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Abstract
Background: Peanut (Arachis hypogaea L.) is an important crop economically and nutritionally, and
is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent
aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies
in alleviating this problem; however, few peanut DNA sequences are available in the public
database. In order to understand the molecular basis of host resistance to aflatoxin contamination,
a large-scale project was conducted to generate expressed sequence tags (ESTs) from developing
seeds to identify resistance-related genes involved in defense response against Aspergillus infection
and subsequent aflatoxin contamination.

Results: We constructed six different cDNA libraries derived from developing peanut seeds at
three reproduction stages (R5, R6 and R7) from a resistant and a susceptible cultivated peanut
genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and
resistant to TSWV) and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and
susceptible to TSWV). The developing peanut seed tissues were challenged by A. parasiticus and
drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries
were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST
sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST
sequences with 1,741 tentative consensus EST sequences (TCs) and 6,948 singleton ESTs.
Functional classification was performed according to MIPS functional catalogue criteria. The unique
EST sequences were divided into twenty-two categories. A similarity search against the non-
redundant protein database available from NCBI indicated that 84.78% of total ESTs showed
significant similarity to known proteins, of which 165 genes had been previously reported in
peanuts. There were differences in overall expression patterns in different libraries and genotypes.
A number of sequences were expressed throughout all of the libraries, representing constitutive
expressed sequences. In order to identify resistance-related genes with significantly differential
expression, a statistical analysis to estimate the relative abundance (R) was used to compare the
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relative abundance of each gene transcripts in each cDNA library. Thirty six and forty seven unique
EST sequences with threshold of R > 4 from libraries of 'GT-C20' and 'Tifrunner', respectively,
were selected for examination of temporal gene expression patterns according to EST frequencies.
Nine and eight resistance-related genes with significant up-regulation were obtained in 'GT-C20'
and 'Tifrunner' libraries, respectively. Among them, three genes were common in both genotypes.
Furthermore, a comparison of our EST sequences with other plant sequences in the TIGR Gene
Indices libraries showed that the percentage of peanut EST matched to Arabidopsis thaliana, maize
(Zea mays), Medicago truncatula, rapeseed (Brassica napus), rice (Oryza sativa), soybean (Glycine max)
and wheat (Triticum aestivum) ESTs ranged from 33.84% to 79.46% with the sequence identity ≥
80%. These results revealed that peanut ESTs are more closely related to legume species than to
cereal crops, and more homologous to dicot than to monocot plant species.

Conclusion: The developed ESTs can be used to discover novel sequences or genes, to identify
resistance-related genes and to detect the differences among alleles or markers between these
resistant and susceptible peanut genotypes. Additionally, this large collection of cultivated peanut
EST sequences will make it possible to construct microarrays for gene expression studies and for
further characterization of host resistance mechanisms. It will be a valuable genomic resource for
the peanut community. The 21,777 ESTs have been deposited to the NCBI GenBank database with
accession numbers ES702769 to ES724546.

Background
Peanut (Arachis hypogaea L.) is an important economical
crop for oil production and nutritious food for human
consumption. However, aflatoxin contamination caused
by Aspergillus fungi is a great concern in peanut produc-
tion worldwide. Aflatoxins are the most toxic and carcino-
genic compounds associated with both acute and chronic
toxicity in animals and humans [1,2]. Both drought stress
and high geocarposphere temperature during the latter
part of the growing season compromise peanut defense to
fungal invasion and exacerbate aflatoxin formation in the
seeds [3-6]. Drought stress, extreme temperature or fungal
infection can also impair plant growth and yield perform-
ance. The development of adapted peanut germplasm and
cultivars with improved host-plant resistance is one of our
main research objectives.

Resistance to several pathogens is known in peanut [7]
indicating that peanuts have evolved a series of defense
mechanisms against invasion by plant pathogens. A better
understanding of the molecular mechanism for resistance
to Aspergillus collonization will aid in designing strategies
to develop new resistant peanut cultivars. The availability
of genomic tools and bio-informatics softwares will sig-
nificantly improve our ability to a better understanding of
the genetic mechanisms of host-plant resistance and to
facilitate the genetic improvement of cultivated peanut.
Genomic research can also be used to discover novel
genes with potential resistance and to develop molecular
markers for use in marker-assisted selection. Recently,
some genes and proteins associated with A. parasiticus or/
and drought stress were identified and studied utilizing
genomic and proteomic tools [8-12]. With the comple-
tion of the rice and Arabidopsis whole genome sequencing

projects, a vast amount of valuable data has been gener-
ated to facilitate cross-species genome comparison in the
plant Kingdom. The peanut genome size is significantly
larger (2,800 Mb/1C) than the currently sequenced plants
[13], such as Arabidopsis (128 Mb), rice (420 Mb), and
Medicago (500 Mb) [14,15]. Financial requirement makes
it unrealistic to completely sequence the whole peanut
genome in the near future. Therefore, peanut Expressed
Sequenced Tags (EST) would be the cost-effective strategy
to identify important peanut genes involved in defense to
fungal invasion and to study gene expression pattern as
well as genetic regulation [16,17].

Expressed Sequence Tags (EST) is an effective genomic
approach for rapid identification of expressed genes, and
has been widely used in genome-wide gene expression
studies in various tissues, developmental stages or under
different environmental conditions [18-21]. In addition,
the availability of cDNA sequences has accelerated further
molecular characterization of genes of interest and pro-
vided sequence information for microarray construction
and genome annotation [11,22-25]. As of March 23,
2007, large number of ESTs of the top five plant species
including Arapidopsis (1,276,131), rice (1,211,154),
maize (1,161,193), wheat (855,272) and barley
(437,728) have been deposited to the GenBank database
(dbEST release 032307) [26]. These sequences provide
opportunities to accelerate the understanding of the
genetic mechanisms that control plant growth and
responses to the environment. In contrast, there were only
19,790 Arachis ESTs deposited in GenBank, among which
13,226 were derived from cultivated peanut A. hypogaea
and the remaining 6,264 from the wild species of A. sten-
osperma. These ESTs submitted by different peanut
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researchers were from different tissues and subjected to
different abiotic and biotic stresses [11,27,28].

In this report, an effort for large-scale sequencing of cDNA
was carried out with two goals: gene expression compari-
son between these two genotypes, 'Tifrunner' and 'GT-
C20', and providing genomic resource for discovery and
understanding of novel defense-related genes involved in
resistance to Aspergillus colonization and drought stress.
To increase gene diversity in the EST population and the
probability of identifying genes associated with drought
tolerance and disease resistance, different cDNA libraries
were prepared from developing seeds at late reproductive
stages of a resistant and a susceptible peanut genotypes
challenged by A. parasiticus and drought stress. Six librar-
ies were constructed that resulted in a total of 21,777
high-quality EST sequences, from which 8,689 unique
sequences were identified. To provide useful information
on the expression profiling of resistant genes at various
seed developmental stages and to offer valuable genomic
resource for peanut functional genomics, an extensive
analysis of these ESTs was performed using a variety of
computational approaches. A functional catalog of
expressed genes is reported here as well as a preliminary
view of their expression profiles in developing seeds at dif-
ferent developmental stages. This functional catalog seeks
to link genes and pathways, and to provide a list of fea-
tures that could aid in the understanding of how resist-
ance genes are involved in response to biotic and abiotic
challenges and how their expression is regulated.

Results
Generation of ESTs from developing seeds challenged by 
A. parasiticus and drought stress
Six cDNA libraries were constructed from developing
seeds of two varieties ('GT-C20' and 'Tifrunner') collected
at three reproductive stages (R5, R6 and R7) after chal-
lenging by A. parasiticus and drought stress. From the six
cDNA libraries, a total of 24,290 clones were randomly
selected, sequenced and analyzed using Sequencher soft-
ware. The vector sequences of the raw sequence reads were
trimmed off and low-quality sequences (shorter than 100
bp in length) were removed. A total of 21,777 high-qual-

ity EST sequences (about 86%) were generated from the
24,290 clones. Total 8,672 ESTs were generated from 'GT-
C20' and 12,426 ESTs were generated from 'Tifrunner'
(Table 1). The percentage of acceptable quality EST
sequences from individual libraries varied from 81% to
88%. The average length of the ESTs is 411 bp ranging
from 114 to 933 bp (Fig. 1). The sum of the total ESTs
equal to 8.7 Mb of peanut genome. These quality ESTs
combined from both genotypes at three stages were fur-
ther assembled into 8,689 unique ESTs. Among them,
6,948 were singletons and 1,741 were TCs. The 21,777
ESTs have been deposited to the NCBI GenBank database
with accession numbers ES702769 to ES724546.

Overlapping of unique EST sequences and high 
redundancy of genes
A comparison of unique EST sequences from the two gen-
otypes and different stages of developing seeds allows the
identification of common and unique sets of expressed
genes among the six libraries. The unique ESTs from the
six libraries were summarized in Table 1. A total of 1,825,
681, 685, 3,107, 1,768 and 622 unique sequences were
present in the C20R5, C20R6, C20R7, TFR5, TFR6 and
TFR7, respectively. The distribution and overlapping of
these unique EST sequences is shown in Figure 3.

Among the unique ESTs from the C20R5, C20R6 and
C20R7 libraries, only 96 ESTs (3%) were shown common
to all three libraries (Fig. 2A). The number of ESTs that
were common between any two libraries varied from
10.9% to 34.3%. When the same analysis was applied to
the ESTs from the TFR5, TFR6 and TFR7, similar results
were obtained (Fig. 2B). The ESTs that were common to
all three 'Tifrunner' libraries were about 3.4%, similar to
that of 'GT-C20'. There were 364 (8%) ESTs that were
common to TFR5 and TFR6 libraries, 120 (2.6%) ESTs
were found common to both TFR5 and TFR7 libraries, 37
(0.7%) ESTs were found common to both TFR6 and TFR7
libraries. In order to investigate differential gene expres-
sion between the resistant and susceptible genotypes, we
also performed a comparative analysis between 'GT-C20'
and 'Tifrunner' libraries at each seed developmental stage.
There were 591 (11.74%), 197 (8.04%) and 152

Table 1: Summary of EST sequences, contigs, and singletons in six libraries from 'GT-C20' and 'Tifrunner'

Library ID Total No. of clones sequenced Accepted sequences (%) No. of TCs (%) No. of Singletons (%) Unique Sequence

C20R5 5, 184 4, 678 (88) 390 (21) 1, 435 (79) 1, 825
C20R6 2, 304 1, 977 (86) 101 (15) 580 (85) 681
C20R7 2, 496 2, 017 (81) 138 (20) 547 (80) 685
TFR5 7, 104 6, 132 (86) 669 (22) 2, 438 (78) 3, 107
TFR6 4, 800 4, 230 (88) 302 (17) 1, 467 (83) 1, 768
TFR7 2, 304 2, 046 (88) 141 (23) 481 (77) 622

Total 24, 192 21, 098 (86) 1, 741 (20) 6, 948 (80) 8, 688
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(11.65%) genes were found common to 'GT-C20' and
'Tifrunner' at R5, R6 and R7, respectively (Fig. 2C, D, and
2E). These results indicated that the differences in tran-
script abundance might reflect genuine differences in the
gene expression in the different libraries. These variations
may be due to the differences in disease resistance, toler-
ance to abiotic stress or other genetic factors at the differ-
ent developmental stages.

Genes that are shared between or among the libraries
included highly expressed transcripts. To further investi-
gate the high frequency of transcripts, all six libraries were
analyzed, clustered and assembled individually by geno-
type. Those highly expressed genes (TCs) assembled from
more than 20 individual ESTs were listed in Table 2 for the
'GT-C20' libraries (C20R5, C20R6 and C20R7), and Table
3 for the 'Tifrunner' libraries (TFR5, TFR6 and TFR7). A
total of 8,672 ESTs from 'GT-C20' and 12,426 ESTs from
'Tifrunner' non-normalized libraries were assembled into
599 and 1,119 TCs, respectively. There were 27 GT-C20'
and 36 'Tifrunner' highly expressed transcripts assembled
from more than 20 individual consensus ESTs were
selected for distribution analysis (Table 2 and 3). These
TCs were concurrently queried against GenBank non-
redundant protein database (nr) in searching their puta-
tive functions. The BLAST results showed that all the
highly expressed genes (TCs) were homologous to known
fragments in the GenBank database (Table 2 and 3). There
were 31 highly expressed genes, identified by BLAST
search, to have the same putative function in both 'GT-
C20' and 'Tifrunner' libraries. These highly expressed
genes encode constitutive proteins such as allergen pro-
tein (C20Contig14 and TFContig8 for iso-Arah3) (Guo et
al., unpublished data), storage proteins (C20Contig51
and TFContig31 for 2S protein 1), structural protein

(C20Congtig75 and TFContig44 for glycine-rich cell wall
structural protein precursor), and stress-resistance associ-
ated proteins (C20Contig33 and TFContig29 for desicca-
tion-related protein PCC13-62 precursor).

Functional classification of unique EST sequences
In order to further characterize the putative functions of
unique ESTs and involvement in different biological proc-
esses, a similarity search against the MIPS Arabidopsis thal-
iana Database was performed. According to the MIPS
Functional Catalogue criteria, 'GT-C20' unique sequences
whose functions could be predicted from the similarity to
Arabidopsis proteins with an E value of ≤ 1e-5 were classi-
fied into twenty-two categories (Fig. 4A) [29,30]. The
same analytic procedure was applied to 'Tifrunner' unique
ESTs (Fig. 4B). The 'Tifrunner' ESTs with significant pro-
tein homology were also sorted into 22 groups. These
results suggested that the genes represented by these

Overlapping of unique peanut EST sequencesFigure 2
Overlapping of unique peanut EST sequences. A: Common 
and unique sets of expressed genes among the 'GT-C20' 
three libraries; B: Common and unique sets of expressed 
genes among the 'Tifrunner'; C: Common and unique sets of 
expressed genes between 'GT-C20' and 'Tifrunner' libraries 
at developmental R5 stage; D: Common and unique sets of 
expressed genes between 'GT-C20' and 'Tifrunner' libraries 
at developmental R6 stage; E: Common and unique sets of 
expressed genes between 'GT-C20' and 'Tifrunner' libraries 
at developmental R7 stage. The number in the parenthesis 
presents the number of clones assembled into unique ESTs.
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The length of trimmed EST sequence (cDNA length after removal of vector sequence and low quality sequences) sub-mitted to clusteringFigure 1
The length of trimmed EST sequence (cDNA length after 
removal of vector sequence and low quality sequences) sub-
mitted to clustering. The number of EST within different cat-
egories of trimmed sequence length is presented on the Y-
axis. The number on the X-axis represent ranges of trimmed 
sequence lengths (101–200, 201–300, 301–400 bp, etc, 
respectively).
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Hierarchical clustering analysis of differentially expressed transcripts for 'GT-C20' and 'Tifrunner'Figure 3
Hierarchical clustering analysis of differentially expressed transcripts for 'GT-C20' and 'Tifrunner'. TCs with R > 4 (84 in total) 
were used for hierarchical clustering analysis.
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unique EST sequences may play roles in different biologi-
cal process.

The results of functional classification showed that the
unknown genes, including those which had no hits or low
identity (less than 95%) with the Arabidopsis protein data-
base and those which matched the unclassified and
unknown proteins, represented the largest set of genes
(33.33% and 34.42% for 'GT-C20' and 'Tifrunner', respec-
tively). The second largest proportion of genes was found
to participate in the biological process of metabolism. The
resistance-related and environment-interacted genes were
2.6% and 2.46% in 'GT-C20' and 'Tifrunner', respectively
(Fig 4A and 4B). These results indicated that it may be
possible to discover novel genes involved in biotic and
abiotic responses using the EST profiling startegy.

Expression profiles of cDNA from different genotypes at 
different developmental stages
Without normalization or subtraction in library construc-
tion, the number of the cDNA clones (or sequenced ESTs)
for a given gene reflected the abundance of the gene
expression at the corresponding developmental stage. The
number of the consensus ESTs that assembled into a

unique gene at the three developmental stages may repre-
sent the temporal expression pattern of this gene. There-
fore, the temporal expression profile of a gene can be
deduced by the comparison of the EST frequency at differ-
ent developmental stage, while the temporal expression
profile of a gene of different genotypes may be measured
by comparison of the EST frequency of the different geno-
types. Given the fact that the absolute EST counts varies in
different libraries (Table 1), a meaningful measure of
expression profile similarity is independent of these abso-
lute numbers. To test the independence of EST distribu-
tion within the libraries, an estimation of the relative
abundance defined as R (Stekel et al. 2000) was employed
to identify the most highly significant differences in EST
abundance for each TC among the libraries. The unequal
distribution of specific ESTs with statistically significance
within each library implied that these ESTs expressed at a
higher level in some libraries than others. In order to limit
the analysis to those genes which differentially expressed
at different developmental stages, only TCs with R value
larger than 4 were used for hierarchical clustering analysis.
This R value provided an 82.2% true positive rate [31].
According to the cutoff threshold of R > 4, 37 TCs from
'GT-C20' libraries and 47 from 'Tifrunner' libraries were

Table 2: Gene expression frequency and BLAST results of the unique ESTs assembled from more than 20 consensus ESTs in the 
C20R5, C20R6 and C20R7 libraries

NCBI BLAST

Contig C20R5 C20R6 C20R7 Accession no. Species Gene description E Value

C20Contig14 369 231 183 gb|ABI17154.1| A. hypogaea iso-Ara h3 0
C20Contig37 283 123 67 gb|AAU21490.1| A. hypogaea arachin Ahy-1 0
C20Contig52 205 94 170 gb|AAW56068.1| A. hypogaea conglutin 6e-79

C20Contig47 245 116 95 gb|AAG01363.1| A. hypogaea Gly1 0
C20Contig35 173 73 165 sp|Q647G9| A. hypogaea Conglutin precursor (Allergen Ara h 6) 3e-79

C20Contig48 192 117 46 gb|ABL14270.1| A. hypogaea arachin 6 0
C20Contig51 145 74 96 gb|AAU21494.1| A. hypogaea 2S protein 1 9e-94

C20Contig40 103 97 44 sp|P43238| A. hypogaea Allergen Ara h 1, clone P41B precursor (Ara h I) 0
C20Contig19 86 60 70 gb|AAT00598.1| A. hypogaea seed storage protein SSP1 1e-104

C20Contig9 79 41 47 gb|AAU21499.2| A. hypogaea oleosin 1 1e-88

C20Contig34 59 17 25 gb|AAT00596.1| A. hypogaea conarachin 0
C20Contig57 36 25 26 gb|AAU21501.1| A. hypogaea oleosin 3 8e-88

C20Contig33 21 14 34 gb|ABN09090.1| M. truncatula Desiccation-related protein PCC13-62 precursor 1e-106

C20Contig65 20 15 23 gb|AAU21496.1| A. hypogaea 2S protein 2 5e-80

C20Contig50 15 32 8 gb|AAT00597.1| A. hypogaea conarachin 1e-169

C20Contig66 29 6 7 gb|AAZ20291.1| A. hypogaea metallothionein-like protein 3e-46

C20Contig28 24 8 4 gb|AAW56067.1| A. hypogaea arachin Ahy-4 0
C20Contig74 21 5 3 gb|AAC15413.1| O. sativa translation elongation factor-1 alpha; EF-1 alpha 0
C20Contig24 16 3 9 gb|AAT00599.1| A. hypogaea seed storage protein SSP2 3e-66

C20Contig71 24 3 0 gb|AAM48133.1| S. medusa putative flavanone 3-hydroxylase 3e-65

C20Contig58 13 9 4 ref|XP_001377994.1| M. domestica PREDICTED: similar to formin 2 4e-23

C20Contig73 6 14 6 sp|P02872| A. hypogaea Galactose-binding lectin precursor (Agglutinin) (PNA) 1e-152

C20Contig68 18 4 2 gb|AAZ20276.1| A. hypogaea oleosin 1 5e-70

C20Contig77 12 6 6 gb|AAU21493.1| A. hypogaea conarachin 0
C20Contig31 13 6 2 sp|P29828| M. sativa Protein disulfide-isomerase precursor (PDI) 0
C20Contig4 9 5 6 gb|ABE81150.1| M. truncatula Major intrinsic protein 1e-131

C20Contig75 18 0 3 sp|P27483| A. thaliana Glycine-rich cell wall structural protein precursor 5e-06
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selected to search against GenBank non-redundant pro-
tein database (nr) (Table 4 and 5).

Based on the abundance and the R statistic, a clustering
analysis was performed to assess the relatedness of each
library in terms of gene expression profiles. As Ewing et al.
(1999) described [32], we compiled the 84 TCs into a
matrix file comprised of the frequency of ESTs corre-
sponding to each contig in the library that represented dif-
ferent seed developmental stages and performed
hierarchical clustering analysis. From hierarchical cluster-
ing analysis, the 84 TCs with different redundant and sim-
ilar expression patterns could be grouped into eight major
clusters from A to H as shown in Figure 4. Each cluster rep-
resents a different expression profile. Hierarchical cluster-

ing analysis showed that most of high abundant genes
with same putative functions from 'GT-C20' libraries and
'Tifrunner' libraries could be grouped into the same clus-
ter. These genes usually encode constitutive proteins (such
as arachin, conglutin and oleosin) and their expression
patterns are not genotype dependent. Some putative genes
related to resistance such as PR10 protein and defensin
2.1 precursors were found only in 'GT-C20' and the
expression pattern was up-regulated (Fig. 3).

The results of hierarchical clustering and similarity search
indicated that the 84 unique ESTs (R > 4) with similar
DNA sequence were not equally distributed between the
'GT-C20' and 'Tifrunner' libraries. In comparison, only 32
unique ESTs (R > 4) were not equally distributed within

Table 3: Gene expression frequency and BLAST results of the unique ESTs assembled from more than 20 consensus ESTs in the TFR5, 
TFR6 and TFR7 libraries

NCBI BLAST

Contig R5 R6 R7 Accession no. Species Gene description E Value

TFContig7 250 360 158 gb|AAG01363.1| A. hypogaea Gly1 0
TFContig8 104 257 190 gb|ABI17154.1| A. hypogaea iso-Ara h3 0
TFContig25 130 119 104 sp|P43237| A. hypogaea Allergen Ara h 1, clone P17 precursor (Ara h I) 0
TFContig13 112 90 150 gb|AAU21494.1| A. hypogaea 2S protein 1 7e-98

TFContig31 95 137 119 gb|AAW56068.1| A. hypogaea conglutin 3e-79

TFContig16 124 230 78 sp|P43238| A. hypogaea Allergen Ara h 1, clone P41B precursor (Ara h I) 0
TFContig30 138 135 65 gb|AAU21490.1| A. hypogaea arachin Ahy-1 0
TFContig20 89 118 114 sp|Q647G9| A. hypogaea Conglutin precursor (Allergen Ara h 6) 6e-79

TFContig27 88 126 57 gb|ABL14270.1| A. hypogaea arachin 6 0
TFContig35 87 79 34 gb|AAU21499.2| A. hypogaea oleosin 1 4e-90

TFContig5 54 56 23 gb|AAW56067.1| A. hypogaea arachin Ahy-4 0
TFContig28 34 35 27 gb|AAU21501.1| A. hypogaea oleosin 3 7e-88

TFContig1 56 14 14 gb|AAZ20291.1| A. hypogaea metallothionein-like protein 3e-46

TFContig29 10 28 40 gb|ABN09090.1| M. truncatula Desiccation-related protein PCC13-62 precursor 1e-106

TFContig39 32 13 33 gb|AAU21496.1| A. hypogaea 2S protein 2 3e-81

TFContig33 41 13 3 gb|AAT40509.2| S. demissum Hyoscyamine 6-dioxygenase, putative 2e-07

TFContig41 35 10 5 gb|AAZ20290.1| A. hypogaea type 2 metallothionein [Arachis hypogaea] 3e-45

TFContig42 27 18 5 gb|ABC75834.1| G. max glyceraldehyde-3-phosphate dehydrogenase 0
TFContig36 26 18 1 gb|AAC15413.1| O. sativa translation elongation factor-1 alpha; EF-1 alpha 0
TFContig46 20 16 3 gb|AAA99868.1| G. hirsutum peroxidase 1e-170

TFContig51 8 9 16 sp|P02872| A. hypogaea Galactose-binding lectin precursor (Agglutinin) (PNA) 1e-152

TFContig4 15 14 1 gb|AAZ20276.1| A. hypogaea oleosin 1 7e-70

TFContig50 15 12 3 gb|AAC17529.1| S. saman aquaporin 2 1e-154

TFContig60 15 13 2 gb|ABE80997.1| M. truncatula Phosphoglycerate kinase 0
TFContig63 22 6 2 gb|ABM45856.1| A. hypogaea cytosolic ascorbate peroxidase 1e-142

TFContig48 14 13 1 sp|P29828| M. sativa Protein disulfide-isomerase precursor (PDI) 0
TFContig64 14 7 6 gb|AAB84262.1| A. hypogaea omega-6 desaturase 0
TFContig65 10 9 8 gb|ABE81150.1| M. truncatula Major intrinsic protein 1e-131

TFContig66 7 14 6 gb|AAL73404.1| C. avellana 11S globulin-like protein 1e-118

TFContig67 14 7 3 gb|ABF51006.1| A. hypogaea Cu-Zn superoxide dismutase 3e-83

TFContig44 20 2 1 sp|P27483| A. thaliana Glycine-rich cell wall structural protein precursor dbj|BAA94983.1| 
unnamed protein product

5e-06

TFContig61 10 8 5 dbj|BAD99508.1| V. angularis gibberellin 2-oxidase 1e-127

TFContig70 13 8 1 gb|ABE82912.1| M. truncatula Ribosomal protein S4, bacterial and organelle form 1e-104

TFContig38 8 8 5 gb|AAM48133.1| S. medusa putative flavanone 3-hydroxylase 3e-64

TFContig71 19 1 1 gb|ABE83728.1| M. truncatula Histidine triad (HIT) protein 3e-28

TFContig72 13 7 1 gb|AAS18240.1| G. max enolase 0
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different 'GT-C20' libraries (Table 4 and Fig. 3). There
were seven, ten and eight unique TCs were observed in the
C20R5, C20R6 and C20R7 libraries, respectively. Three
unique TCs (C20Contig40 for allergen Ara1,
C20Contig48 for arachin 6 and C20Contig37 for arachin
Ahy-1) were observed between C20R5 and C20R6 librar-

ies. These three unique EST contigs (C20Contig35 for con-
glutin precursor, C20Contig52 for conglutin and
C20Congtig86 for gibberellin 2-oxidase) were primarily
found in the C20R5 and C20R7 libraries. Only one
unique EST (C20Contig62 for Ca+2-binding EF hand pro-
tein) had cDNA clones represented only in C20R6 and

Functional classification of peanut unique ESTs by comparison to Arabidopsis Sequencing Project functional categoriesFigure 4
Functional classification of peanut unique ESTs by comparison to Arabidopsis Sequencing Project functional categories. A: func-
tional categories of 'GT-C20' unique EST sequences; B: functional categories of 'Tifrunner' unique ESTs.
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C20R7 libraries. Four unique ESTs (C20Contig14 for iso-
Ara h3, C20Contig19 for seed storage protein SSP1,
C20Contig65 for 2S protein 2 and C20Contig51 for 2S
protein 1) had cDNA clones equally distributed across the
three libraries of 'GT-C20'.

In the three 'Tifrunner' libraries, there were 38 unique
ESTs (R > 4) whose cDNA clones were not equally distrib-
uted (Table 5 and Fig. 3). Comparison within all 'Tifrun-

ner' libraries, fourteen, five and seven unique EST
sequences were observed in TFR5, TFR6 and TFR7 librar-
ies, respectively. Six unique ESTs were observed only in
TFR5 and TFR6 but absent in TFR7 libraries. Two unique
ESTs were predominately present in the TFR6 and TFR7.
The remaining unique ESTs with R > 4 had cDNA clones
equally distributed across the three 'Tifrunner' libraries.

Defense-related genes identified by database search 

Table 4: Top hits of C20 unique EST sequences with R > 4

NCBI BLAST

Contig R5 R6 R7 R Accession no. Species Gene description E Value

C20Contig35 156 69 150 26.01 sp|Q647G9| A. hypogaea Conglutin precursor (Allergen Ara h 6) 3e-79

C20Contig52 205 94 170 20.2 gb|AAW56068.1| A. hypogaea conglutin 6e-79

C20Contig40 103 97 44 17.48 sp|P43238| A. hypogaea Allergen Ara h 1, clone P41B precursor (Ara h I) 0
C20Contig48 192 117 46 16.71 gb|ABL14270.1| A. hypogaea arachin 6 0
C20Contig50 15 32 8 16 gb|AAT00597.1| A. hypogaea conarachin 1e-169

C20Contig63 0 0 9 13.13 gb|AAU21491.1| A. hypogaea arachin Ahy-2 1e-23

C20Contig37 283 123 67 12.27 gb|AAU21490.1| A. hypogaea arachin Ahy-1 0
C20Contig33 21 14 34 11.87 gb|ABN09090.1| M. truncatula Desiccation-related protein PCC13-62 precursor, putative 1e-106

C20Contig14 369 231 183 10.58 gb|ABI17154.1| A. hypogaea iso-Ara h3 0
C20Contig80 1 0 9 10.49 gb|AAY54009.1| A. hypogaea LEA protein 2e-44

C20Contig71 24 3 0 9.83 gb|AAM48133.1| S. medusa putative flavanone 3-hydroxylase 3e-65

C20Contig19 86 60 70 8.96 gb|AAT00598.1| A. hypogaea seed storage protein SSP1 1e-104

C20Contig14
8

0 0 6 8.75 gb|AAU81922.1| A. hypogaea PR10 protein 8e-67

C20Contig95 4 0 10 8.68 gb|AAY59891.1| A. hypogaea serine protease inhibitor 4e-59

C20Contig75 16 0 1 7.53 sp|P27483| A. thaliana Glycine-rich cell wall structural protein precursor 5e-06

C20Contig73 6 14 6 6.89 sp|P02872| A. hypogaea Galactose-binding lectin precursor (Agglutinin) (PNA) 1e-152

C20Contig30 3 10 4 6.17 gb|AAL73404.1| C. avellana 11S globulin-like protein 1e-117

C20Contig11
0

10 0 0 6.17 gb|ABE83769.1| M. truncatula Actin/actin-like 0

C20Contig87 14 2 0 5.57 gb|ABC75834.1| G. max glyceraldehyde-3-phosphate dehydrogenase 0
C20Contig62 0 4 3 5.51 gb|AAB71227.1| G. max Ca+2-binding EF hand protein 1e-113

C20Contig15
2

1 5 0 5.31 gb|AAF73006.1 R. communis NADP-dependent malic protein 0

C20Contig65 20 15 23 5.21 gb|AAU21496.1| A. hypogaea 2S protein 2 1e-79

C20Contig51 145 74 96 5.17 gb|AAU21494.1| A. hypogaea 2S protein 1 9e-94

C20Contig84 13 0 6 4.93 emb|CAB65284.1
|

M. sativa putative wound-induced protein 4e-12

C20Contig99 11 0 1 4.81 gb|AAS18240.1| G. max enolase 0
C20Contig86 11 0 6 4.5 dbj|BAD99508.1| Vigna 

angularis
gibberellin 2-oxidase 1e-127

C20Contig22
9

0 3 0 4.44 ref|NP_851111.1| A. thaliana putative N-hydroxycinnamoyl/benzoyltransferase 2e-76

C20Contig27
6

0 3 0 4.44 gb|ABE82094.1| M. truncatula RNA-binding region RNP-1 (RNA recognition motif) 2e-17

C20Contig28
1

0 3 0 4.44 gb|ABE81198.1| M. truncatula conserved hypothetical protein 3e-58

C20Contig29
2

0 3 0 4.44 ref|NP_567466.1| A. thaliana unknown protein 1e-86

C20Contig60 0 0 3 4.38 gb|AAR02860.1| A. hypogaea storage protein 5e-31

C20Contig64 0 0 3 4.38 gb|AAV85438.1| M. sativa putative defensin 2.1 precursor 2e-26

C20Contig94 3 8 3 4.34 gb|AAT67997.1| M. truncatula 1-cys peroxiredoxin 1e-105

C20Contig12
9

7 0 0 4.32 No hits found

C20Contig89 3 1 7 4.08 gb|AAG37451.1| G. tomentella seed maturation protein LEA 4 3e-59
C20Contig16
2

1 4 0 4.03 sp|P17928| M. sativa Calmodulin (CaM) 4e-79
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The information provided by ESTs from plant tissues chal-
lenged by specific biotic and abiotic stress conditions
offered an opportunity for gene discovery. The unique EST
sequences from 'GT-C20' and 'Tifrunner' were compared

individually to the non-redundant protein sequence data-
base available from NCBI by BLASTx program with a min-
imum E cutoff value < 1e-5. In reference to the results of
differential expression and hierarchical clustering analysis

Table 5: Top hits of TF unique EST sequence with R > 4

NCBI BLAST

Contig R5 R6 R7 R Accession no. Species Genes description E Value

TFContig8 104 257 190 124.92 gb|ABI17154.1| A. hypogaea iso-Ara h3 0
TFContig13 112 90 150 69.23 gb|AAU21494.1| A. hypogaea 2S protein 1 7e-98

TFContig31 95 137 119 49.24 gb|AAW56068.1| A. hypogaea conglutin 3e-79

TFContig7 250 360 158 48.2 gb|AAG01363.1| A. hypogaea Gly1 0
TFContig20 89 118 114 46.85 sp|Q647G9| A. hypogaea Conglutin precursor (Allergen Ara h 6) 6e-79

TFContig29 10 28 40 34.14 gb|ABN09090.1| M. truncatula Desiccation-related protein PCC13-62 precursor, putative 1e-106

TFContig16 104 182 58 31.57 sp|P43238| A. hypogaea Allergen Ara h 1, clone P41B precursor (Ara h I) 0
TFContig25 130 119 104 22.09 sp|P43237| A. hypogaea Allergen Ara h 1, clone P17 precursor (Ara h I) 0
TFContig27 88 126 57 17.08 gb|ABL14270.1| A. hypogaea arachin 6 0
TFContig39 32 13 33 16.13 gb|AAU21496.1| A. hypogaea 2S protein 2 1e-80

TFContig22 20 48 20 13.98 gb|AAL27476.1| A. hypogaea major allergen Arah1 1e-172

TFContig105 2 1 11 13.30 gb|AAG37451.1| G. tomentella seed maturation protein LEA 4 2e-56

TFContig91 16 0 0 11.09 gb|AAQ23176.1| G. max subtilisin-like protease 1e-168

TFContig51 8 9 16 9.81 sp|P02872| A. hypogaea Galactose-binding lectin precursor (Agglutinin) (PNA) 1e-152

TFContig120 13 0 0 9.01 ref|NP_187143.1| A. thaliana structural constituent of ribosome 2e-63

TFContig71 19 1 1 8.08 gb|ABE83728.1| M. truncatula Histidine triad (HIT) protein 3e -28

TFContig82 13 0 1 7.23 ref|NP_00106155
0.1|

O. sativa 60S ribosomal protein L7A 1e-132

TFContig250 1 0 5 7.09 gb|ABD32384.1| M. truncatula Peptidase A1, pepsin 1e-131

TFContig44 20 2 1 7.04 sp|P27483| A. thaliana Glycine-rich cell wall structural protein precursor 5e-06

TFContig1 56 14 14 6.6 gb|AAZ20291.1| A. hypogaea metallothionein-like protein 3e-46

TFContig33 41 13 3 6.43 gb|AAT40509.2| S.demissum Hyoscyamine 6-dioxygenase, putative 2e-07

TFContig88 9 0 0 6.24 gb|AAQ96335.1| N. tabacum ribosomal protein L3A 1e-125

TFContig159 9 0 0 6.24 No hits found
TFContig304 0 1 4 5.86 gb|ABD32352.1| M. truncatula Heat shock protein Hsp20 4e-63

TFContig43 14 2 0 5.85 sp|Q1S9I9| M. truncatula Probable histone H2B.1 2e-71

TFContig28 34 35 27 5.81 gb|AAU21501.1| A. hypogaea oleosin 3 7e-88

TFContig30 138 135 65 5.72 gb|AAU21490.1| A. hypogaea arachin Ahy-1 0
TFContig527 0 0 3 5.46 ref|NP_00106277

4.1|
O. sativa putative protein phosphatase 1e-105

TFContig541 0 0 3 5.46 gb|AAL87284.1| A. thaliana unknown protein 4e-15

TFContig103 0 5 0 5.43 emb|CAB71135.1
|

C. arietinum putative imbibition protein 1e-125

TFContig26 6 11 0 5.06 gb|AAU21492.1| A. hypogaea arachin Ahy-3 0
TFContig243 2 0 4 4.84 gb|AAX23704.1| H. vulgare HvCBF7 3e-44

TFContig36 26 18 1 4.81 gb|AAC15413.1| O. sativa translation elongation factor-1 alpha; EF-1 alpha 0
TFContig97 2 8 5 4.61 gb|AAY59891.1| A. hypogaea serine protease inhibitor 4e-59

TFContig74 0 4 0 4.34 gb|AAZ20285.1| A. hypogaea ubiquitin fusion protein 1e-67

TFContig403 0 4 0 4.34 emb|CAA41713.1
|

N. tabacum photosystem II 23 kDa polypeptide 1e-72

TFContig411 0 1 3 4.29 emb|CAB82677.1
|

A. thaliana pectinesterase-like protein 5e-47

TFContig81 8 0 1 4.22 sp|P93092| C. glauca Acyl carrier protein 1, chloroplast precursor (ACP 1) 4e-40

TFContig235 6 0 0 4.16 gb|ABE77917.1| M. truncatula Cyclin-like F-box; F-box protein interaction domain 1e-47

TFContig237 6 0 0 4.16 gb|EAZ34524.1| O. sativa hypothetical protein OsJ_018007 2e-23

TFContig251 6 0 0 4.16 emb|CAA39819.1
|

P. sativum Cu/Zn superoxide dismutase II 7e-89

TFContig260 6 0 0 4.16 gb|ABF93903.1| O. sativa 60S ribosomal protein L21, putative, expressed 3e-83

TFContig262 6 0 0 4.16 emb|CAI51313.1| C. chinense arachidonic acid-induced DEA1 3e-25

TFContig263 0 4 2 4.16 gb|AAD49719.1| G. max maturation protein pPM32 2e-32

TFContig41 35 10 5 4.12 gb|AAZ20290.1| A. hypogaea type 2 metallothionein 3e-45

TFContig101 12 3 0 4.07 gb|AAS57913.1| V. radiata 70 kDa heat shock cognate protein 2 0
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(Table 4 and 5), only those genes whose expression were
significant up or down regulated at different stages were
selected. The other defense-related genes whose E value >
1e-5 treated as false positive and were excluded from the
analysis.

Among the unique EST sequences with R > 4, only three
up-regulated putative defense-related genes (putative des-
iccation-related protein PCC13-62 precursor, serine pro-
tease inhibitor and seed maturation protein LEA 4) were
identified in both 'GT-C20' and 'Tifrunner' libraries (Table
6 and Fig. 3). Six up-regulated unique EST sequences were
observed only in 'GT-C20' libraries, and matched previous
reported known protein including PR10 protein, defensin
protein and calmodulin (Table 6). In the 'Tifrunner'
libraries, five defense-related genes such as metal-
lothionein-like protein, heat shock protein and Cu/Zn
superoxide dismutase II were detected with significant up-
regulation.

Comparison of these EST data to other plant EST 
sequences
In order to compare these peanut ESTs to other publicly
available plant ESTs, a similarity search against several
plant EST databases in TIGR Gene Indices was performed
(Table 7). When DNA sequence identity was at ≥ 90%, the
percentages of peanut ESTs matching soybean and Medi-
cago truncatula were 16.45% and 9.82%, respectively.
When DNA sequence identity was decreased to ≥ 80%, the
percentages of peanut ESTs matched to soybean and M.
truncatula greatly increased to 79.46% and 72.53%,
respectively. In contrast, the percentages of peanut ESTs
that matched to Arabidopsis, rape seed, rice, maize and
wheat ESTs were less than 50%, ranging from 33.84% to
45.69%, when DNA sequence identity was set at ≥ 80%.
Although peanut and rape seed are both oilseed crops,
when the DNA sequence identity was set at ≥ 80%, the
similarity of peanut ESTs matching rape seed ESTs was
only 38.5%, far less than that of the legume crops soybean
and M. truncatula. As expected, peanut ESTs showed a

Table 6: Putative resistance-related genes with significantly differential expression (R > 4) in 'GT-C20' and 'Tifrunner' libraries

Putative Gene function Organism 'GT-C20' 'Tifrunner'

Desiccation-related protein PCC13-62 precursor, putative M. truncatula + +
seed maturation protein LEA 4 G. tomentella + +
metallothionein-like protein A. hypogaea - +
Heat shock protein Hsp20 M. truncatula - +
serine protease inhibitor A. hypogaea + +
Cu/Zn superoxide dismutase II P. sativum - +
type 2 metallothionein A. hypogaea - +
70 kDa heat shock cognate protein 2 V. radiata - +
LEA protein A. hypogaea + -
PR10 protein A. hypogaea + -
Ca+2-binding EF hand protein G. max + -
putative wound-induced protein M. sativa + -
putative defensin 2.1 precursor M. sativa + -
Calmodulin (CaM) M. truncatula + -

+: the putative resistance-related gene was identified in the libraries.
-: no putative resistance-related gene was identified in the libraries.

Table 7: Peanut unique EST homologs identified in soybean, Medicago truncatula, Arabidopsis, rapeseed, rice, maize and wheat in TIGR 
gene indices

TIGR Gene Indices Number of ESTs matched to TIGR Gene Indices (Percent in Parentheses)a

Identity ≥ 80% Identity ≥ 90%

Soybean (Glycine max) 6904 (79.46) 1429 (16.45)
Medicago truncatula 6302 (72.53) 853 (9.82)
Arabidopsis thaliana 3970 (45.69) 470 (5.41)
Rapeseed (Brassica napus) 3345 (38.50) 465 (5.35)
Rice (Oryza sativa) 3128 (36.00) 484 (5.57)
Maize (Zea mays) 2716 (31.26) 402 (4.63)
Wheat (Triticum aestivum) 2940 (33.84) 469 (5.40)

aThe criteria for stand-alone BLASTn were: (1) extract-match bp ≥ 11; (2) E value ≤ 1e-5; and (3) identity ≥ 80% and 90% at DNA sequence level.
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higher similarity to ESTs of the legume species than to
those of cereal crops, and also present a higher homology
to ESTs of the dicot plants than to those of the monocots.

Discussion
Larger-scale sequencing of Expressed Sequence Tags (EST)
is an effective method for gene discovery. The available
peanut EST database in GenBank is 19,790 entries as of
March 23, 2007, which were derived from leaf, root, pod,
cotyledon and other tissues of cultivated peanut (13,526)
and wild species (6,264), respectively. Compared to
maize, wheat, rice and soybean, the number and scale of
peanut ESTs deposited in GenBank are far behind those
major crops and it is inadequate to meet the need of pea-
nut genetic and genomic research. Many successful EST
projects have been reported for a number of species and
from a variety of tissues under various conditions
[6,11,17,27,33,34]. However, most of these EST projects
were restricted to different tissues from one genotype or
different tissues from different genotypes. The EST project
reported in this study is uniquely and systematically
designed using the same tissues (developing seeds) from
two genotypes, 'GT-C20' and 'Tifrunner' with different
characters in terms of resistance and susceptibility to dis-
eases, under the same environmental conditions (chal-
lenged by A. parasiticus and drought stress) at specific seed
developmental stages (R5, R6 and R7). The completion of
this peanut EST project makes the available peanut ESTs in
the GenBank database doubled for the research commu-
nity to share. In addition, the six libraries were neither
normalized nor subtracted so that the frequency of a
unique EST (gene) within each stage could be determined
and could provide a hint for the expression level of that
specific gene.

To understand the molecular basis of host resistance to A.
flavus/parasiticus and consequent aflatoxin contamination,
we monitored the transcript changes at these three devel-
opmental stages in developing seeds. The 8,689 unique
ESTs were categorized into different functional groups
based on the MIPS criteria [29,30]. The highly expressed
overlapping ESTs also helped in assembling full-length
unique transcripts expressed in peanut seed, such as the
putative allergen protein (iso-Ara h3, GenBank accession
no. DQ855115). The putative functions of those identi-
fied unique ESTs have been predicted by similarity search
according to MIPS (Fig. 4). Comparing to the Arabidopsis
sequence data, 65.99% of total peanut unique ESTs
matched Arabidopsis protein sequences with a known
function and 17.58% had significant similarity to Arabi-
dopsis protein sequences with unknown function. About
16.43% of the total unique ESTs showed no significant
similarity to Arabidopsis al all. Those peanut ESTs matched
Arabidopsis know functions were divided into nineteen
categories [29,30]. A major portion of these genes with

known functions fall in the category of metabolism
(24.47%) followed by transcription (8.85%, Fig. 4). To
further identify novel peanut sequences, a comprehensive
similarity search against GenBank non-redudant (nr)
database using the stand-alone BLASTx algorithm was per-
formed and resulted in the identification of an additional
967 putative novel sequences including 165 unique pea-
nut ESTs matching reported known peanut genes. The
BLAST result revealed that significant number of unique
peanut seed ESTs match soybean (396), Arabidopsis
(2952), rice (682), and other plant species.

In this study, some previously reported defense-related
genes have been confirmed to be expressed. Desiccation-
related proteins could be induced by drought stress and
were relatively sensitive to cellular dehydration [35,36].
The LEA (late embryogenesis abundant) proteins are
known to be involved in protecting higher plants from
damage caused by environmental stresses, especially
dehydration from drought [37-39]. Serine protease inhib-
itors are involved in plant defense against pathogens and
could be induced in response to infection by pathogens
[40-42]. These three different classes of genes were up-reg-
ulated in the three reproduction stages of both 'GT-C20'
and 'Tifrunner' libraries. Other related-genes with signifi-
cant differential expression were present either in 'GT-
C20' or in 'Tifrunner'. For example, the PR10 protein fam-
ily is induced by plants in response to pathogen infection
as well as abiotic stress, and showed transcriptional up-
regulation upon biotic and abiotic stresses [43-45]. Cal-
modulin (CaM) is a ubiquitous Ca2+ sensor found in all
eukaryotes and has been shown to participate in the regu-
lation of diverse calcium-dependent physiological proc-
esses [46]. Calmodulin plays an important role in sensing
and transducing changes in cellular Ca2+ concentration in
response to several biotic and abiotic stresses [47]. CaM
has been implicated in plant-pathogen interactions
[48,49]. PR10 and Calmodulin were significantly up-reg-
ulated in 'GT-C20' libraries but not in 'Tifrunner' (Table
6). In contrast, two heat shock proteins, synthesized in
response to heat stress [50-52], were detected up-regu-
lated in 'Tifrunner' libraries but not in 'GT-C20' (Table 6).
This raises questions of why certain genes are present or
absent or show differential expression in different geno-
types, such as 'GT-C20' and 'Tifrunner'. There are two pos-
sible hypothetic explanations. One is that in this study we
randomly selected clones for cDNA sequencing and might
have missed some clones that could be in 'GT-C20' or 'Tif-
runner' libraries. The other is that the presence, absence or
significantly differential expressions of certain genes,
especially defense-related genes, are a result of the genetic
differences (resistance and susceptibility) of these two
genotypes. In order to verify the assumption that variabil-
ity of expression might be a result of genetic differences in
disease resistance or stresses tolerance, two genes (an
Page 12 of 16
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=DQ855115


BMC Developmental Biology 2008, 8:12 http://www.biomedcentral.com/1471-213X/8/12
allergen protein iso ara h3, highly abundant and a consti-
tutively expressed genes, and an LEA 4, a up-regulated and
defense-related gene) were selected for sequence similar-
ity analysis. As expected, the similarity of iso ara h3
between 'GT-C20' and 'Tifrunner' was 97%, however, LEA
4 sequences shared only 91% identity over 709 bases. For
iso ara h3, among 1,692 consensus sequences, 6 gaps were
found. For LEA 4, among 709 consensus sequences, 19
gaps were found (data not shown). The results implied
that the allelic differences of defense-related genes were
higher than that of constitutively expressed genes. Further
investigations are necessary to characterize their gene
functions and to analyze the patterns of their gene expres-
sions.

Conclusion
This is a unique study using both resistance and suscepti-
bilities genotypes under the same environmental condi-
tions as challenged by A. parasiticus and drought stress at
specific seed developmental stages (R5, R6 and R7). The
large number of peanut ESTs obtained provides an impor-
tant resource for gene discovery, for gene expression pro-
filing, and for microarray design [12,53]. The frequency of
the individual EST demonstrated the temporal expression
patterns of a given gene. The information from this study
will significantly improve our understanding the mecha-
nism of host resistance and provide a useful genomic
resource for peanut breeding and aflatoxin research com-
munity.

Methods
Libraries construction and sequencing
The peanut varieties 'Tifrunner', susceptible to A. parasiti-
cus but resistant to TSWV (tomato spotted wilt virus, the
No.1 disease in southeastern US) and 'GT-C20', resistant
to Aspergillus parasiticus but susceptible to TSWV, were
selected for this experiment. The peanut plant materials
used for RNA extraction were grown in the field and inoc-
ulated by A. parasiticus NRRL 2999 at mid-bloom (60 days
after planting). Drought stress was imposed during the
final 40 days before harvest through the use of rain-out
shelters. Immature pods at the R5 (beginning seed), R6
(full seed) and R7 (beginning maturity) stages [54] from
two peanut genotypes, 'GT-C20' and 'Tifrunner', were col-
lected, frozen in liquid nitrogen, and stored at -80°C until
RNA extraction.

Developing seeds were removed from the sampled imma-
ture pods for total RNA extraction. Six cDNA libraries
from developing seeds were constructed according to the
protocol reported previously [55]. The cDNA inserts were
ligated to the pBlueScript vector. Each of the six cDNA
libraries was named using first 2 letters from genotype fol-
lowed by corresponding developing stage. For example,

TFR5 refers to 'Tifrunner' at developing stage R5, and so
on.

Sequencing was performed using ABI 3730xl Genetic ana-
lyzer (Applied Biosystems) with the ABI Prism BigDye ter-
minator cycle sequencing kit (Foster City, CA) from 5' end
of cDNA using T3 sequencing primer.

EST processing and clustering
The short vector sequences were trimmed off from the raw
sequence reads and the poor-quality sequences (less than
100 nucleotides) were removed by the Sequencher 4.6
software (Gene Codes, Ann Arbor, MI). The cleaned cDNA
sequences from 'GT-C20' and 'Tifrunner' were separately
assembled into TCs through the use of Phrap [56] with
90% minimum match. Sequences sharing greater than
90% identity over 40 or more contiguous bases with
unmatched overhang less than 30 bases in length were
placed into clusters. Overlaps exclusively on low complex-
ity regions were excluded.

Frequency of cDNAs in different libraries
The six cDNA libraries were neither normalized nor sub-
tracted. Therefore, the number of cDNA clones comprised
of contigs may represent gene expression profiles at the
different developmental stage. An "electronic Northern"
was conducted through analyzing the frequency of cDNA
clones within each contig. Six libraries were divided into
two groups for analysis according to source genotype.
Either group including three libraries constructed from
the same peanut genotype at different stage was separately
compiled and analyzed. Each of the three libraries repre-
sented different developmental stages (R5, R6 and R7)
which were subjected to different lengths of fungal chal-
lenge and drought stress was analyzed to identify cDNAs
whose presence was specific to that developmental stage
and environmental challenge.

Functional annotation of unique ESTs and bioinformatics
In order to identify the putative functions of unique ESTs
by BLAST against the NCBI (National Center for Biotech-
nology Information) non-redundant protein database
(nr) and the Munich Information Center for Protein
Sequences (MIPS), Arabidopsis Sequencing Project func-
tional categories [29,30] were downloaded and localized.

A sequence similarity comparison between EST sequences
and nr database was performed using the BLASTx algo-
rithm [57,58] with NCBI default parameters. The unique
sequences were considered to be homologous to known
proteins in nr database when the E value of BLAST was less
than 10-5 (the probability that alignment would be gener-
ated randomly is 1<100,000) and the BLAST score was
higher than 200. The putative full-length protein-coding
region was determined by complete open read frame
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(ORF), poly (A) and significant similarity to known pro-
tein sequence. Functional classifications from MIPS were
assigned to each unique EST by referring to MIPS func-
tional catalogue. Resistance/defense-related genes were
identified in the ESTs via a combination of similarity to
known genes and transcript expression profiles.

Gene expression analysis was performed using TIGR Mul-
tiExperiment Viewer software [59] by using transcript
abundance in each contig in all six libraries. The signifi-
cant differences in EST abundance for each contig among
the libraries were assessed by an R statistic described by
Stekel et al. (2000). Only those TCs with R > 4 were used
for hierarchical clustering analysis.

Comparative genome analysis between our ESTs and the
currently available major crop EST gene indice in the data-
bases was performed. These include Arabidopsis thaliana
(81,826 ESTs), rape seed (Brassica napus) (25,929 ESTs),
maize (Zea mays) (115,744 ESTs), Medicago truncatula
(36,878 ESTs), rice (Oryza sativa) (181,796 ESTs), soybean
(Glycine max) (63,676 ESTs), and wheat (Triticum aesti-
vum) (122,282 ESTs). These TIGR EST gene indice (cur-
rently curated at Harvard University) were downloaded
from the FTP site [60]. The following criteria were used in
BLAST with the TIGR gene index, E-value less than 1e-5
and DNA identity more than 80% and 90%.
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