

In the above equation, C̄s , C̄∗
s  and C̄0

s  are the dye concentration at a point in the domain, dye concentration for a 
perfectly mixed fluid and dye concentration for an unmixed fluid, respectively. The value of C̄0

s  can be either 0 
or 1, and hence the value of C̄∗

s  would be 0.5. Therefore, the denominator of Eq. (10) has a constant value of 0.5. 
The theoretical range of η lies in between 0 and 1, representing perfectly unmixed and mixed fluids, respectively. 
Note that the calculation of this parameter is performed at the exit of the microchannel. Figure 5 depicts the 
variation of η with the Weissenberg number. From this figure, we can clearly observe that the value of η remains 
zero up to a value of the Weissenberg number of around 1.7, thereby indicating that no mixing of fluids hap-
pens up to this value of the Weissenberg number. This is because of the fact that up to this critical value of Wi, 
the flow remains steady and no electro-elastic instability is seen to present in the domain that can promote the 
mixing. As the Weissenberg number is further incremented beyond this critical value, η starts to attain a finite 
value which again gradually increases with the Weissenberg number. Therefore, the mixing of the fluids starts to 
happen after this critical value of the Weissenberg number due to the emergence of the electro-elastic instability 
and then electro-elastic turbulence on further increasing the Weissenberg number.

Discussion
As mentioned in the previous section, the enhancement in the mixing phenomena of viscoelastic fluids in a 
straight microchannel is due to the presence of local chaotic and fluctuating flow field caused by the electro-elastic 
turbulence in the system. Before the transition to this chaotic flow regime, an electro-elastic instability should 

(10)η = 1−

√

1
N

∑N
1 (C̄s − C̄∗

s )
2

√

1
N

∑N
1 (C̄

0
s − C̄∗

s )
2

Figure 4.   Instantaneous evaluation of the dye concentration both for Newtonian (a) and viscoelastic fluids at 
(b) Wi = 1 (b) Wi = 2 (c) Wi = 3.
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emerge in the system, which is the precursor of this turbulent flow regime. These elastic instabilities in viscoelastic 
fluids result from the interaction between the streamline curvature present in the system and the elastic stresses 
originated due to the stretching of viscoelastic microstructure. McKinley and co-workers established a criteria, 
named the Pakdel-McKinley criteria23,42, which is often used to explain these instabilities purely driven by the 
elastic forces. It is written as below

In the above equation, τ11 is the normal stress in the flow direction along a streamline, γ̇ is the characteristic 
value of the local deformation rate, R is the characteristic radius of the streamline curvature. For a two-dimen-
sional flow field, one can determine these different parameters as follows43. The streamline curvature is calculated 

as 1
R(x,y) =

(

∂ψ
∂x

)2
∂2ψ

∂y2
+

(

∂ψ
∂y

)2
∂2ψ

∂x2
−2

∂ψ
∂y

∂ψ
∂x

∂2ψ
∂x∂y

[

(

∂ψ
∂x

)2

+

(

∂ψ
∂y

)2
]3/2  where ψ is the stream function and ux = −

∂ψ
∂y  and uy = ∂ψ

∂x  . The 

normal stress along a streamline can be calculated as τ11 = t · τ · t = τxxt
2
x + τyyt

2
y + 2τxytxty where 

t = txex + tyey is the tangent vector along a streamline whose components are calculated as tx = −
∂ψ
∂y

|∇ψ |
 and 

ty =
∂ψ
∂x

|∇ψ |
 . Here ex and ey are the unit vectors in x and y directions, respectively. According to this criteria, when 

this non-dimensional parameter M exceeds a critical value Mcrit , an elastic instability will emerge in the system. 
In this study, we have also calculated this criteria and plotted it in Fig. 6 for various values of the Weissenberg 
number. At low values of the Weissenberg number, for instance, at Wi = 0.1 , the maximum M value was found 
to be around 0.52. This value is very small as compared to the values obtained for the onset of these instabilities 
for the various pressure-driven flows, for instance, for the flow past a cylinder, the critical value of M was found 
to be 6.242, whereas for the flow of viscoelastic Boger fluids in a lid-driven cavity, it was between 3 and 444. There-
fore, at this low value of Wi, there is no elastic instability observed. However, as the Weissenberg number gradu-
ally increases to higher values, the M value also increases, for instance, see the results presented in Fig. 6 at 
Wi = 3 . Note that here the M values at different Weissenberg numbers are presented on a scale of 0 to 20 to show 
a quantitative difference in its distribution obtained at different Weissenberg numbers. The M value at Wi = 0.1 
is so small that it seems almost zero. At Wi = 3 , we can see the presence of some small regions (marked with 
open circles in Fig. 6) where the maximum value of M is observed. These regions are most susceptible to the 
generation of these elastic instabilities and elastic turbulence. The variation of the maximum M values with the 
Weissenberg is shown in Fig. 6d. It is clearly seen that after a critical value of the Weissenberg number, the M 
value starts to increase rapidly, and the instability starts to appear when it reaches a critical value at a critical 
value of the Weissenberg number, as schematically shown in Fig. 6. On further increasing the Weissenberg 
number, these instabilities ultimately transit to the elastic turbulence regime with more chaotic flow behaviour, 
thereby promoting the mixing of two fluids.

(11)M =

√

τ11

η0γ̇

�U

R
≥ Mcrit

Figure 5.   Variation of the mixing index η with the Weissenberg number.
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It should be mentioned here that some earlier studies, where such electro-elastic instabilities were seen, did 
not find any significant improvement or even found reduction in the mixing of the fluids as compared to that 
seen for non-viscoelastic fluids. For instance, Bryce and Freemann45 carried out experiments with viscoelastic 
polyacrylamide polymer solutions flowing through a 2:1 micro constriction. Although they found the existence of 
the electro-elastic instabilities in the system once the applied electric field exceeds a critical value; however, they 
observed a reduction in the mixing phenomena compared to that seen only in the solvent (water + methanol) 
with no polymer additives. Furthermore, Pimenta and Alves18 also noticed no significant improvement in the 
mixing phenomena in both the cross-slot and flow-focusing devices based on these electro-elastic instabilities. 
This is in contrast to that seen in the present study, where we can clearly see the improvement in the mixing 
phenomena utilizing these electro-elastic instabilities and elastic turbulence. The possible reason for not show-
ing the enhancement in the mixing phenomena of studies by Bryce and Freemann45 and Pimenta and Alves18 is 
that the elastic turbulence might not be developed to that extent which could ultimately lead to a greater mixing 
process. Therefore, the simple setup proposed in this study becomes more novel and relevant for electrokinetic 
mixing of viscoelastic fluids than those presented in earlier studies, such as cross-slot or micro constriction. Our 
proposed setup facilitates the crossing of streamlines (as shown and discussed in the previous section) through 
the horizontal mid-plane of the microchannel, i.e., at the interface of the two fluids. This, in turn, promotes a 
greater mixing phenomena by this chaotic convection. This was probably missing in earlier geometries, and 
hence the mixing was not achieved significantly.

Conclusions
This study presents a very simple yet efficient approach for electrokinetic mixing of viscoelastic fluids in micro-
scale systems based on extensive numerical simulations. Our proposed setup consists of a straight microchannel 
with patches of constant wall zeta potential that are present both on the top and bottom walls of the microchan-
nel. The heterogeneity in the wall zeta potential at the microchannel wall creates an electro-elastic instabil-
ity, which ultimately transits to the electro-elastic turbulence regime as the Weissenberg number is gradually 
increased. These locally generated instabilities and turbulence lead to the origin of a chaotic and fluctuating 
flow field, thereby promoting the mixing of viscoelastic fluids. Although some earlier investigations found the 
existence of such electro-elastic instabilities in electrokinetic flows of viscoelastic fluids; however, they did not 
observe any significant improvement18 or even found reduction in mixing of these fluids45 in geometries like a 
cross-slot cell or a flow-focusing device. However, in this study, our proposed setup (a straight microchannel with 
heterogeneous wall zeta potential) is not only relatively simpler as compared to the geometries like a cross-slot 
cell or flow-focusing device, but also shows a significant mixing of these viscoelastic fluids. We have carried out 
this study for fixed values of the applied voltage, wall zeta potential, polymer viscosity ratio, ion concentration, 
and a single arrangement of the wall patches. However, all these parameters may significantly influence the 
onset of these electro-elastic instabilities and elastic turbulence, and hence the mixing phenomena. We aim to 
investigate these in our future studies. Furthermore, the present study is totally based on numerical simulations, 
and therefore, it would be interesting to validate the efficiency of the proposed design by performing some cor-
responding experiments. In earlier experiments, more complex patterns for the surface wall zeta potential were 
created using the soft lithography technique46 than that proposed in the present study. Hence, we believe that 
the present setup, i.e., a straight microchannel with patches of finite wall zeta potential can be easily fabricated 
using the same soft lithography technique if one wants to perform the corresponding experiments or use it for 
a particular application.

Figure 6.   Surface plot of the distribution of the Pakdel-McKinley M parameter at (a) Wi = 0.1 (b) Wi = 1 and 
(c) Wi = 3. (d) Variation of the maximum value of the M parameter with the Weissenberg number.
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Methods
The present governing equations (Eqs. 1–9) have been solved using the finite-volume method based rheoEFoam 
solver available in the recently developed RheoTool package47. It has been developed based on the platform of 
an open-source computational fluid dynamics (CFD) code OpenFOAM48. A detailed description of the present 
solver used in this study is available elsewhere18, and hence only some of the salient features are recapitulated here. 
All the advective terms in the governing equations were discretized using the high-resolution CUBISTA (Con-
vergent and Universally Bounded Interpolation Scheme for Treatment of Advection) scheme for its improved 
iterative convergence properties. All the diffusion terms in the governing equations were discretized using the 
second-order accurate Gauss linear orthogonal interpolation scheme. All the gradient terms were discretized 
using the Gauss linear interpolation scheme. The Euler time integration scheme was used to discretize the time 
derivative terms. While the linear systems of the pressure, velocity and electric potential fields were solved using 
the Preconditioned Conjugate Solver (PCG) with DIC (Diagonal-based Incomplete Cholesky) preconditioner, the 
stress and dye concentration fields were solved using the Preconditioned Bi-conjugate Gradient Solver (PBiCG) 
solver with DILU (Diagonal-based Incomplete LU) preconditioner. The pressure-velocity coupling was accom-
plished using the SIMPLE method, and the log-conformation tensor approach was used to stabilize the numerical 
solution. Furthermore, the relative tolerance level for the pressure, velocity, stress, and concentration fields was 
set as 10−10 . The creation of domain and meshing of it with regular hexahedral cells was performed using the 
blockMeshDict subroutine available in OpenFOAM.

The boundary conditions employed in this study are as follows: for the velocity, a zero gradient (∇u = 0) at 
the channel inlet and outlet and a no-slip condition (u = 0) at the channel wall; for the pressure, a fixed zero 
value (p = 0) at the channel inlet and outlet and a zero gradient (∇p = 0) at the channel wall; for the electric 
potential, a zero gradient (∇ψ = 0) at the channel inlet and outlet, a fixed negative value (ψ = −ζ0) on the 
wall patches and a zero value (ψ = 0) on the rest of the channel walls; for the viscoelastic stress, a zero gradient 
(∇τ = 0) at the channel inlet and outlet whereas the values are linearly extrapolated on the channel walls; for the 
dye concentration, a fixed positive value (c = 1) at the channel upper half and a zero value (c = 0) at the lower 
half, a zero gradient (∇c = 0) at the outlet and at the channel walls.

After fixing different discretization schemes for different terms of the governing equations and employing 
proper boundary conditions, we next turn our attention to choose an optimal grid density based on the standard 
procedure of the grid independence study. In doing so, three different grids with a different number of total 
hexahedral cells, namely, G1 (11680), G2 (49600) and G3 (99200) were created, and the simulations were run at 
the highest value of the Weissenberg number considered in this study, i.e., at Wi = 3 . After obtaining the results 
at different grid densities, the comparison was performed in terms of the variation of the time-averaged stream-
wise velocity component along the horizontal mid-plane passing through the origin, see Fig. 7. It can be seen 
the results become almost indistinguishable from each other as one moves from grid G2 to G3. Therefore, grid 
G2 was found to be suitable to carry out the present study. Along with the velocity component, the stress fields 
obtained with different grid densities were also compared (not shown here), and once again, the grid G2 was 
found to be the optimum one, which at the one hand, didn’t demand excessive computational resources and on 
the other hand, it also didn’t compromise with the accuracy of the present numerical results. Likewise the grid 
independence study, we have also carried out a systematic time independent study in order to choose an optimal 
time step size to carry out the present unsteady flow simulations. By performing so, a non-dimensional time step 
size of �t = 0.0001 was found to be sufficient for the present study.

Figure 7.   Grid independence study.
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Finally, we have carried out some validation studies in order to establish the accuracy and reliability of the 
present numerical setup that we have used in this study. Figure 8 shows the comparison between the present 
results with that of analytical results of Afonso et al.49 in terms of the variation of the stream-wise velocity in a 
straight microchannel with uniform wall potential for Oldroyd-B viscoelastic fluids. An excellent agreement can 
be seen between the two results. To gain more confidence in the current numerical settings, we have presented a 
validation with an experimental study performed by Kim et al.50 on the electrokinetic flow of Newtonian fluids 
in a microchannel with grooved surface, Fig 9. One can see a very good match with their numerical results and 
a reasonable good agreement with the corresponding experimental results. To further validate the implementa-
tion of the species transport equation, we have presented some validation in terms of the variation of the species 
concentration at the channel outlet between the present results with that of Hadigol et al.51 for the electrokinetic 
flow of Newtonian fluids in Fig. 10. Once again, a very good match can be seen between the two results.

Figure 8.   Comparison of the stream-wise velocity in a straight microchannel with uniformal wall zeta potential 
between the present (line) and analytical (symbols) results of Afonso et al.49.

Figure 9.   Comparison of the stream-wise velocity in the grooved area among the present (line) and numerical 
(filled symbols) and experimental results (open symbols) of Kim et al.50. Note that here the velocity and distance 
are presented in non-dimensional form as that used by Kim et al.50.
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