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Abstract

RNA sequencing (RNA-seq) offers a snapshot of cellular RNA populations, but not temporal 

information about the sequenced RNA. Here we report TimeLapse-seq, a chemical method that 

uses oxidative-nucleophilic-aromatic-substitution to convert 4-thiouridine into cytidine analogues, 

yielding apparent U-to-C mutations that mark new transcripts upon sequencing. TimeLapse-seq is 

a single molecule approach that is adaptable to many applications, and reveals RNA dynamics and 

induced differential expression concealed in traditional RNA-seq.

Rapid global changes in regulated transcription on the timescale of minutes to hours have 

been observed for numerous mammalian systems, including circadian rhythms and the 

immune response, by identifying new transcripts that co-fractionate with chromatin1, 2 or 

unspliced transcripts3, 4. New RNA populations can also be identified by examining sites of 

active RNA polymerase II through biochemical enrichment of transcripts in the process of 

being synthesized (e.g., PRO-seq5, NET-seq6) or metabolic labeling and enrichment of new 

transcripts (e.g., TT-seq7, s4U-seq8, 9). These techniques require large amounts of input 

sample, extensive handling, and present challenges when normalizing enrichment and 

estimating contamination.

To capture temporal information about RNA directly in a sequencing experiment without 

biochemical enrichment, we developed TimeLapse-seq (Fig.1a), a method in which cells are 

exposed to a non-canonical nucleoside that becomes incorporated only into new transcripts. 

Rather than enriching the metabolically labeled RNAs, we developed chemistry that recodes 

the hydrogen bonding pattern of the uridine analogue 4-thiouridine (s4U) to match the 

hydrogen bonding pattern of cytosine, thereby causing mutations in a sequencing 
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experiment. This strategy is similar to bisulfite sequencing, which uses chemically induced 

mutations to recode nucleobase hydrogen bonding to provide insight into DNA methylation. 

In our strategy, the recoded nucleosides distinguish which RNAs were transcribed during the 

time of the experiment. TimeLapse-seq results are internally normalized, as both pre-

existing and new transcripts are present in the same library. These mutations reveal which 

RNAs were recently synthesized by the cell, thereby capturing the rich dynamics of the 

transcriptome.

To develop TimeLapse-seq we focused on s4U because of its utility in RNA metabolic 

labeling experiments10, 11 and the orthogonal reactivity of its thione relative to other 

functional groups found in RNA. The s4U base itself leads to low levels of U-to-C 

transitions upon reverse transcription,12 but at levels too low to robustly identify new 

transcripts. While recent applications of s4U have focused on the thione as a nucleophile8, or 

for UV crosslinking11, 13, we were inspired by less explored reactivity---transforming s4U 

using oxidative-nucleophilic-aromatic substitution14. We reasoned that oxidation of s4U 

would transform it into a convertible nucleoside, providing an intermediate that could be 

converted into an analogue of cytosine by aminolysis (Fig.1a). The s4U base retains uridine's 

Watson-Crick hydrogen bonding pattern, and while other chemical conditions used to 

modify s4U (e.g., alkylation) change the base's hydrogen bonding pattern, they do not recode 

the base to match C's native hydrogen bonding pattern. While not widely explored, the 

oxidative reactivity of s4U has precedent in UV crosslinking studies, where sites of s4U-

protein crosslinks are enriched for T-to-C mutations, or in mapping the locations of s4U 

bases in E. coli tRNA11, 15. If conducted before an RNA-seq analysis, this reaction could 

reveal sites of s4U incorporation through T-to-C mutations stably introduced in the cDNA.

We explored chemistry to convert the free nucleoside (s4U) to cytidine derivatives (Fig.1a 

and Supplementary Fig.S1) while minimizing oxidation of guanosine (Supplementary 

Fig.S2) and using amines with low pKa values that remain deprotonated under neutral 

reaction conditions. We found that treating s4U with 2,2,2-trifluoroethylamine (TFEA) and 

meta-chloroperoxybenzoic acid (mCPBA) results in near-complete consumption of s4U, 

producing only small amounts of the hydrolysis product uridine, and mostly the desired 

trifluoroethylated cytidine (C*, Supplementary Fig.S3a). Similar conditions were successful 

in the context of an oligoribonucleotide. Optimization of the nucleophile, oxidant, 

temperature, and time through a restriction enzyme digestion assay (see Online Methods, 

Supplementary Fig.S4a-c, Supplementary Table S1a) led us to the combination of TFEA and 

sodium periodate (NaIO4; Fig.1b). These reagents cause clean transformation of 4-thiouracil 

to N4-trifluoroethylcytosine by 1H NMR (Supplementary Fig.S3b). When RNA with a 

single s4U was subjected to these conditions (45°C, 1h), reverse transcriptase could 

efficiently transcribe the product and the majority of the resulting DNA (∼80%) had the 

desired T-to-C mutation (Supplementary Figs.S3c,d, 4d). NaIO4 is an oxidant commonly 

used in RNA biology to oxidize the 3′-end vicinal diol of RNAs with minimal effects on 

other functional groups, even through multiple rounds of oxidation16. To test NaIO4 and 

TFEA with cellular s4U-RNA, we exposed mouse and human cells to a range of 

concentrations of s4U. After RNA isolation and chemical treatment, we examined the 

apparent U-to-C conversion rates (inferred from T-to-C mutations in the cDNA, hereafter 

referred to as T-to-C) by targeted RT-PCR coupled to paired-end sequencing (Supplementary 
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Table S1b). We observed a notable and specific increase in T-to-C transitions in chemically 

treated samples (Supplementary Fig.S5).

To examine the dynamics of cellular RNAs, we treated MEF cells with s4U for 1h (where no 

s4U toxicity was observed, Supplementary Fig.S6a-c) and performed TimeLapse chemistry 

prior to sequencing. The total transcript counts from each sample were highly correlated 

irrespective of s4U exposure or chemical treatment (Pearson's r≥0.97, Supplementary 

Fig.S6d), demonstrating that TimeLapse-seq retains information from a traditional RNA-seq 

experiment. By counting the mutations in each aligned read pair, we found a specific and 

reproducible increase in T-to-C mutations dependent on both metabolic labeling with s4U 

and chemical treatment (Supplementary Fig.S7,8). Other mutation rates remained below 

background levels of T-to-C mutations in untreated samples (e.g. the small increase in G-to-

T mutations, Supplementary Fig.S2c,d). Additionally, the reaction was efficient even in 

regions of RNA secondary structure (Supplementary Fig.S9). The T-to-C mutation counts 

were dramatically higher in fast-turnover transcripts (e.g., Myc and Fosl2), compared to 

more stable transcripts (e.g., Dhx9 and Ybx1) (Fig.2a-b, Supplementary Fig.S10). We 

observed an enrichment of T-to-C mutations in intronic reads (Fig.2c), consistent with the 

fast turnover of intronic RNA. To quantify these results, we modeled reads as arising from 

two populations: pre-existing RNAs (background mutation rate) and new RNAs (high T-to-C 

mutation rate; Fig.2b, Methods). Reads from newly synthesized RNAs had an average of 2.2 

mutations per read, corresponding to a ∼3% mutation rate per uridine (compared to ∼0.1% 

T-to-C mutation rates in controls and for pre-existing RNAs). From each gene, we 

determined the fraction of newly made transcripts (r≥0.94, 2992 genes, Supplementary Table 

2), and estimated transcript half-lives which correlated with those reported previously17 

(Supplementary Fig.S11). As expected, the fast turnover RNAs (top 10%, n=360) were 

enriched for transcripts such as transcription factors (DNA-templated transcription, 

p<10-20), while the slow turnover RNAs (top 10%, n=361) were enriched for those that are 

involved in translation (ribosomal biogenesis, p<10-6; translation, p<10-27). Estimates of the 

fraction of newly synthesized RNA were particularly robust when the new transcripts 

represented ∼200 reads in the experiment (Supplementary Fig.S12, Supplementary Note).

Very transient RNA species, such as reads beyond the poly-A termination signal in a gene 

body, provide insight into transcriptome dynamics but are generally too rare to be observed 

at high levels by RNA-seq. While these dynamics can be studied through biochemical 

enrichment of very recently made RNAs after short (5 min) s4U treatments (TT-seq7), 

biochemically enriched s4U-RNA always contains contaminating reads from unlabeled 

RNAs (estimated to be up to 30% in some experiments12). This contaminating background 

can limit analyses; for example, abundant spliced transcripts observed in RNA enriched after 

short s4U pulses has been interpreted as fast splicing18, but these results could also be 

explained by contaminating background (e.g., from fully spliced mature RNAs). To test if 

TimeLapse chemistry could be used in conjunction with transient transcriptome sequencing 

(TT-seq) to distinguish bona fide new RNAs from contaminating background, K562 cells 

were labeled for 5 min with s4U, and biochemical enrichment was performed as in TT-seq7, 

except with more efficient MTS chemistry to biotinylate the s4U-RNA9 (Supplementary 

Fig.S13a). After enrichment and prior to sequencing, we performed TimeLapse chemistry. 

As expected, transient RNA species were enriched for introns (two-sample Kolmogorov-
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Smirnov test, p<10-15, Figs. 2d-f, Supplementary Fig.S13) but depleted for splice junctions 

(p<10-15). Both enrichment of introns and depletion of splice junctions were slightly greater 

than previously observed7 (Supplementary Fig.S13c,d), likely due to the efficiency of MTS-

chemistry. Even with only 5 min of s4U treatment, the majority of the biochemically 

enriched reads contained TimeLapse-induced mutations (Fig. 2d). Mutation-containing reads 

represented a subpopulation that was further enriched for introns, and depleted for splice 

junctions (Figs. 2e,f, Supplementary Fig.S13c,d). This suggests that mutated reads 

effectively capture the profile of new RNAs, while the reads without mutations represent a 

subpopulation that is contaminated by unlabeled reads. We estimated that 15-20% of total 

TT-seq reads arise from contaminating RNA (estimate from splice-junction content: 

17-20%; from intronic content: 18-20%, see methods), similar to estimates from previous 

s4U experiments12. Reads without mutations were enriched for contaminating reads 

(estimate from splice junctions, 33-39%; estimate from introns, 35-40%), while reads 

containing mutations are depleted in contamination. For reads with a single mutation, 

contaminating reads make up <5% of the signal; for reads with two mutations, the 

contamination is <1%. Taken together, RNA contamination contributes to the signal at the 

level of RNA-seq, but TimeLapse chemistry-induced mutations can be used to discriminate 

between signal from new RNAs and contaminating reads. These results demonstrate 

transcripts including ACTB (Supplementary Fig.S13b) are not highly spliced on this 

timescale (5 min), and highlight how TimeLapse chemistry can provide an extra specificity 

filter when analyzing rare, transient RNAs.

To test if TimeLapse-seq could reveal induced changes in RNA populations, we subjected 

MEF cells to a mild heat shock (42°C, 1h), where only modest changes in total RNA levels 

are apparent19-21. We observed induction of a few transcripts such as Hspa1b by RNA-seq 

(Supplementary Fig.S14a), but TimeLapse-seq revealed the induction of many transcripts 

encoding heat shock proteins in the new transcript pool that are not apparent by RNA-seq 

alone (Fig.2g, Supplementary Fig.S14). For example, whereas RNA-seq is less sensitive to 

the small absolute changes in Hsph1 and Hsp90aa1 (as they are already abundant prior to 

heat shock; RNA-seq fold-change: Hsph1 = 1.8 fold, Hsp90aa1 = 1.1 fold, DEseq2), 

TimeLapse-seq reveals substantial induction of both transcripts in the new transcript pool 

(TimeLapse-seq fold change: Hsph1 = 12.7 fold; Hsp90aa1 = 3.1 fold, DEseq2) (Fig.2h). 

Unlike PRO-seq and NET-seq, however, which are not sensitive to changes in RNA 

populations after transcription has completed, TimeLapse-seq captures changes in RNA 

processing: we observed the induction of a new terminal exon in Rsrp1 upon heat shock 

(Supplementary Fig.S14c,d), as well as post-transcriptional down regulation of histone 

mRNAs upon heat shock (Supplementary Fig.S14f,g), neither of which would be apparent 

from analysis of nascent RNA.

We applied TimeLapse-seq using treatment conditions optimized for studying mRNA 

turnover (4h s4U)22 in a chronic myelogenous leukemia model cell line (K562). We obtained 

highly reproducible half-life estimates that correlated with previous observations23 

(Supplementary Fig.S11). Inspection of individual transcripts revealed reads mapping to 

both a shorter isoform of ASXL1 (NM_001164603), as well as a longer isoform 

(NM_015338) of ASXL1. The ASXL1 protein is involved in epigenetic regulation of 

chromatin, and mutations in the longer isoform of this gene are implicated in 
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myelodysplastic syndromes (MDS).24 Analysis of the mutational content of the individual 

exons from ASXL1 demonstrated that reads mapping to the longer isoform had substantially 

greater turnover than those mapping to the first four exons (Figs. 3a,b), a conclusion 

supported by transcriptional inhibition (Supplementary Fig. S15b,c). The different stability 

of ASXL1 isoforms is particularly intriguing given the importance of RNA-processing to 

many pathologies, including MDS25.

TimeLapse chemistry provides a chemical means of recoding metabolically labeled 

nucleotides from the hydrogen bonding pattern of one base (s4U) to another (C*). 

TimeLapse-seq is a single-molecule approach to monitor transcriptome dynamics. The 

method reveals different rates of RNA turnover, changes in RNA processing, and acute 

changes in the transcriptome that are not apparent using standard RNA-seq. TimeLapse-seq 

is broadly applicable to applications that use metabolic labeling (e.g., TT-seq), providing a 

flexible platform to investigate dynamic biological systems.

Online Methods

Materials

All commercially available materials were purchased from the indicated suppliers and used 

without further purification. 4-thiouridine (s4U), and meta-chloroperoxybenzoic acid 

(mCPBA) were purchased from Alfa Aesar (Haverhill, MA). 4-thiouridine-5′-triphosphate 

(s4UTP) was purchased from TriLink BioTechnologies (San Diego, CA). 2,2,2-

trifluoroethylamine (TFEA), sodium acetate, EDTA, Tris hydrochloride, acrylamide/bis-

acrylamide 30% solution, phenol:chloroform:isoamyl alcohol (25:24:1), and actinomycin D 

were purchased from Sigma Aldrich (St. Louis, MO). Sodium periodate (NaIO4) and 

ammonium bicarbonate were purchased from Acros Organics (Geel, Belgium). Methane 

thiosulfonate biotin-XX (MTSEA-biotin-XX) was purchased from Biotium. Dynabeads 

MyOne Streptavidin C1 beads were purchased from Thermo Fisher Scientific. Agencourt 

RNAClean XP beads were purchased from Beckman Coulter (Brea, CA). Phusion HF PCR 

master mix and Dithiothreitol (DTT) were purchased from Thermo Fisher Scientific 

(Waltham, MA). Phosphate buffered saline (PBS) was purchased from AmericanBio 

(Natick, MA). Dulbecco's Modified Eagle Medium (DMEM), fetal bovine serum (FBS), 

Trizol reagent, TURBO DNase and SuperScript III Reverse Transcriptase were purchased 

from Life Technologies (Carlsbad, CA). KAPA Taq Ready Mix was purchased from Kapa 

Biosystems Inc (Wilmington, MA). DMSO-d6, penicillin-streptomycin (P/S) and 33 mm 

0.45 μm PDVF syringe filters were purchased from EMD Millipore (Billerica, MA). ATCC 

MTT Cell Proliferation Assay kit was purchased from American Type Culture Collection 

(Manassas, VA). NotI HF restriction enzyme was purchased from New England Biolabs 

(Ipswich, MA). SMARTer Stranded Total RNA Kit (Pico Input) was purchased from Takara 

Bio USA (Mountain View, CA). Hypersil Gold 3 μm, 160 × 2.1 mm column was purchased 

from Thermo Fisher Scientific (Waltham, MA). K562 cells were a gift from the Slavoff Lab, 

Yale Department of Chemistry. T7 RNA polymerase was a gift from the Strobel Lab, Yale 

Department of Molecular Biophysics and Biochemistry.
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Instrumentation

LC-MS measurements were carried out on an Agilent 6550A Q-TOF (Yale West Campus 

Analytical Core). NMR spectroscopy was performed on an Agilent DD2 400 MHz 

spectrometer with an Agilent OneNMR probe. Analysis of fluorescent RNAs was carried out 

on a GE Healthcare Typhoon FLA 9500. Sequencing was performed on Illumina HiSeq 

2500 and Illumina HiSeq 4000 instruments at the Yale Center for Genome Analysis 

(YCGA).

LC-MS analysis of nucleosides

To a solution of s4U (50 μM) and ammonium bicarbonate (10 mM) was added TFEA (600 

mM). mCPBA (10 mM) was dissolved in ethanol and added dropwise to the reaction 

mixture. After 1h at 25°C the reaction was analyzed by reverse-phase LC-MS with a 

Hypersil GOLD column (Thermo, 3 μm, 160 × 2.1 mm) using chromatography conditions 

described previously (Duffy et al. 2015). Masses were collected using positive ion mode and 

extracted ions were identified and integrated using Agilent MassHunter software.

NMR analysis of nucleobase chemistry

4-thiouracil (4.3 mg, 1 equiv) was dissolved in DMSO-d6, and TFEA (3.4 μl, 1.3 equiv) was 

added to the solution. After mixing, a solution of NaIO4 in DMSO-d6 (12.3 mg, 1.7 eq) was 

added to the nucleobase and amine solution, and the reaction was allowed to proceed at 

45°C for 4h. 1H NMR spectra were processed using the MestReNova software.

NotI restriction endonuclease assay

An RNA containing a single s4U nucleotide was in vitro-transcribed (IVT) from a synthetic 

DNA template (see Supplementary table S1a) strand using T7 RNA polymerase and s4UTP 

in place of UTP for 16h at 37°C. The reaction mixture was treated with TURBO DNase for 

1h at 37°C. The RNA was purified using denaturing PAGE, and the resulting band was 

extracted by crushing the gel slice and soaking it in extraction buffer (1 mM EDTA, 1 mM 

DTT, 20 mM Tris, 300 mM NaOAc pH 5.2) at 4°C for 4h. The supernatant was passed 

through a 0.45 μM syringe filter, and the RNA was ethanol precipitated and washed with 

75% ethanol prior to resuspension in nuclease-free water.

IVT RNAs were screened for optimal TimeLapse chemistry as follows: RNA (120 ng) was 

added to a mixture of amine and water. A solution of oxidant was then added drop wise and 

the reaction mixture was incubated at the temperature and time indicated (see 

Supplementary Fig.S4). The RNA was then ethanol precipitated and washed three times 

with 75% ethanol prior to resuspension in nuclease-free water.

After chemical treatment, IVT RNA (50 ng) was reverse transcribed with SuperScript III 

according to the manufacturer's directions. The cDNA was PCR amplified for 30 cycles with 

a fluorescent forward primer, then amplified an additional 2 cycles using 1/5 of the previous 

PCR reaction material with non-labeled primers. The amplified PCR product was then 

incubated with NotI HF for 1h at 37°C. The fluorescent products were visualized using 

native PAGE followed by scanning with a Typhoon FLA imager and the proportion of cut 
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product was determined relative to a positive control (with C in the RNA instead of s4U) 

using ImageJ.

Primer extension assay

IVT RNA containing a single s4U nucleotide (200 ng RNA) was treated with TimeLapse 

chemistry and purified as described above. Chemically treated IVT RNA (34 ng) was then 

annealed to a Cy5 5′ end-labeled primer, and reverse transcription was performed according 

to manufacturer's instructions using the SmartScribe First Stand cDNA Synthesis kit (15 

min). The reaction was then treated with RNase H, and the fluorescent products were 

visualized using urea PAGE followed by scanning with a Typhoon FLA imager. Full length 

and truncated RT products were quantified by densitometry using ImageJ.

Targeted TimeLapse sequencing

MEF cells were grown at 37°C in DMEM containing 10% FBS and 1% P/S At 

approximately 60% confluence, the media was replaced with media supplemented with s4U 

(700 μM). After 2h, the cells were rinsed with PBS, resuspended in TRIzol reagent, and 

stored overnight at -80°C. Following chloroform extraction, total RNA was ethanol 

precipitated including 1 mM DTT to prevent oxidation of the s4U RNA, and washed with 

75% ethanol. Total RNA was resuspended and treated with TURBO DNase, then extracted 

with acidic phenol:chloroform:isoamyl alcohol and ethanol precipitated and washed as 

described above. Isolated total RNA was added to a mixture of TFEA (600 mM), EDTA (1 

mM) and sodium acetate (pH 5.2, 100 mM) in water. A solution of NaIO4 (10 mM) was then 

added drop wise and the reaction mixture was incubated for 1h at 45°C. Potassium chloride 

(300 mM) and sodium acetate (pH 5.2, 300 mM) were added and the reaction mixture was 

allowed to stand on ice for 10 min. prior to centrifugation (>10000 rpm, 30 min, 4°C) to 

precipitate remaining periodate. The RNA in the supernatant was then ethanol precipitated 

and washed three times with 75% ethanol prior to resuspension in nuclease-free water. The 

chemically treated RNAs were then reverse transcribed using a mixture of mouse Actb and 

Gapdh-specific mRNA RT primers (see Supplementary table S1b). The resulting cDNA was 

then amplified with Phusion polymerase using corresponding forward PCR primers to 

produce PCR amplicons approximately 150 nt in length. An Illumina sequencing library was 

constructed using the Illumina TruSeq Index adapters. Paired-end 75 bp sequencing was 

performed on an Illumina HiSeq 2500 instrument. Sequencing reads were trimmed to 

remove adapter sequences and aligned to the mouse genome using Bowtie226. Aligned reads 

were parsed to identify mutations at each nucleotide position in the Actb and Gapdh mRNAs 

using a published software package.27 Raw mutation probabilities were determined by 

dividing the number of recorded mutation events by the number of reads at that position. 

Mutation probabilities were normalized to appropriate control samples and filtered by read 

depth (only positions with depth > 3000 were included in analyses). Analyses and figure plot 

generation were performed in R using the tidyverse, corrplot, and multiplot packages28, 29. 

The enrichment in mutation rates was tested for significance using a two-sided Wilcoxon 

test. Targeted sequencing was performed in duplicate using biologically distinct samples.

Targeted TimeLapse-seq of K562 RNA was performed similarly with the following 

exceptions. Cells were grown at 37°C in RPMI containing 10% FBS and 1% P/S. At 
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approximately 50% confluence, the media was supplemented with a range of s4U 

concentrations (10 μM-40 μM) for 1h. Total RNA was isolated and chemically treated as 

described previously. The chemically treated RNAs were then reverse transcribed using a 

mixture of human MYC-specific mRNA RT primers (see Supplementary table S1b). A 

targeted sequencing library was prepared and analyzed as described above.

Further information concerning experimental design using biological materials can be found 

in the Life Sciences Reporting Summary.

Cell viability

MEF cells were grown at 37°C in DMEM containing 10% FBS and 1% P/S. Cells were 

plated at 106 cells/mL in a 96-well microtiter plate and allowed to recover overnight. Cells 

were then treated in triplicate with increasing concentrations of s4U (0-1 mM) for 1h, and 

the ATCC MTT Cell Proliferation Assay kit was used according to manufacturer's 

instructions to assess cell viability.

Transcriptome-wide TimeLapse-seq

MEF cells were grown at 37°C in DMEM containing 10% FBS and 1% P/S. At 

approximately 60% confluence, the media was replaced and supplemented with s4U (1 

mM). The cells were incubated at 37°C for 1h, at which point total RNA was isolated and 

chemically treated as described in the targeted sequencing section. For heat shock analyses, 

at approximately 60% confluence, the media was replaced and supplemented with s4U (1 

mM), and heat shocked cells were incubated at 42°C for 1h. RNA was prepared as described 

for the Targeted TimeLapse-seq libraries. For each sample, 10 ng of total RNA was used to 

construct a sequencing library using the Clontech SMARTer Stranded Total RNA-Seq kit 

(Pico Input) with ribosomal cDNA depletion. Paired-end 100 bp sequencing was performed 

on an Illumina HiSeq 4000 instrument. TimeLapse-seq was performed in duplicate using 

biologically distinct samples for experimental samples both with and without heat shock. 

Raw and processed sequencing data have been submitted to the GEO database.

TT-TimeLapse-seq

K562 cells were grown at 37°C in RPMI containing 10% FBS and 1% P/S. At 

approximately 50% confluence, the media was supplemented with s4U (1 mM). The cells 

were incubated at 37°C for 5 min, at which point total RNA isolation and genomic DNA 

depletion were performed as described above. 50 μg of total RNA was subjected to MTS 

chemistry, followed by biotinylation and streptavidin enrichment essentially as previously 

described (Duffy et al., 2015)9 with the following modification: after SAV beads were 

washed three times with high salt wash buffer (1 M NaCl, 100 mM Tris pH 7.4, 10 mM 

EDTA, 0.05% Tween), beads were incubated in TE buffer (10 mM Tris pH 7.4, 1 mM 

EDTA) at 55°C for 15 min, followed by two washes with pre-warmed 55°C TE buffer. After 

elution from SAV beads, enriched RNA was purified using one equivalent volume of 

Agencourt RNAclean XP beads according to manufacturer's instructions instead of 

purification by ethanol precipitation. Enriched RNA and input RNA were chemically treated 

as described previously. Chemically treated RNA was purified using 1 equivalent volume of 

Agencourt RNAclean XP beads according to manufacturer's instructions. Purified material 
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was then incubated in a reducing buffer (10 mM DTT, 100 mM NaCl, 10 mM Tris pH 7.4, 1 

mM EDTA) at 37°C for 30 min, followed by a second RNAclean bead purification. For each 

sample, all enriched material or 10 ng of total RNA input was used to construct a sequencing 

library using the Clontech SMARTer Stranded Total RNA-Seq kit (Pico Input) with 

ribosomal cDNA depletion. Paired-end 150bp sequencing was performed on an Illumina 

HiSeq 4000 instrument. TimeLapse-seq was performed in duplicate using biologically 

distinct samples for experimental samples. Raw and processed sequencing data have been 

submitted to the GEO database.

Samples for TimeLapse-seq analysis of K562 mRNA

K562 cells were grown as described previously. At approximately 50% confluence, the 

media was supplemented with s4U (100 μM). The cells were incubated at 37°C for 4h, at 

which point total RNA was isolated using the RNeasy mini kit with the following 

modifications: buffers RLT and RPE were supplemented with 1% final 2-mercaptoethanol 

(BME); an additional 80% EtOH wash was performed after the RPE step; and the column 

was spun at maximum speed for 5 min to dry prior to elution with water. The isolated RNA 

was then chemically treated and purified as described previously. For each sample, 10 ng of 

total RNA was used to construct a sequencing library using the Clontech SMARTer Stranded 

Total RNA-Seq kit (Pico Input) with ribosomal cDNA depletion. Paired-end 150bp 

sequencing was performed on an Illumina HiSeq 4000 instrument. TimeLapse-seq was 

performed in duplicate using biologically distinct samples for experimental samples. Raw 

and processed sequencing data have been submitted to the GEO database.

Transcriptional inhibition

K562 cells were grown as described above. At approximately 50% confluence, cells were 

treated in duplicate with actinomycin D (2 μg/mL final) for 30 min, 1h, 3h, 5h, and 9h, or 

left untreated. Total RNA isolation and genomic DNA depletion was then performed as 

described previously. RT was performed using the SuperScript VILO cDNA synthesis kit 

and qPCR was performed using primers specific to ACTB, DHX9, and ASXL1. qPCR ct 

values for DHX9 and ASXL1 were then averaged and normalized to those of ACTB for each 

time point. The normalized fraction remaining was estimated for each primer pair by 

dividing the relative abundance of each time point by the relative abundance at t = 0.

Sequencing alignment and mutational analysis

Reads were filtered for unique sequences using FastUniq30, trimmed using cutadapt31 to 

remove Illumina adapter sequences filtering for reads greater than 20 nt (--minimum-

length=20) and aligned to the mouse GRCm38 or human GRCh38 genome and 

transcriptome annotations using HISAT232, using default parameters and --mp 4,2. Files 

were further processed with Picard tools (http://broadinstitute.github.io/picard/) including 

FixMateInformation, SortSam and BuildBamIndex. The samtools33 software was used to 

retain only reads that aligned uniquely (flag: 83/163, 99/147), with MAPQ ≥ 2, and without 

insertions (because of ambiguity in mutational analysis) for further analysis.

Reads that uniquely map to the human GRCh38 version 26 (Ensembl 88) or mouse 

GRCm38 (p6) were identified using HTSeq-count using union mode34. Reads mapping to 
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only mature isoforms or to anywhere in the gene body were determined separately and 

compared to identify intron-only reads. To determine the number of uridine residues inferred 

from each read, and the sites of T-to-C mutations, the aligned bam files were processed in R 

using Rsamtools (http://bioconductor.org/packages/release/bioc/html/Rsamtools.html) and 

the sites and numbers of mutations were determined using a custom R function (available 

upon request). Only mutations at positions with a base quality score of greater than 45, that 

were at least three nt from the end of the read were counted. Reads were excluded where 

there were greater than five T-to-C mutations and these mutations did not account for at least 

one third of the observed mutations (NM tag). Without adequate filtering, SNPs could 

interfere with TimeLapse analysis. To identify sites of SNPs (or RNA modifications that 

could be mis-identified as TimeLapse mutations), we used the following two strategies. 

First, we identified T-to-C SNP sites in control samples using bcftools35 with default options 

and excluded these sites from our analysis. Second, we compiled locations where T-to-C 

mutations were high in non-s4U treated controls and excluded these sites from analysis. 

Once the putative SNPs were filtered, the total number of unique mutations in each read pair 

was counted. To examine the distribution of reads with each minimum number of T-to-C 

mutations, the bam files were filtered using Picard tools. To make genome-coverage tracks, 

STAR aligner (inputAlignmentsFromBam mode, outWigType bedGraph) was used and the 

tracks were normalized using factors derived from RNA-seq analyses using values from 

DESeq2 (estimateSizeFactors)35. Tracks were converted to binary format (toTDF, IGVtools) 

and visualized in IGV36.

Secondary structure analysis

Aligned reads from the 4h K562 TimeLapse-seq experiment overlapping the 5′ stem loop of 

7SK were extracted using samtools. A Python script developed for analyses of chemical 

probing data (RTEventsCounter28), was used to calculate the U-to-C mutation frequency for 

each uridine nucleotide. These frequencies were normalized by subtracting mutation 

frequencies of control samples that were not subjected to TimeLapse chemistry. The 

frequencies of mutations at each position were binned and mapped onto a conformational 

model of this region of human 7SK37. Each nucleotide was classified as either single 

stranded or basepaired. A two-sided Wilcoxon test was used to determine the significance of 

differences between mutation rates of the basepaired and single stranded nucleotides.

Estimation of the fraction of new transcripts and transcript half-lives

Two different models were used to examine the mutation distribution in TimeLapse-seq data 

set: a simpler Poisson model (which does not take into account the uridine content of 

different reads) and a binomial model that does take the number of uridines into account. We 

obtained consistent results from both models. For the simpler Poisson model, for each 

sample (sj), the distribution of T-to-C mutations (Yi) was determined in each read, and the 

reads were grouped based on the transcripts to which they map. A negative control sample 

(no s4U treatment) was used to estimate the background rate of read-pairs containing T-to-C 

mutations that map to each transcript. These frequencies depended on the cell line used 

(MEF samples required higher s4U treatment to obtain similar levels of mutations compared 

to K562 cells) as well as the sequencing experiment (different samples led to different 

background rates independent of chemistry or s4U treatment). See Supplementary Note. The 
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mutation rate and fraction of new transcripts was modeled as a two-component mixture of 

Poisson distributions with probability mass function:

where θn− is the fraction of new transcripts, λO is the rate of background mutations 

(determined from –s4U controls), λn is the rate of mutations found in new transcripts, and yi 

is the number of passing T to C mutations found in read i. Reasonable estimates of these 

values could be approximated by examining the mutation rates in fast turnover RNAs such 

as introns. To obtain more objective estimates of the global parameters λO and λn while 

allowing for low levels of transcript-to-transcript variability, we used a Bayesian hierarchical 

modeling approach using RStan software (Version 2.16.238) that uses no-U-turn Markov 

Chain Monte Carlo (MCMC) sampling. To estimate a global mean and standard deviation 

for λO and λn, we used weakly informative priors (see below). We estimated gene specific 

rates by drawing from the global mean and standard deviation, with a mixing rate with an 

uninformative prior (θn ∼ Uniform(0,1)) where the mixing rate (θn) estimates the fraction of 

each transcript that was new:

Global Parameters:

Priors:

for read i ∈ {1, 2, …, ng}:

Attempts to model entire TimeLapse-seq data sets using this approach were computationally 

challenging, but we found that consistent results were obtained using 20 representative 

transcripts from each sample. The majority of these transcripts were chosen randomly from 

Schofield et al. Page 11

Nat Methods. Author manuscript; available in PMC 2018 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all reasonably expressed transcript (> 200 reads), but we included few transcripts that were 

hand chosen to ensure the modeling included both fast and slow turnover RNAs such as Myc 
and Actb. The results using 20 transcripts were consistent with results from 200 transcripts. 

In the case of the MEF samples shown if Fig. 2, the λO was estimated as 0.07 mutations/

read (50% credible interval 0.062-0.074), and λn was estimated as 2.3 mutations/read (2.298 

mutation/read, 50% CI 2.10-2.30 for heat shock; 2.288 mutation/read, 50% CI 1.90-2.29 for 

untreated).

Once these global parameters were determined, they were used to estimate the fraction of 

new transcripts (θnew), using expectation maximization by minimizing the log likelihood 

using the nlm function in the MASS package in R:

The 95% Wald confidence interval was calculated using the Hessian (nlm option hessian = 

TRUE), to calculate:

To ensure the mutations were both s4U-treatment and TimeLapse-chemistry dependent, we 

only included transcripts where there was sufficient data (reads > 100 counts in at least two 

samples), and where the fit converged (-0.05 < θn < 1.05; hessian > 1000). The inferred new 

read counts were determined by multiplying the estimated fraction of new transcripts by the 

total RNA-seq transcript count. Correlations between replicates were determined using the 

log10 transformed counts (Supplementary Fig.S8). While the reproducibility of the data was 

generally high when all converged transcripts were included (Pearson's r > 0.91), filtering 

for transcripts with at least 75 inferred new reads provided slightly more reproducible results 

(n = 3603, r = 0.934) and this filter was used for further analysis.

To account for differences in the number of uridine residues in each read pair, an alternative 

model was used based on the binomial distribution. Specifically, the data was modeled as 

mixture of two binomial distributions:

where po, pn are the probabilities of mutation at each uridine nucleotide for old and new 

transcripts, and nu is the number of uridines observed for read i. To determine the global 

mutation rate, we used Bayesian hierarchical modeling as described above for the Poisson 

model but using a mixture of binomial distributions. From this analysis, we estimate the 

background mutation rate (po) to be 0.0012 mutations/uridine (50% CI 0.00121, 0.00123) 

and the mutation rate for new reads (pn) to be 0.0332 mutations/uridine (50% CI 0.0329, 
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0.0335). In other words, ∼0.1% of Us are mutated to C in pre-existing reads, and in new 

reads ∼3% of Us are mutated to C. Using these global parameters, the distributions of 

individual genes were fit with nlm similarly to what is described above, except by 

minimizing the log likelihood of the binomial model instead:

In addition to computing the confidence interval using the hessian, we also examined the 

quality of the fit by plotting the observed frequency of mutations in each replicate in the 

TimeLapse data (gray points in distribution plots), to a simulated distribution of the expected 

new and old reads based on the binomial model (Figs.2b and S16). Estimates of the fraction 

new were highly similar between those determined using the binomial model and the 

Poisson model.

To account for any specific loss of transcripts that might arise from biased loss of s4U-RNA 

transcripts independent of TimeLapse chemistry, or TimeLapse-depended loss due to reverse 

transcription termination, we developed a means of estimating the loss of fast turnover 

transcripts in the data. This correction was only used when estimating transcript half-lives 

after observing a modest, but statistically significant loss of reads from high turnover RNAs 

(see Supplementary Fig.S3d). To estimate the fraction of new reads missing, we used the R 

package nlm to fit the equation:

where sy and so are scale factors that adjust for library sizes determined using DESeq2 with 

the total (RNA-seq) transcript counts for the experimental sample and control, respectively; 

Ny and No are the counts for each transcript, and θn is the unadjusted fraction new of each 

transcript. This equation was fit using transcripts where 0.8 < θn for K562 RNA, but 0.5 < 

θn in the case of MEF RNA (the shorter s4U treatment lead to fewer transcripts with high θn 

so the threshold was lowered to increase the number of transcripts). In the case of the 

comparison shown in Fig.S3d, the adjustment factor determined for chemistry-induced 

dropout was ∼5% (i.e., x = 0.05 in the equation above, which leads a transcript with 75% 

new reads to be adjusted to 79% and a transcript with 25% new reads would be adjusted to 

26% new reads).

The transcript half-lives were determined using the adjusted fraction of new RNA assuming 

a simple exponential model of their kinetics. The half-life values were compared to similar 

reports and the r2 determined using the lm function in R.
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GO analysis

GO analysis from the PANTHER database (version 12.0)39 was performed using a statistical 

overrepresentation test (default parameters) on the complete biological process annotation 

set using the top 10% slow or top 10% fast turnovers RNAs in our 1h MEF TimeLapse-seq 

data as determined by the half-life analyses described above.

Differential expression analysis

Differential expression analysis was performed using DESeq2. To examine the inferred 

differences in the new transcript pool based on TimeLapse mutations, we used the 

unadjusted estimates of the fraction of new RNA to infer the number of counts resulting 

from new transcripts as described above. As TimeLaspse-seq data is internally controlled, 

we used the size factors determined from total counts to scale each dataset (i.e., we ran 

DESeq2 on the total RNA-seq data, and used the sizeFactors function to scale the inferred 

new RNA counts to the RNA-seq determined values) with default conditions including the 

Benjamini-Hochberg40 adjusted p-value (padj in text). RNA-Seq analysis was performed on 

all reads (i.e., reads that had zero or more T-to-C mutations) using DESeq2 with default 

parameters.

Estimation of contaminating reads in TT-TimeLapse-seq

Reads from TT-TimeLapse-seq were processed and analyzed as for TimeLapse-seq. 

Junction-containing reads were determined from the presence of “N” characters in the 

CIGAR string in the aligned bam file using bamtools (version 2.3, https://hcc-docs.unl.edu/

display/HCCDOC/BamTools). The levels of contaminating reads were estimated by 

assuming the contaminating reads have the same ratios as RNA-seq data, and that reads with 

three or more mutations constitute the true ratio of reads. We use of reads with three or more 

mutations as true positives because the probability of a read containing three or more 

mutations without s4U is <10-5. We used the fraction of intron or junction containing reads 

for the RNA-seq data (ro), the total in the true positive population (rtp), and the total for each 

population (rx). In each analysis, we only considered reads that had non-zero ratios and 

ratios that were less than one. The fraction of reads from contamination (cx) was then 

estimated:

For comparisons with the TT-TimeLapse-seq data presented here, the data from Schwalb et 
al.7, (SRR4000390, SRR4000391 and SRR4000397) were aligned and processed using the 

same pipeline described for TimeLapse-seq. For this comparison, we reprocessed our TT-

TimeLapse-seq data using only 75 nt of each read, and this was performed on fastq files 

prior to alignment. This trimming was performed because the probability of a sequencing 

read containing a splice junction or being an intron-only read is dependent on the read 

length. Otherwise, all processing was handled equally between data sets.
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Supplementary Note

Important parameters in TimeLapse-seq

TimeLapse-seq builds upon previous work using s4U to metabolically label RNA, and many 

of the considerations when designing experiments are shared with previous work and have 

been discussed in depth elsewhere22, including the time of s4U treatment required to 

accurately estimate transcript half-lives. Considerations that are specific to TimeLapse-seq 

are discussed below.

Each read-pair in TimeLapse-seq data reports mutations that are present in a single molecule 

of RNA that was either made prior to the s4U treatment, or was made after s4U was added to 

the cells. For new RNA, there is an s4U- and chemistry-dependent increase in the probability 

of a T-to-C mutation at each nucleotide. For any given region of an RNA molecule that is 

copied into a sequencing read of a given length (lr), our ability to accurately identify whether 

the read pair is from a new RNA or not is dependent on the following: nu, the number of 

uridine residues that could be substituted with s4U; pnew, the probability a s4U residue 

substitutes for U at each position; ychem, the efficiency of the conversion from s4U to C*; 

and pold, the background mutation rate in untreated samples. At the population level, the 

accuracy of the estimates for the newly made faction of any feature (e.g., transcript, exon, 

etc.) depends on the read depth (nreads).

The background mutation rates (po) are constrained by the methods and technology used for 

RNA-seq and estimated using negative controls. The number of uridines (nu) in the read is 

dependent on the U-content of the RNA feature and on the read length (lr) in the sequencing 

experiment (e.g., single-end 75 nt reads vs paired end 150 nt reads). The probability of s4U 

incorporation (pn) depends on ratio of s4UTP/UTP in the nucleotide pool, which is 

dependent on the s4U concentration used in the feed, the cell line used and the time of the 

experiment. The rate of incorporation of s4U into the UTP pool is quite fast. This is clear 

from the observation that many reads in the TT-TimeLapse-seq experiment have multiple 

mutations, suggesting that even within 5 min at 1 mM s4U treatment, the nucleotide pool 

builds up substantial concentration of s4UTP. There is also cell-type variability in the 

influence of s4U treatment (e.g., we found TimeLapse-seq in MEF cells worked best with 1 

mM s4U, whereas labeling of K562 cells was successful with 100 μM s4U used in the 4h 

treatment). In practice 10 μM – 1 mM treatments have been successful. The chemical 

efficiency (ychem) determines the number of s4U residues that are converted to C, which we 

have estimated to be 80% (Supplementary Fig.S4).

To explore how deeply any RNA feature must be sequenced in order to detect changes in the 

new transcript pool by TimeLapse-seq, we simulated data according to the following model:
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where the ith read (out of nreads total) with nu uridine residues is determined to arise from 

either a new or old RNA according to a Bernoulli distribution with the fraction of new RNA 

(θn). If the transcript is new, it is modeled to have a number of mutations (Yi) defined by a 

binomial distribution with nu trials and probability of mutation the probability of s4U 

incorporation (pn) attenuated by the yield of the chemistry (ychem). If the RNA is old, the 

number of mutations is modeled by a binomial distribution nu trials and a background 

probability of mutation (po). The data from these simulated trials were treated as the output 

from a TimeLapse-seq experiment in which the fraction new was modeled as described in 

the methods (using likelihood maximization to estimate θn), and the number of new reads 

inferred using this estimate. Different fold changes in the new transcript pool (x) were 

modeled in duplicate, with duplicate controls to match the design we used in this 

manuscript. To provide a conservative estimate of the sensitivity of the approach, these 

counts were added to a real RNA-seq data set (from the differential expression of heat shock 

expression) and the significance determined using DESeq2 with default parameters. We 

favored this approach because the dispersion estimates used to determine the significance in 

the simulation are influenced by the distribution of real TimeLapse-seq data. This simulation 

was repeated 250 times for each set of parameters, and the average number of times the 

simulation provided a significant difference was plotted (Supplementary Fig.S12). For each 

simulation, conditions were held constant that were similar to (or more conservative than) 

the actual parameters for the MEF experiment presented in Fig.2.

In general, many conditions lead to reliable detection of differential expression when there 

are hundreds-to-thousands of reads. Under the conditions of these simulations, neither the 

chemical efficiency nor the read length have dramatic impact unless they are greatly 

reduced. One practical consequence of this observation is that improving the efficiency of 

the reaction from 80% would have very little impact, and even a drop to 50% yields would 

only have a small impact on the sensitivity of the experiment. On the other hand, to be able 

to sensitively detect changes, the fraction of new RNA must be large enough to detect (> 

5%), but less than half the RNA. Large fold differences (>2) are straight forward to detect 

even at very low coverage, but much higher coverage is necessary to confidently detect 

transcripts that have a 1.5-fold induction in the new RNA pool. Both depletion and 

enrichment were detected, and the specificity was very high (the false positive rate by this 

metric was too low to detect). The background mutational rates (∼0.1% in the samples 

presented in this manuscript) are predicted to have minimal impact unless they are increased 

five-to-ten-fold. While decreasing the amount of s4U can decrease sensitivity, increasing it is 

predicted to only lead to a modest increase in sensitivity. In summary, experimental design 

regarding the timing of the s4U treatment is critical.

Code availability

All software and parameters used is described above, and custom scripts and functions are 

available upon request.

Accession codes—Data are available in the Gene Expression Omnibus (GEO) under 

accession number GSE95854.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig.1. 
TimeLapse-seq uses a convertible nucleoside approach to identify new transcripts in a 

sequencing experiment. (a) Scheme of TimeLapse-seq. Metabolically labeled RNAs are 

isolated and treated with TimeLapse chemistry, converting s4U into a modified cytosine (C*) 

that is identified through increased numbers of T-to-C mutations upon sequencing 

(increasingly dark colors of red). s4U is transformed into a convertible nucleoside 

intermediate through oxidation, which is then converted to C* through aminolysis. 

(b)Results from a restriction enzyme digestion assay indicating efficient (∼80%) T-to-C* 

conversion with optimized TimeLapse chemistry
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Fig.2. 
Global analysis of steady state and transient RNA dynamics using TimeLapse-Seq. (a) (left) 

Tracks depicting coverage from all reads (gray) for transcripts with slow (Ybx1), moderate 

(Dhx9) or fast (Fosl2) rates of turnover. (right) Tracks from reads with increasing numbers 

of T-to-C mutations (see scale) displaying mutational content provided by TimeLapse 

chemistry (right, y-axis zoom 3x). (b) Distribution of reads with each number of T-to-C 

mutations (points) overlaid on a model of the estimated distribution of reads from new 

transcripts (red) and pre-existing transcripts (gray) for Ybx1, Dhx9, and Fosl2. The 

estimated fraction of new reads is indicated for each plot. Light gray: 95%CI. (c) 

Distribution of T-to-C mutations found in reads mapping to Ybx1, Dhx9, and Fosl2, 

separated by total, exonic, or intronic reads. (d) TT-TimeLapse-seq and RNA-Seq tracks of 

DHX9. (e) Cumulative distribution plot of reads containing splice-junctions in RNA-seq, 

and TT-TimeLapse-seq. (f) Cumulative distribution plot of intron-only reads in RNA-seq 

and TT-TimeLapse-seq with the same scale as in e. (g) Using TimeLapse-seq to distinguish 

new RNAs after heat shock. Log2 fold changes after heat shock in total RNA-seq counts and 

new RNA counts for the top RNAs identified in b as significantly changed upon heat shock 

(padj < 0.01). (h) RNA-seq and TimeLapse-seq tracks of Hsph1 (top) and Hsp90aa1 
(bottom) upon heat shock.
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Fig. 3. 
TimeLapse-seq reveals differential transcript isoform stability of the ASXL1 transcript. (a) 

ASXL1 tracks from TimeLapse-seq (4h s4U treatment) with exon-containing regions 

expanded (lower panel). (b) Exonic T-to-C mutation distributions for ASXL1 in comparison 

with three transcripts with different stabilities, ACTB, CDK1, FOSL1.
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