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Abstract

Blood vessels in the central nervous system (CNS) form a specialized and critical structure, the 

blood-brain barrier (BBB). We present a resource to understand the molecular mechanisms that 

regulate BBB function in health and dysfunction during disease. Using endothelial cell enrichment 

and RNA sequencing, we analyzed the gene expression of endothelial cells in mice, comparing 

brain endothelial cells to peripheral endothelial cells. We also assessed the regulation of CNS 
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endothelial gene expression in models of stroke, multiple sclerosis, traumatic brain injury and 

seizures, each having profound BBB disruption. We found that although each is caused by a 

distinct trigger, they exhibit strikingly similar endothelial gene expression changes during BBB 

disruption, comprising a core BBB-dysfunction module that shifts the CNS endothelial cells into a 

peripheral endothelial cell-like state. The identification of a common pathway for BBB 

dysfunction suggests that targeting therapeutic agents to limit it may be effective across multiple 

neurological disorders.

The blood vessels in the central nervous system (CNS) possess a series of unique properties, 

together termed the blood-brain barrier (BBB), that tightly regulate the movement of ions, 

molecules and cells between the blood and the neural tissue1,2. Many of these BBB 

properties are mediated by the endothelial cells that line the blood vessels. In contrast to 

those in non-neural tissues, CNS endothelial cells have specialized tight junction structures 

that maintain a high electrical resistance paracellular barrier, low rates of transcytosis and 

lack of fenestra creating a transcellular barrier, distinct transport properties that efflux 

potential toxins and deliver specific nutrients, and low levels of leukocyte adhesion 

molecules that limit CNS immune surveillance1–3. These properties are regulated by 

interactions between the endothelial cells with the CNS microenvironment4,5, including 

neural progenitors, pericytes and astrocytes4,6–9. The ability of the BBB to tightly regulate 

the microenvironment of the CNS is critical for the proper neuronal function and to protect 

neural tissue from toxins, pathogens and other potentially harmful agents.

BBB disruption has been observed in human patients and mouse models of many different 

neurological diseases including stroke, multiple sclerosis (MS), traumatic brain injury (TBI), 

epilepsy, cancer, infection and neurodegenerative diseases1,2. The disruption of the BBB 

can include a loss of tight junction integrity, increase in transcytosis, alterations in transport 

properties and increases in the expression of leukocyte adhesion molecules. These changes 

in the BBB result in CNS ion dysregulation, edema and immune infiltration, which can lead 

to neuronal dysfunction, damage and degeneration. Despite its importance in disease, many 

questions still remain. What are the molecular mechanisms that lead to BBB dysfunction in 

each disease? Is disruption of the BBB mediated by the same or different mechanisms in 

different neurological diseases? How is the BBB repaired? Is BBB dysfunction helpful in 

wound healing or harmful, initiating neuronal damage?

Here we have used endothelial cell enrichment followed by RNA sequencing to generate a 

resource to understand BBB gene expression in health and disease in mice. In health we 

enriched for endothelial cells from different organs including the brain, heart, kidney, lung, 

and liver, and sequenced the RNA to generate a BBB-specific gene expression profile. We 

further used four different disease models including a middle cerebral artery occlusion 

(MCAO) model of stroke, an experimental autoimmune encephalomyelitis (EAE) model of 

MS, a cortical impact model of pediatric TBI, and a kainic acid model of seizure, each with 

distinct temporal and spatial patterns of BBB dysfunction and neuroinflammation. For each 

disease model, we enriched for the endothelial cells and performed RNA sequencing from 

three timepoints to identify the endothelial gene expression changes following each of the 

different triggers. This RNA sequencing database provides a resource for understanding the 
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transcriptional profiles of CNS endothelial cells during health and disease. We found that, 

although each of the disease models has a unique trigger, they each lead to remarkably 

similar transcriptional changes to the BBB, suggesting a common mechanism for BBB 

dysfunction throughout different neurological disorders.

RESULTS

The blood-brain barrier in health

Transcriptional profiling of different vascular beds—Rosa-tdTomato; VE-Cadherin-

CreERT2 mice were generated to enable tamoxifen-inducible expression of tdTomato in 

endothelial cells. One week following tamoxifen injections in adults, tdTomato fluorescence 

could be visualized in blood vessels in brain, spinal cord, heart, kidney, lung and liver (Fig. 

1). The tdTomato co-localized with CD31+ endothelial cells in each of the tissues, and did 

not co-localize with immune cells, pericytes, neuronal or glial cell markers (Fig. 1, data not 

shown). We enriched tdTomato+ endothelial cells from brain, heart, kidney, lung and liver 

using FACS, isolated the RNA and performed RNA sequencing, as well as analyzing whole 

brain homogenates. Because brain mural cells adhere tightly to the endothelial cells, we 

added a second set of brain samples with an extra collagenase/dispase digestion step. We 

termed the first set Brain Vascular, as it contains endothelial cells with some adherent mural 

cells, and the second set Brain Endothelial, as the mural cells are further depleted. Reads 

were mapped onto the ensembl genome. The brain vascular and brain endothelial cell 

samples showed high levels of RNA from endothelial cell genes with minimal levels of RNA 

from neuronal and glial genes. In the Brain Vascular sample there was a small but present 

level of mural cell genes estimated to be <2.0% of the RNA whereas the Brain Endothelial 

sample contained <0.05% mural cell RNA (Supplementary Fig. 1). The complete data set 

can be found in Supplementary File 1. Brain mural cell genes could thus be identified as 

genes enriched in the Brain Vascular compared to the Brain Endothelial sample 

(Supplementary File 2).

BBB-enriched transcriptome—In Supplementary File 3, we list all the BBB-enriched 

genes (>5 counts per million [cpm] in brain endothelial cells, and at least two-fold 

(log2>1.000) and P-value <0.05 enriched in brain endothelial cells compared to endothelial 

cells of each peripheral organ), and in Supplementary Table 1, we list the top 50 BBB-

enriched genes (most enriched in the brain endothelial cells compared to the heart, kidney, 

lung and liver endothelial cell samples and whole brain samples). We utilized the DAVID 

Bioinformatics functional annotation tool to identify signaling pathways, metabolic 

pathways and protein interactions enriched at the BBB. This identified Wnt/beta-catenin 

related pathways, different transport mechanisms, and amino acid metabolism as key BBB-

enriched pathways. Wnt/beta-catenin signaling has been identified as a key regulator of 

CNS-specific angiogenesis, BBB induction and maintenance10–16, and this data-set 

identified BBB-enriched Wnt mediators including Lef1, Fzd3, Notum, Apcdd1, Axin2, 

dixdc1 and Tnfrsf19. This dataset identified BBB-enriched components of tight junctions 

(TJ) (Supplementary File 4, Supplementary Table 2), transporters (Supplementary Table 3), 

and additional BBB-enriched functions including extracellular matrix, metabolic programs 

and transcription factors (see Supplementary Results and Discussion).
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Peripheral endothelial-enriched transcriptome—This resource also identified genes 

enriched in the peripheral endothelial cells compared to brain endothelial cells, as well as 

genes enriched in each specific vascular bed. In Supplementary File 5 we list all the 

peripheral endothelial-enriched genes (cpm >5 in all of the peripheral endothelial samples, 

with a log2 ratio>1.00 and P-value<0.05 for at least three of the peripheral endothelial 

samples compared to the brain endothelial samples). In Supplementary Table 1, we list the 

50 most peripheral enriched genes. Pathways mediating the immune response including 

leukocyte migration, toll-like receptor signaling, chemokine signaling and antigen 

presentation are enriched in peripheral endothelial cells compared to brain endothelial cells. 

Several of these genes are known to mediate the function of peripheral endothelial cells, 

including Plvap, which regulates transcytosis17–19, and Sele, Selp, Vcam and Icam1, which 

mediate leukocyte adhesion20–30. Several Hox genes, including Hoxa5 and Hoxb4, are 

greatly enriched in the peripheral endothelial cells compared to the brain endothelial cells 

that may indicate a rostral-caudal axis identity for vasculature. In addition there are many 

instances of a peripheral-enriched gene with a corresponding BBB-enriched family member. 

This includes aquaporins, annexins, and semaphorins.

Cerebrovascular transcriptional response to disease

BBB dysfunction in disease models—Next we examined the molecular changes to 

CNS endothelial cells following four different mouse models of neurological diseases and 

injuries: 1) Kainic acid (KA) model of seizure, 2) experimental autoimmune 

encephalomyelitis (EAE) model of MS, 3) middle cerebral artery occlusion (MCAO) model 

of stroke, and 4) a focal cortical impact model of pediatric TBI. Each model is elicited by a 

different trigger (neuronal overactivity/seizure; auto-inflammation/EAE; ischemia/stroke and 

mechanical injury/TBI), but all lead to BBB dysfunction and neuroinflammation.

For each model we examined BBB dysfunction, using a transcardiac perfusion of a 

molecular tracer (sulfo-NHS-biotin, ~500Da) at three timepoints: acute, subacute and 

chronic. These timepoints differed based on the course of the disease (see methods), but in 

general the acute timepoint was within a day of the onset, the subacute time point was two 

days following the acute, and the chronic was 1-month post onset.

For the KA model of seizure, there was negligible vascular leakage at the acute timepoint 

during the active seizures, whereas at the subacute timepoint vascular leakage could be 

visualized throughout the temporal lobe, and to a lesser extent the hippocampus. At the 

chronic timepoint there was minimal vascular leakage (Fig. 2A,E; Supplementary Fig. 2). 

For the EAE model, there was localized BBB leakage at sites of active lesions throughout 

the spinal cord at the acute and even greater leakage at the subacute timepoint. At the 

chronic timepoint there were sporadic points of leakage that localized to a subset of the 

lesions (Fig. 2B,F; Supplementary Fig. 2). For the MCAO model of stroke, there were rare 

small focal points of vascular leakage on the ipsilateral hemisphere at the acute timepoint, 

which appeared to result from isolated vessels with a leaky BBB. the subacute timepoint 

there was a large discrete region with clear boundaries within the ipsilateral hemisphere that 

showed vascular leakage. At the chronic timepoint, there was a much smaller region of BBB 

leakage in a discrete scar (Figure 2C,G; Supplementary Fig. 2). For TBI, leakage occurred 
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preferentially in the cortex adjacent to the site of impact at the acute timepoint. At the 

subacute time point, the pattern of leakage was more robust, extending into the neighboring 

cortex. The chronic timepoint was characterized by prominent cavitation with minimal and 

sporadic BBB leakage. (Figure 2D,H; Supplementary Fig. 2). We found that the BBB in all 

four of the disease models exhibited increased permeability to large endogenous molecules, 

including fibrinogen and IgG, at the subacute timepoint compared to their corresponding 

controls (Supplementary Fig. 3–4). Although we observed only a few hypertrophic vessels 

with disorganized Claudin 5 in the seizure model, there were numerous hypertrophic vessels 

with disorganized Claudin 5 in EAE, stroke and TBI (Supplementary Fig. 5). For each 

disease we also examined the expression of the inflammatory marker CD45 in the CNS, and 

found robust inflammation, peaking at the subacute timepoint (Fig. 2, see Supplementary 

Results and Discussion).

We then used endothelial cell enrichment and RNA sequencing to analyze the gene 

expression for each disease at the three timepoints. In each case the area of CNS 

corresponding to the inflamed region was dissected for endothelial cell purification. In 

addition, we used immune-lineage negative selection to limit immune cell contamination. 

The complete data set of gene expression is presented in Supplementary File 1. In addition, 

we performed co-expression analysis to identify modules of genes, named by different 

colors, that followed statistically similar patterns of expression over all the health and 

disease samples. In Supplementary File 1, Tab 4 we present the association of each gene 

with each module and report the strongest associations after correcting for multiple 

comparisons (Bonferroni correction [column F] and False Discovery Rate [column G]). This 

analysis revealed that many of the BBB-enriched genes affiliate with the red or dark grey 

modules, while many peripheral-enriched genes affiliate with the black, blue, salmon, pink 

or tan modules.

Comparisons of gene changes during each disease—To compare the changes in 

gene expression between each disease we defined the number of up-regulated genes (log2 

ratio>1.000; P-Value<0.05, minimum mean value of 5 counts per million [cpm] in the 

disease samples) and down-regulated genes (log2 ratio<−0.800; P-Value<0.05, minimum 

mean value of 5cpm in the healthy samples) at each timepoint for each disease and 

determined the overlap of gene changes between timepoints for each disease and between 

different diseases within a timepoint.

In Figure 3A for each disease the overlap of gene changes between timepoints are shown 

with Venn diagrams. In seizure and TBI models, the most unique changes are observed at 

the acute timepoint, whereas for EAE and MCAO the most unique changes are observed at 

the subacute timepoint. For seizure, stroke and TBI models, the most overlap of the changes 

occurred between the acute and subacute timepoints. For EAE the most overlap occurred 

between the subacute and chronic timepoints. These differences likely indicate the 

distinctions between the severity of the initial insult in the seizure, stroke, and TBI models 

compared to the buildup of inflammation in the EAE model of MS.

In Figure 3B and 3C the overlap of gene changes between diseases is highlighted. The 

largest number of overlapping gene changes are observed at the subacute timepoints with the 
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majority of genes altered, especially up-regulated genes, in seizure, stroke and TBI models 

are also changed in the other disease models. The acute timepoint, on the other hand, 

showed many disease-specific changes as there were largely non-overlapping data-sets 

between diseases. Therefore, the triggers for each disease initially elicit different 

transcriptional changes at the BBB, but then converge on similar changes at the subacute 

timepoint when the BBB is most leaky. At the chronic timepoint the least number of changes 

were observed for seizure, stroke and TBI models.

We determined how the BBB-enriched and peripheral endothelial-enriched data sets 

responded to each of the diseases (Figure 3D,E). The BBB-enriched transcriptome was 

down-regulated during each of the diseases, reaching the lowest value at the acute TBI, and 

subacute seizure, EAE and stroke timepoints. The peripheral endothelial-enriched genes 

were up-regulated, peaking at acute TBI, and subacute seizure, EAE and stroke timepoints. 

Therefore CNS endothelial cells take on a peripheral endothelial cell gene expression profile 

during BBB dysfunction. Using DAVID Bioinformatics we identified the signaling and 

biological pathways altered in the CNS endothelial cells at each timepoint in each disease 

(Fig. 4, see Supplementary Results and Discussion).

Common changes among diseases—The subacute timepoint, when the most severe 

BBB dysfunction was observed, had the most common gene changes between each disease 

with 54 genes up-regulated in all four diseases and 136 genes up-regulated in at least three 

of the four diseases (Fig. 5A, Supplementary File 6, Supplementary Table 4). This is most 

striking for the TBI and stroke models. For TBI, 61.2% of the upregulated genes at the 

subacute timepoint are upregulated in at least three of the four diseases, and 85.2% of the 

genes are upregulated in at least one other disease. For the stroke model, 52.1% of the 

upregulated genes at the subacute timepoint are upregulated in at least three of the four 

diseases, and 82.2% of the genes are upregulated in at least one other disease. For the 

seizure model, 22.9% of the upregulated genes at the subacute timepoint are upregulated in 

at least three of the four diseases, and 54.4% of the genes are upregulated in at least one 

other disease. The EAE model showed the most changes, and also the most unique changes. 

In this model, 16.4% of the upregulated genes at the subacute timepoint are upregulated in at 

least three of the four diseases, and 42.1% of the genes are upregulated in at least one other 

disease. All four disease models led to remarkably similar gene expression changes at the 

BBB, and this resource has identified a common BBB dysfunction module that appears to be 

up-regulated in CNS endothelial cells regardless of the trigger. On average the BBB 

dysfunction module peaked at the acute timepoint in the TBI model and the subacute 

timepoint in seizure, EAE, and stroke models (Fig. 5B). The genes then returned to baseline 

expression at the chronic timepoint in the seizure, stroke and TBI models, but remained 

elevated in the EAE model (Fig. 5B).

We determined the expression of these BBB dysfunction genes during health by determining 

the expression of each gene in the brain and each peripheral endothelial cell sample. On 

average, the BBB-dysfunction module genes were enriched in each of the peripheral 

vascular beds when compared to the brain (Fig. 5C), and 68 of the 138 genes were identified 

as peripheral-enriched (see Supplementary File 6, column FQ). Therefore in each disease 

model, CNS endothelial cells take on a ‘peripheral’ endothelial gene expression pattern. 
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KEGG and GO term pathways in this BBB dysfunction module include those involved in 

cell division, blood vessel development, inflammatory response, wound healing, leukocyte 

migration, and focal adhesion, highlighting a role for angiogenesis and inflammation in 

BBB dysfunction (Fig. 5D). This core BBB dysfunction module of 136 genes includes 

several genes that have been identified to play a role in BBB dysfunction in different 

diseases. These include genes that regulate leukocyte trafficking (Sele, Selp), and proteolytic 

cleavage of ECM (Mmp14). In addition, multiple members of several gene families were up-

regulated: extracellular proteases of the Serpin family (Serpine1, Serping1), Adams and 

Adamts families (Adam12, Adam19, Adamts4, Adamts8), collagens (Col1a1, Col1a2, 

Col3a1, Col5a1, Col5a2, Col12a1), centromere proteins (Cenpe, Cenpf), Igf binding 

proteins (Igfbp4, Igfbp5), kinesins (Kif11, Kif15, Kif20b), lysyl oxidases (lox, Loxl2, 
Lox3), sulfatases (Sulf1, Sulf2), thrombospondins (Thbs1, Thbs2) and pleckstrin domain 

containing genes (Plekho1, Plekho2). One of the main categories of genes in the BBB 

dysfunction module were extracellular matrix proteins (Col1a1, Col1a2, Col3a1, Lamb1) 

and modulators of the extracellular matrix including extracellular proteases (Adam12, 
Adam19, Adamts4, Adamts9, Mmp14), extracellular protease inhibitors (Serpine1, 
Serping1), and matrix crosslinkers (Lox, Loxl2, Lox3). Using immunohistochemistry we 

validated that indeed many of these matrix proteins are increased along vessels in each 

disease (Supplementary Fig. 6–7).

The BBB dysfunction module genes could be segregated into three patterns based on the 

temporal regulation in the diseases (Fig. 5E). Group 1 reached peak up-regulation in the 

acute phase of many of the diseases and consisted of genes that included molecules involved 

in inflammation (Sele, Timp) and extracellular proteases (Adamts4, Adamts8). Group 2 

peaked at the subacute phase in most of the disease models and included inflammation 

(Selp, Darc) and cell cycle (Ccna2, Cenpe, Mki67) genes. Group 3 peaked at early 

timepoints in seizure, stroke and TBI models, but continued to increase in EAE, and 

included ECM genes (Col3a1) and inhibitors of angiogenesis (Thsb1, Thsb2).

In the co-expression analysis the BBB-dysfunction module genes were found in different 

modules including the black, pink, salmon and steelblue modules (Supplementary File 1, tab 

4). Interestingly, while the black, pink and salmon modules were consistent with peripheral-

endothelial cell genes, the steelblue module consisted of many genes expressed by 

fibroblasts. This could suggest that there is an endothelial-mesenchymal transition occurring 

during disease as has been hypothesized during BBB dysfunction31,32, or could occur if 

endothelial cells engulf fibroblast RNA particles or by fibroblast contamination in the 

endothelial samples. In addition to the common changes found at the subacute timepoint, 

there were common changes found at the acute and chronic timepoints (see Supplementary 

Results and Discussion).

Changes unique to each disease—The most robust disease-unique changes occurred 

in the seizure model at the acute timepoint, during seizures and prior to BBB dysfunction 

and inflammation. Interestingly many solute carrier transporters (65 genes) and ABC-

transporters (11 genes) were down-regulated during the seizures corresponding with an up-

regulation of the glucose transporter Glut1 (Slc2a1), suggesting that the BBB modulates its 
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gene expression in response to neuronal activity, perhaps to focus on glucose transport to 

meet the heavy energetic demands of the seizures.

The disease with the most unique changes at the subacute timepoint was EAE. Interestingly, 

many of these unique changes in EAE were family members of genes within the core-BBB 

dysfunction module, including additional members of the following families: Serpin 

(Serpine1 and Serping1 are up-regulated in at least 3 diseases while Serpina3f, Serpina3g, 
Serpina3i, serpina3n, serpinb1a, serpinb9, serpinb9b are up-regulated just in EAE), MMP 

(Mmp14 and Mmp23), Adam (Adam12/Adam19 and Adam9), Adamts (Adamts4/Adamts8 
and Adamts2/Adamts5), centromere proteins (Cenpe/Cenpf, and Cenpa/Cenpi), and kinesins 

(Kif11/Kif15/Kif20b and Kif18b). This suggests that there is a core BBB dysfunction 

pathway, and that additional family members are recruited the more severe the dysfunction. 

There were many additional unique changes in each disease (see Supplementary Results and 

Discussion).

Regulation of endothelial gene expression by Wnt/beta-catenin signaling

Wnt/beta-catenin signaling has been identified as a key regulator of CNS angiogenesis, BBB 

formation and BBB maintenance inducing tight junction, solute transporter and efflux 

transporter expression, and repressing Plvap expression10–16. We utilized a mouse model 

(Rosa-Bcat-GOF; VE-Cadherin-CreERT2 mice) to express constitutively active beta-catenin 

in endothelial cells, and then used endothelial enrichment and RNA sequencing to determine 

which genes activated beta-catenin is sufficient to regulate in peripheral endothelial cells.

In Supplementary File 7 we present the RNA sequencing data comparing expression in liver 

and lung endothelial cells from activated beta-catenin (Rosa-Bcat-GOF; VE-Cadherin-

CreERT2) and control mice (Rosa-Bcat-GOF). In Supplementary Table 5 we present the top 

20 genes that were up- or down-regulated in liver and lung endothelial cells by activated 

beta-catenin. Activated beta-catenin had a greater effect on liver endothelial cells (882 genes 

altered P<0.05, cpm>10 in control or Bcat-GOF) than lung endothelial cells (257 genes 

altered P<0.05, cpm>10 in control or Bcat-GOF)(Fig. 6A). These findings suggest that the 

highly permeable liver endothelial cells are more responsive to Wnt/beta-catenin activation 

than the moderately permeable lung endothelial cells. More BBB-enriched genes were up-

regulated (34-liver, 12-lung) than down-regulated (5-liver, 5-lung) in the peripheral 

endothelial cells due to activation of beta-catenin, whereas more peripheral-enriched 

endothelial genes were down-regulated (92-liver, 28-lung) than up-regulated (50-liver, 23-

lung) (Fig. 6A,B). The up-regulated genes are expressed higher in healthy brain endothelial 

cells than peripheral endothelial cells (Fig. 6C). Therefore, activated beta-catenin caused 

peripheral endothelial cells to take on more of a brain endothelial gene expression profile.

Lastly, we examined how genes regulated by activated beta-catenin were changed in CNS 

endothelial cells in different disease models (Fig. 6D). We did not find any correlation 

between the beta-catenin activated gene changes and the changes observed in disease. 

Although the Wnt/beta-catenin pathway has been implicated in BBB formation and 

maintenance, our data suggest that loss of Wnt/beta-catenin signaling may not be the driving 

force behind the transcriptional changes that we observed in the different disease models.
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Discussion

We have utilized endothelial cell enrichment and RNA sequencing to understand the gene 

expression changes to the BBB in different neurological disease models that display BBB 

dysfunction. Although each of the mouse models has different triggers, we found similar 

gene expression changes to the BBB in each of the diseases at the subacute timepoint when 

the BBB was most dysfunctional. These data suggest that although the disparate triggers 

may initially have different effects on the vasculature, they converge on similar responses in 

the endothelial cells. This has important implications for the treatment of neurological 

diseases in which BBB dysfunction is a contributing factor, including epilepsy, MS, stroke 

and TBI, as it suggests that identifying therapeutics that limit BBB dysfunction in one of the 

diseases may lead to treatments for others. Increased BBB permeability can be both helpful, 

in allowing the entry of peripheral immune cells to aid in the clearance of debris and wound 

healing, but also detrimental, as it can lead to neuronal dysfunction, intracranial pressure 

increases and immune-mediated neuronal damage and degeneration. As with all 

inflammatory processes it is often the scale of the response that is critical, with small 

amounts being advantageous and large amounts detrimental. Therefore developing methods 

to modulate these pathways to control the timing, spatial distribution and amount of BBB 

dysfunction will be critical.

It is of particular importance to understand the role of each gene of the BBB-dysfunction 

module in regulating alterations in the properties of the BBB. These genes may have 

negative pathological consequences including leakage of the BBB, driving 

neuroinflammation and generating a fibrotic scar, or positive consequences including 

feedback mechanisms that are neuro-protective or for BBB repair. While many of the genes 

in this BBB-dysfunction module are novel, several have been identified to have key roles in 

the disease process. For instance, leukocyte adhesion molecules (Sele, Selp), chemokines 

(Ccl2), and TNF family members (Tnfsf8) have been shown to drive inflammation and 

damage24,33–35. On the other hand, up-regulation of apelin (Apln) has been found to be 

neuro-protective36–38.

It is also striking that a subset of this BBB-dysfunction module was still elevated at the 

chronic timepoint after BBB permeability had restored to baseline in many of the diseases. 

This suggests that a single trigger, such as a three hour KA induced seizure, can lead to long 

term changes to the vasculature that could potentially have consequences on the function of 

the brain. For instance, changes in transporters, signaling, or the extracellular matrix could 

alter the CNS microenvironment and have implications for neural circuit function. Persistent 

changes, such as tmem176a, slc1a3, slc6a13, slc7a11 or Tlr2, could potentially be used to 

identify and target therapeutics to a site of previous pathology.

Each disease also displayed unique brain endothelial transcriptional changes at each time 

point, likely reflecting the severity of the vascular insult, different inflammatory changes, 

amount of neuronal and glial cell death and activation, and differing repair processes in each 

disease. At the subacute and chronic timepoints, the largest numbers of changes were 

observed in the EAE model of MS. This is most likely due to the diversity, severity and 

length of inflammation in this model which engages both the innate and the adaptive 
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immune systems as the neural tissue is invaded with CD4+ T-Cells, CD8+ T-Cells and B-

Cells in addition to innate immune cells. This is reflected in the enhanced immune 

interacting gene changes in EAE including leukocyte adhesion molecules (Vcam1), 

histocompatibility loci, interferon induced genes, interleukin pathway genes, and 

complement pathway genes.

The most unique changes at the acute timepoint were observed in the KA induced seizure 

model, when the seizures were still pervasive but no inflammation or BBB leakage was 

observed. These unique changes are likely due to the increased metabolic demand in 

response to high levels of neuronal activity, as it appears the endothelial cells alter their 

transport properties to concentrate on delivery of glucose to the neural tissue. This suggests 

that the BBB is capable of dynamically altering its properties in response to neural activity.

Wnt/beta-catenin signaling is a key regulator CNS angiogenesis, BBB formation and 

maintenance, and has been specifically linked to the induction of solute transporters, tight 

junction proteins, efflux transporters and inhibition of transcytosis10–16. However it is not 

known what effect this pathway has on the global gene expression of endothelial cells. We 

found that constitutively active beta-catenin was sufficient to induce a small subset of the 

CNS endothelial transcriptional program on peripheral endothelial cells, including induction 

of Pgp and inhibition of Plvap. We only observed a small induction of Cldn5 and no effect 

on Glut1 expression. One possibility for the discrepancy is that Wnt/beta-catenin signaling 

has a greater effect on the induction of BBB gene expression during development than on 

the maintenance. Indeed both turning on Wnt/beta-catenin signaling and turning down Wnt/

beta-catenin signaling is important for the proper formation of CNS vessels39. Another 

possibility is that although Wnt/beta-catenin signaling is necessary for a wide swath of 

BBB-specific gene expression, it is not sufficient to induce many of these genes in 

peripheral endothelial cells without a second signal. We did not find that the BBB-

dysfunction module in peripheral endothelial cells was suppressed by activated beta-catenin 

signaling, suggesting that although this signal is important for development and maintenance 

of the BBB, loss of this signal is not the only factor in altering brain endothelial gene 

expression during disease.

It should be noted that although we have achieved high levels of endothelial enrichment, we 

cannot exclude the fact that transcripts from other cell populations may be identified through 

RNA transfer, cell adherence or impurities in the preparations. This is particularly important 

for the disease models, in which there is extensive cellular damage and many cells taking up 

debris from other cell populations. Therefore, it is critical to verify that any observed 

changes are indeed coming from alterations in CNS endothelial cells, and not interacting cell 

populations.

In conclusion, we have developed an RNA sequencing resource to understand the 

transcriptional program of CNS endothelial cells during health and disease. This resource 

may provide vital information for the mechanisms by which CNS endothelial cells form 

their unique properties, how these properties are disrupted during injury and disease, and 

investigating novel targets to modulate the BBB as well as deliver drugs across the BBB to 

treat different neurological diseases.
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Methods

Mice

Rosa-tdTomato were bought from Jackson Laboratories (stock 07909), Rosa-Bcat-GOF 

were generated by Makoto Takato, and VE-Cadherin-CreERT2 mice were generated by Ralf 

Adams. All experiments were performed under IACUC approval at UCSF and UCSD, and 

housed in a 12 hour light/dark cycle in cages of 2–5 mice. VE-Cadherin-CreERT2 mice were 

originally in FvB background, and mated to Rosa-tdTomato in C57BL/6. Disease models 

were performed on F1 generation, except for EAE which was done after mating VE-

Cadherin-CreERT2 6 generations into C57BL/6.

Disease Models

All disease models were performed on Rosa-tdTomato; VE-Cadherin-CreERT2 mice for 

endothelial cell purification and wild type C57BL/6 mice for histological analysis. Ten days 

prior to disease induction, Rosa-tdTomato; VE-Cadherin-CreERT2 mice were injected 100ul 

of 20mg/ml tamoxifen solubilized in corn oil for three consecutive days to induce expression 

of the tdTomato transgene. Males were used for MCAO, TBI and seizure, whereas females 

were used for EAE. Disease models were performed on mice 2–3 months of age, except for 

TBI as noted below.

Seizure: Mice were IP injected with 20mg/kg kainic acid (KA) to induce seizures. Severity 

of seizures were scored 0–4 based on observed behaviors: 1-freezing only; 2-freezing and 

occasional clonus only, 3-repeated and/or prolonged clonus, rearing and falling, 4-jumping 

and/or death. Mice that scored level 3 were used for brain endothelial cell isolation or tissue 

section immunolabeling at three different timepoints post KA injection: 3 hours (acute), 48 

hours (subacute) and 1 month (chronic). For RNA sequencing experiments, 3 biological 

replicates were used for control and each timepoint in which each biological replicate 

examined was from endothelial cells enriched from the forebrain of one mouse.

Permanent MCAO: To mimic stroke, we used a permanent focal cerebral ischemia model 

in mice as previously described by others40,41. The permanent focal cerebral ischemia was 

induced by coagulation of the distal portion of the left middle cerebral artery (MCA).40,41 

Briefly: Mice were anesthetized with a 2.5% isoflurane. The left common carotid artery was 

isolated and temporary ligated using 6–0 surgical Nylon monofilament suture. Mice were 

then placed in the lateral position, and a 2-mm bar hole was made by using a dental drill 

between the left orbit and ear. The distal portion of the left MCA was exposed and 

coagulated using a small vessel cauterizer (Fine Science Tools, Inc, CA) followed by 

transection of the artery. The ligation of the common carotid artery was released after 30-

minute occlusion. Rectal temperature was monitored and maintained at 37 ± 0.5°C using a 

thermostat-regulated heating pad. Sham-operated mice underwent the identical surgical 

procedure including exposure of the common carotid artery and left middle cerebral artery 

except the coagulation of the distal middle cerebral artery and the temporary ligation of the 

common carotid artery. Tissues were harvested at 24 hours (acute), 72 hours (subacute) and 

1 month (chronic) after MCAO. For RNA sequencing experiments, 3 biological replicates 

were used for control and each timepoint in which each biological replicate examined was 
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from endothelial cells enriched from the ipsilateral region of one mouse. For dissections, the 

infarct region was dissected based on coordinates generated from the leakage analysis on the 

subacute timepoint (Fig. 2).

EAE: EAE was induced by injecting the MOG35–55 peptide containing emulsion from 

Hooke laboratories. Briefly, on the first day, mice were injected subcutaneously with the 

MOG35–55 peptide mixed with complete Freud’s adjuvant (EK-2110) and simultaneously 

100uL of Pertussis toxin was injected intraperitoneally. On the next day, the Pertussis toxin 

injection was repeated. Control mice were subjected to a similar protocol however the MOG 

peptide was not included in the Freud’s adjuvant. Mice were then scored for EAE 

symptoms, appearance and weighed daily. Acute timepoints were taken on the first day that 

mice displayed a loss of 1 gram body weight. Subacute timepoints were taken after the 

disability score levelled off for one day. Chronic timepoints were taken two weeks after peak 

disease score. For RNA sequencing experiments, 3 biological replicates were used for 

control and each timepoint in which each biological replicate examined was from 

endothelial cells enriched from the spinal cord of one mouse.

TBI: The controlled cortical impact model of pediatric traumatic brain injury (TBI) was 

performed as previously described42. TBI to the post-natal day 21 (p21) mouse 

approximates a toddler-aged child based upon the structural, biochemical and behavioral 

characteristics of this age43. Pups were weaned at p21 and anesthetized with 1.25% 2,2,2-

tribromoethanol (Avertin; Sigma-Aldrich, St. Louis, MO) in isotonic saline via 

intraperitoneal injection at 0.03 mL/g body weight. After craniotomy, mice were subjected 

to a controlled cortical impact injury at 4.5 m/s velocity and 1.73 mm depth of penetration, 

for a sustained depression of 150 ms, using a 3.0 mm convex impactor tip42. Mice were 

maintained on a water-circulating heating pad throughout surgery and recovery. Following 

impact, the scalp was closed with sutures and each animal administered 0.5 ml of isotonic 

saline subcutaneously to prevent post-operative dehydration. Sham-operated mice only 

received the Avertin injection, without surgery. Mice were weighed post-surgery at days 1, 3, 

and weekly thereafter. A weight loss greater than 15% per week was criteria for euthanasia; 

however no mice fell within this guideline. Tissues were harvested at 24 hours (acute), 72 

hours (subacute) and 1 month (chronic) following TBI. Because this model was a pediatric 

TBI, we utilized controls for each timepoint as the mice were at substantially different stages 

of development across timepoints. For RNA sequencing experiments, we used 3 biological 

replicates for the TBI acute, subacute and chronic timepoints, and 3 biological replicates for 

the control-acute timepoint, and 2 biological replicates for the control-subacute and control-

chronic timepoints. Each biological replicate examined was from endothelial cells enriched 

from one mouse. For dissections, the injured region was dissected based on coordinates 

generated from the leakage analysis on the subacute timepoint (Fig. 2).

Immunostaining

To generate tissues for immunostaining, mice were transcardially perfused with DPBS to 

remove blood, then perfused with 4% paraformaldehyde in PBS, the tissues were dissected 

and cryopreserved in 30% sucrose, frozen in 2:1 30%sucrose:OCT and then 10 micron 

sections were generated. For immunostaining, tissue sections were blocked/permeabilized 
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with 0.1–5% Triton X-100 and 10–50% goat serum in PBS. Tissue sections were incubated 

in primary antibodies overnight at 4°C and secondary antibodies for 1.5 hours at room 

temperature with 3% goat serum, 0–0.1% Triton X-100 in PBS. Primary antibodies (1/500 

dilution): rat anti-mouse CD31 (clone MEC13.3, BD Pharmingen 553370), rat anti-mouse 

CD45 (clone YW62.3, BioRad MCA1031GA), rat anti-mouse CD140B (clone APB5, 

eBiosciences 14–1402-82), rabbit anti Fibrinogen (Abcam ab34269), rabbit anti Claudin 5 

(Life Technologies 341600), rabbit anti Collagen I (Abcam ab21286), rabbit anti Collagen 

III (Abcam ab7778), rabbit anti Decorin (Biomatik CAC07220), rabbit anti Lumican 

(Biomatik CAU25816), rabbit anti SPP1 (Abcam ab8448). Secondary antibodies (1/1000 

dilution): Life Technologies goat anti-mouse alexa-594, goat anti-rat alexa-488 and 

alexa-594, goat anti-rabbit alexa-594. DAPI for nuclear labeling.

Biotin Permeability Assay

For biotin leakage assays, 0.25 mg/ml sulfo-NHS-biotin dissolved in DPBS was used to 

transcardially perfuse mice (10 minutes, 4.5ml/min) in place of DPBS alone as described in 

the “Immunostaining” section prior to fixation with 4% paraformaldehyde (10 minutes, 

4.5ml/min). Biotin was visualized on cryosections with streptavidin alexa-488 (Life 

Technologies). Three or more mice were used for each analysis.

Quantification of blood-brain barrier permeability

Biotin permeability: Tissue sections labeled with streptavidin alexa-488 for detection of 

biotin were imaged and the fluorescence of alexa-488 were measured with Image J as pixel 

intensity mean gray value within a 100-pixel diameter circle region of interest (ROI). For 

each mouse tissue section, three ROIs were measured within the tissue areas exhibiting 

leakage to biotin, which corresponds to the temporal lobe in the seizure model, spinal cord 

lesions in EAE, infarct in the stroke model and impact in the TBI model. Meningeal labeling 

was not included in ROIs. The average of the three ROI measurements represent each 

sample. Fibrinogen permeability: The same methods were used as in biotin permeability 

quantification except Fibrinogen was visualized with Fibrinogen antibody and alexa-594 

conjugated secondary antibody.

Endothelial cell enrichment

Endothelial cells were purified from Rosa-tdTomato; VE-Cadherin-CreERT2 mice based on 

methods previously described44. A graphical representation of the protocol, including 

modifications, is found in Supplementary Figure 8 and 9. Modifications to the procedure 

include: Isolated cell suspensions were re-suspended in 0.5% BSA and incubated with 

Myelin Removal Beads II for 15 minutes at 4°C (Miltenyi Biotec) according to the 

manufacturer’s protocol prior to fluorescence-activated cell sorting (FACS) purification. For 

immunostaining, cell suspensions were blocked in IgG serum from rat (Sigma-Aldrich 

I8015, 1/100 in 0.5% BSA DPBS) on ice for 20 minutes, washed in 0.5% BSA DPBS, 

resuspended in 0.5% BSA DPBS with antibody, incubated at 4°C for 20 minutes, washed 

twice and re-suspended in 0.5% BSA DPBS. For negative selection of pericytes and dead 

cells, cells were labeled with alexa-488 conjugated rat anti-PDGFRβ (clone APB5, Novus 

NBP1–43349AF488), alexa-488 conjugated rabbit anti NG2 (Bioss bs-11192R-A488) or 

FITC conjugated rat anti mCD13 (clone R3–242, BD Pharmingen 558744) at 1/100 and 
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DAPI at 0.5ug/ml. For negative selection of immune cells, cells were labelled with: FITC 

conjugated rat antibodies including anti-mCD11b (clone M1/70, ebioscience 11–0112-81) 

and anti-mCD45 (clone 30-F11, ebioscience 0451–85) at 1/100. With FACS, cells were 

sorted for tdTomato, excluding cells positive for FITC/A488, both FITC/A488 and 

tdTomato, doublets, and DAPI+ dead cells. Cells were directly sorted into 750ul of Trizol 

(Life Technologies). Phenol-chloroform extraction was used to isolate nucleic acids and 

RNA was purified with Qiagen RNeasy Micro Kit. For the “brain endothelial” samples, a 

collagenase and dispase digestion step was added after trituration. Each brain was incubated 

in 1 mg/ml collagenase, 0.4 mg/ml dispase and 625 units of DNase in 10 ml of enzyme stock 

solution at 37°C, 95% O2 and 5% CO2 for 30 minutes. Cell sorting was conducted at the 

UCSF Parnassus Flow Cytometry Core using a Beckman Coulter MoFlo XDP.

RNA sequencing and Bioinformatics

RNA sequencing for health and disease samples was done with the Gladstone Genomics 

core. Quality of purified RNA was accessed using an Aglient bioanalyzer. cDNA was 

generated from full length RNA using the NuGEN Ovation RNA-Seq V2 kit which uses the 

single primer isothermal amplification method to deplete ribosomal RNA. After checking 

cDNA size and quality on the bioanalyzer; the cDNA was quantified by NanoDrop and then 

sheared by the Covaris S2 Sonicator to yield uniform size fragments. The NuGen Ovation 

V2 kit was used to ligate adapters, and for barcoding and amplification. Libraries were 

purified using Agencourt XP magnetic beads, quality tested with Agilent Bioanalyzer 2100, 

and quantified by KAPA qPCR. Libraries were pooled and sequenced on the Illumina 

HiSeq2500 using paired end 100 bp reads. For mapping, trimming of FASTQ format 

sequences was performed using FastX_Trimmer, and sequence quality control was assessed 

using FastQC 0.10.1. Alignment to the Ensembl reference genome mm9 (v67) were 

performed using the splice-aware aligner Tophat 2.0.11 and bowtie2 .2.21 with parameters 

‘—no-coverage-search -m 2 -a 5 -p 7.’ Alignment files were sorted using SAMtools v.

0.1.19. Count tables were generated using HTSeq-0.6.1. Differential expression was 

analyzed using DESeq2 1.18.1. Reads were filtered using the built-in independent filtering 

function of DESeq2, and P-values were calculated using a negative binomial distribution as 

a model for expected gene expression. FDR (false discovery rate) values were calculated 

with the built-in function using the Benjamini-Hochberg method.

For health, enrichment in one sample compared to another was scored for genes with >two-

fold enrichment, cpm>5 in the higher sample, and P-value<0.05. The BBB-specificity score 

for each gene was calculated as [(log2(BE+0.1)−log2(HE+0.1)) + (log2(BE+0.1)−log2(KE

+0.1)) + (log2(BE+0.1)−log2(LuE+0.1)) + (log2(BE+0.1)−log2(LiE+0.1))]3 × BE; BE, 

brain endothelial cpm, KE, kidney endothelial cpm, LuE, lung endothelial cpm, LiE, liver 

endothelial cpm, Peripheral endothelial-enrichment score was calculated as [(log2(HE

+0.1)−log2(BE+0.1)) + (log2(KE+0.1)−log2(BE+0.1)) + (log2(LuE+0.1)−log2(BE+0.1)) + 

(log2(LiE+0.1)−log2(BE+0.1))]3 × Average(HE,KE,LuE,LiE). For disease, up-regulation 

was scored for each timepoint as log2fold>1.00, cpm>5 in the higher sample, and P-

value<0.05, and downregulation was scored for each timepoint as log2fold<−0.800, cpm>5 

in the higher sample, and P-value<0.05. A lower cutoff was selected for downregulated 

genes (log2fold<−0.800) than upregulated genes (log2fold>1.00) as we found there were 
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more robust upregulated changes than downregulated changes. This is likely due to the fact 

that we dissect around the disease region but will still have obtained a mixture of vessels that 

are leaky and those that are unaffected. Thus, it is easier to observe larger amplitudes in 

genes that are upregulated in the leaky vessels that are at low levels in the unaffected vessels, 

than it is to see genes downregulated in the leaky vessels when they are still present at high 

levels in the unaffected vessels. When log2 = undefined due to a 0 value in the lower sample, 

it was scored as a log2fold change>1.00, and enrichment was then scored if cpm>5 in the 

higher sample, and P-value<0.05.

We analyzed gene co-expression relationships using the R statistical computing environment 

(http://cran.us.rproject.org). Prior to co-expression analysis, low-expressed genes (defined as 

transcripts that were not detected in more than one quarter [17/68] of the samples) were 

removed. This approach filtered out 17,077 transcripts from the original set of 37,991. We 

proceeded to characterize co-expression relationships using a four-step approach45. First, 

pairwise biweight midcorrelations (bicor) were calculated for all possible pairs of transcripts 

over all samples using the bicor function from the WGCNA R package46. Second, 

transcripts were clustered using the flashClust2 implementation of a hierarchical clustering 

procedure with complete linkage and (1 – bicor) as a distance measure. The resulting 

dendrogram was cut at a height corresponding to the top 10% of pairwise correlations and 

all initial modules were required to contain at least 12 members. Third, initial modules were 

summarized by their module eigengenes, defined as the first principal component obtained 

by singular-value decomposition of the co-expression module46. Fourth, highly similar 

modules were merged if the correlations of their module eigengenes exceeded a threshold 

(0.85). This procedure was performed iteratively such that the pair of modules with the 

highest correlation (>0.85) was merged first, followed by recalculation of module 

eigengenes, followed by recalculation of all correlations, until no pairs of modules exceeded 

the threshold. The WGCNA measure of intramodular connectivity (kME) was then calculated 

for each transcript with respect to all modules by correlating its expression pattern across all 

samples with each module eigengene47.

Quantification of the expression of BBB dysfunction module genes

Tissue sections labeled with alexa-488 secondary antibody for visualization of the anti-

CD31 antibody and alexa-594 secondary antibody for visualization of the antibody against 

the gene of interest (GOI: collagen I, collagen III, decorin, lumican or Spp1) were imaged 

and the total length of vessels positive for alexa-488 or alexa-594 fluorescence were 

measured with the Image J line tool. The areas analyzed correspond to the temporal lobe in 

the seizure model, spinal cord lesions in EAE, infarct in the stroke model and impact in the 

TBI model. Meningeal vessels were not included in measurements. The percent length of 

vessels expressing the GOI was calculated from the total CD31 positive vessels for each 

tissue section.

Activated Beta-Catenin studies

Liver and lung endothelial cells were purified from 12–14 weeks old control (Rosa-Bcat-

GOF) and experimental (Rosa-Bcat-GOF; VE-Cadherin-CreERT2) mice. Ten days prior to 

the day of endothelial cell purification, control and experimental mice were injected 100ul of 
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20mg/mL tamoxifen solubilized in corn oil for three consecutive days to induce expression 

of the GOF Bcat transgene in experimental mice. Endothelial cells were purified as 

described in “Endothelial cell enrichment” with the following modifications: use of 

alexa-647-conjugated Rat mAb anti-CD31 (clone390 Molecular Probes A14716) for positive 

selection, omission of collagenase, dispase and myelin removal. FACS purification was done 

in cooperation with UCSD Center for Aids Research Flow Cytometry Core implementing a 

BD Aria II high speed sorter. Samples with 50,000–280,000 cells were used for RNA 

purification and sequencing. RNA sequencing was conducted at the UCSD Institute for 

Genomics Medicine Genomics Center. Method used is described in “RNA seq and 

Bioinformatics” with the following modifications: library generation with TruSeqRNA V2 

kit and 2ng RNA input and sequencing with Illumina HiSeq4000. Sample number: 4 liver 

and 4 lung from 4 each control and activated beta-catenin mice. Up- and down-regulated 

genes due to activated beta-catenin in the liver endothelial cells, lung endothelial cells or 

both were identified as genes with P-value of <0.05 and an absolute value of >10cpm in the 

sample with the greater value.

Data Collection and Analysis

Animals where assigned to various experimental groups at random. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those reported in 

previous publications7,10,44. Disease model control and experimental tissue identity from 

EAE, MCAO and TBI models could not be blinded to researchers for measurement of 

vascular length, demarcation of region of interest and observation of tracer permeability and 

cellular morphology since the appearance of control and disease tissues are easily 

identifiable. One mouse each for TBI control acute and chronic was excluded from RNA 

sequencing due to signs of hemorrhage at the surface of the brain. No other data points were 

excluded from analyses. Information on sex, age and number of mice used for each 

experiment are noted in specific sections in Methods and figure legends.

Statistical Analysis

Statistical significance of differences between groups were analyzed using the following 

software and statistical tests: 1) DESeq2 1.18.1R Wald test (P-values) and Benjamini-

Hochberg method (FDR). 2) Graphpad Prism t test (unpaired, parametric, equal standard 

deviation, two-tailed), Mann-Whitney t test (unpaired, nonparametric, two-tailed) and 

Friedman test (matched data, nonparametric) with post hoc Dunn’s multiple comparison test. 

3) DAVID Bioinformatics EASE Score (a modified one-tail Fisher Exact test). 4) Microsoft 

Excel t test (unpaired or paired, equal standard deviation, two-tailed). Application of these 

statistical methods to specific experiments are noted in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Endothelial reporter mouse
Tissue sections from adult Rosa-tdTomato; VE-CadherinCreERT2 mice were stained and 

imaged one week following a three day course of tamoxifen injections. Tissue sections from 

the forebrain (A-D), spinal cord (E), heart (F), kidney (G), lung (H) and liver (I) were 

stained with antibodies against CD31 (green; A, B, E-I), CD45 (green, C) or CD140b 

(green, D). The tdTomato reporter (red, A-I) co-localized with CD31 in all tissues but not 

immune cells (CD45) or pericytes (CD140b). Scale bars represent 200 microns (A) and 50 

microns (B-I). n=4 mice.
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Figure 2: Blood-brain barrier leakage and inflammation following different disease models
Rosa-tdTomato; VE-CadherinCreERT2 mice undergoing a kainic acid seizure model (A, E, 

I,), an EAE model of MS (B, F, J), an MCAO model of stroke (C, G, K) or a pediatric TBI 

model (D, H, L), were analyzed at three timepoints (acute’, subacute ‘‘, chronic’’’) for BBB 

leakage using a biotin tracer (green, A-H) or inflammation by staining with an antibody 

against CD45 (red, I-L). A-D depict low magnification images of coronal sections of the 

brain (A,C-D) and spinal cord (B) of biotin leakage (green) for the subacute timepoint for 

each disease. In images A-D the region of interest (ROI) for the disease is outlined with a 

white box. Subsequent images are given at higher magnification of tissue corresponding to 

the ROIs for controls and acute, subacute, and chronic timepoints for each disease for biotin 

leakage (E-H) and CD45 staining (I-L). The most BBB leakage is observed at the subacute 

timepoint in each disease. Scale bars represent 500 microns. n=number of mice (Control/

Acute/Subacute/Chronic): Seizure: 5/3/4/4 , EAE: 4/4/5/5, Stroke: 9/3/3/3 , TBI: 8/3/3/3.
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Figure 3: Cerebrovascular transcriptional changes following disease
A) Venn diagrams of the number of up-regulated (top row) and down-regulated (bottom row) 

gene changes in the CNS endothelial cells observed in the seizure, EAE, stroke and pediatric 

TBI models depicting the overlap of changes found at each of the timepoints. For each 

timepoint genes were selected as up-regulated if they were increased log2fold change >1.00, 

had an expression of >5cpm in the disease condition, with a P-value<0.05, and 

downregulated if they were changed log2fold change<−0.800, had an expression of >5cpm 

in the control, with a P-value<0.05. The timepoint with the most changes and the two 

timepoints with most overlap are highlighted in red. Statistical test: Wald test. n=3 mice each 

condition as source of enriched endothelial cells with exception of n=2 mice for TBI control 

subacute and chronic conditions.

B-C) Bar graphs depicting the number of gene changes at each timepoint for seizure, EAE, 

stroke and pediatric TBI models with color coding indicating the number of common 
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changes between diseases. B) Up-regulated genes. C) Down-regulated genes. The most 

overlap between diseases is observed at the subacute timepoint, specifically for up-regulated 

genes.

D-E) The average counts per million (CPM) of all the BBB-enriched genes (D, list of genes 

can be found in Supplementary File 3) and peripheral endothelial-enriched genes (E, list of 

genes can be found in Supplementary File 5) in the CNS endothelial cells at each timepoint 

in the seizure, EAE, stroke and pediatric TBI models. On average there is a decrease in the 

expression of BBB-enriched genes and an increase in the expression of peripheral-enriched 

genes following each of the different disease models. Data is presented as mean ±SEM. 

Statistical test: Mann-Whitney t test (unpaired, nonparametric, two-tailed): *P<0.05, 

**P<0.01, ***P<0.001 and ****P<0.0001; asterisks above error bars represent comparison 

with control sample; horizontal lines and corresponding asterisks compare samples aligned 

with each end of the horizontal line. n=518 BBB enriched genes, 1399 peripheral enriched 

genes.
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Figure 4: Pathways altered in the CNS endothelial cells following neurological disease
David Bioinformatics was utilized to identify the most significantly up-regulated and down-

regulated GOTERMs and KEGG pathways based on the transcriptional changes in CNS 

endothelial cells at each timepoint for the seizure, EAE, stroke and pediatric TBI disease 

models. For each timepoint genes were selected as up-regulated if they were increased 

log2fold change >1.00, had an expression of >5cpm in the disease condition, with a P-

value<0.05, and downregulated if they were changed log2fold change<−0.800, had an 

expression of >5cpm in the control, with a P-value<0.05. The heatmap scale represents the 

log10 of the P-value that the specified pathway is changed in the given timepoint for each 

disease. The top three of each GO term and KEGG pathways are presented for each disease 

at each timepoint. Statistical test: EASE Score (one-tail). n=number of genes (Seizure/EAE/

Stroke/TBI): Up-regulated in Acute: 519/360/37/259, Subacute: 458/817/213/183, Chronic: 
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79/644/23/5; Down-regulated in Acute: 2,528/203/182/195, Subacute: 466/617/258/58, 

Chronic: 108/364/113/0.
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Figure 5: Identification of the BBB-dysfunction module
A) Venn diagram of the genes identified as being up-regulated in at least one of the four 

disease models at the subacute timepoint depicting the overlap between the diseases. Genes 

were considered up-regulated if they were increased log2>1.00, had an expression of >5cpm 

in the disease sample at the subacute timepoint, with a P-value<0.05. The red text indicates 

the 136 genes up-regulated in at least three of the different disease models, that we have 

termed the BBB-dysfunction module (list given in Supplementary File 6). Statistical test: 

Wald test. n=3 mice each condition as source of enriched endothelial cells with exception of 

n=2 mice for TBI control subacute and chronic conditions.

B) Average expression of the 136 BBB-dysfunction model genes given in counts per million 

(CPM), at each timepoint following the four different disease models. The BBB dysfunction 

module peaks at the subacute timepoint in the seizure, EAE and stroke models, and at the 

acute timepoint in the pediatric TBI model. Data is presented as mean ±SEM. Statistical test: 
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Mann-Whitney t test (unpaired, nonparametric, two-tailed): *P<0.05, **P<0.01 and 

****P<0.0001; asterisks above error bars represent comparison with control sample; 

horizontal lines and corresponding asterisks compare samples aligned with each end of the 

horizontal line. n=136 genes in each condition.

C) Average expression of the 136 BBB-dysfunction module genes in endothelial cells 

enriched from the brain, heart, kidney, lung and liver during health. On average, during 

health the BBB dysfunction module genes are greatly enriched in the peripheral endothelial 

cells compared to the brain endothelial cells. Data is presented as mean ±SEM. Statistical 

test: Friedman test (matched data, nonparametric, result: P<0.0001) with post hoc Dunn’s 

multiple comparison (against brain sample) presented in the graph: **** P<0.0001. n=136 

genes in each organ.

D) DAVID Bioinformatics was used to identify GOTERMs and KEGG pathways that are 

enriched in the BBB dysfunction module. Statistical test: EASE Score (one-tail). The scale 

is the log10 of the EASE P-values. n=136 genes.

E) Average expression of the 54 BBB-dysfunction module genes up-regulated given in 

counts per million (CPM) in all four diseases broken down into three different groups. 

Group 1 reached peak up-regulation in the acute phase of many of the diseases, Group 2 

reached peak expression at the subacute phase in most of the disease models, and Group 3 

consisted of genes that peaked at early acute/subacute timepoints in seizure, stroke and 

pediatric TBI models, but continued to increase in the EAE model.
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Figure 6: Endothelial transcriptional regulation by activated beta-catenin
A) Total number of gene changes, as identified with P-value<0.05 with a value of >10cpm in 

the activated beta-catenin sample in up-regulated or control sample in down-regulated, in 

purified liver and lung endothelial cells from control and mice expressing activated beta-

catenin in endothelial cells. Genes are listed in Supplementary File 7. Genes were stratified 

based on whether they were identified as BBB-enriched (violet, Supplementary File 3), 

peripheral enriched (blue, Supplementary File 5) or neither (green). Statistical test: Wald 

test. n=4 mice each condition as source of enriched endothelial cells.

B) BBB-enriched (Supplementary File 3) and peripheral-enriched (Supplementary File 5) 

endothelial genes were subdivided based on whether they were up- or down-regulated in 

liver or lung endothelial cells (Supplementary File 7) due to activated beta-catenin signaling. 

Statistical test: Wald test. n=518 BBB enriched genes, 1399 peripheral enriched genes.
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C) Average expression levels given in counts per million (CPM) in healthy brain (red), lung 

(green) or liver (blue) (CPM source, Supplementary File 3) for all genes that were up- or 

down-regulated in liver or lung endothelial cells to activated beta-catenin signaling 

(identified in Supplementary File 7). Data is presented as mean ±SEM. Statistical test: 

Mann-Whitney t test (unpaired, nonparametric, two-tailed): **P<0.01 and ****P<0.0001 

represent comparison to brain sample. n=number of genes: Up in Liver: 457, Down in Liver: 

425, Up in Lung: 140, Down in Lung: 117.

D) Average expression levels given in counts per million (CPM) in the four disease models 

(CPM source, Supplementary File 1) for all genes that were up- or down-regulated in liver or 

lung endothelial cells due to activated beta-catenin signaling (identified in Supplementary 

File 7).

E) GOTERMs and KEGG pathways as identified by DAVID Bioinformatics that are 

regulated by activated beta-catenin in the liver and lung endothelial cells (Supplementary 

File 7). Statistical test: EASE Score (one-tail). The scale is the log10 of the EASE P-values. 

n=number of genes: Up in Liver: 457, Down in Liver: 425, Up in Lung: 140, Down in Lung: 

117.
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