
molecules

Review

Recent Advances in Organocatalyzed Domino C–C
Bond-Forming Reactions

Cleo S. Evans and Lindsey O. Davis *

Department of Chemistry and Biochemistry, Berry College, P.O. Box 495016, Mt. Berry, GA 30149, USA;
cleo.evans@vikings.berry.edu
* Correspondence: ldavis@berry.edu; Tel.: +1-706-236-2237

Received: 11 December 2017; Accepted: 22 December 2017; Published: 23 December 2017

Abstract: Reactions that form a C–C bond make up a foundational pillar of synthetic organic
chemistry. In addition, organocatalysis has emerged as an easy, environmentally-friendly way
to promote this type of bond formation. Since around 2000, organocatalysts have been used in
a variety of C–C bond-forming reactions including Michael and aldol additions, Mannich-type
reactions, and Diels–Alder reactions, to name a few. Many of these methodologies have been refined
and further developed to include cascade and domino processes. This review will focus on recent
advances in this area with an emphasis on methodologies having applications in the synthesis of
biologically-significant compounds.
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1. Introduction

Reactions that form carbon–carbon bonds are an important tool for a synthetic organic chemist.
Since the early 2000s, the field of organocatalysis has developed as an attractive alternative to traditional
metal Lewis acid catalysis [1]. As the field of organocatalysis has matured, chemists have found
methods for many organocatalyzed domino processes allowing for the synthesis of complex molecules
in an efficient manner [2]. The aim of this mini-review is to highlight the work done over the past
two years in organocatalyzed domino processes that involve the formation of a carbon–carbon bond.
In particular, we will focus on reports that have led to the synthesis of compounds with biological and
medicinal significance. Also, we have tried to avoid reviewing literature that has been recently cited
elsewhere [3].

2. Mannich

The Mannich reaction is an extensively-studied and significant tool in the synthesis of β-amino
ketones, sometimes referred to as Mannich bases [4,5]. Organocatalyzed, asymmetric variants of
this reaction were developed in the early 2000s, primarily utilizing proline and its derivatives as the
organocatalyst [6], although Cinchona alkaloids [7,8], (DHQD)2-based catalysts (dihydroquinidine) [9],
thioureas [10], and phosphoric acid derivatives [11] have been employed as well. Tandem
organocatalyzed Mannich reactions have been reported in the synthesis of biologically-significant
compounds [12], but many of these reactions have been reviewed elsewhere [13]. The focus of this
section will be tandem Mannich reactions reported between 2016 and late 2017.

Spirocyclic oxindole scaffolds are found in a variety of biological molecules [14–18].
Yu and co-workers recently reported a synthesis of spirooxindole benzoquinolizines utilizing a
Michael–Mannich–hemiaminalization–dehydration cascade (Scheme 1) [19]. The Jørgensen–Hayashi
catalyst (1) was used to catalyze the reaction and 10 mol % PhCO2H was used an additive.
After screening various bases for the Mannich reaction, DABCO (1,4-diazabicyclo[2.2.2]octane) was
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chosen as the best base, as compared to DIPEA (N,N-diisopropylethylamine), K2CO3, or PPh3 among
others. The scope of the reaction, made up of 19 examples, included both electron-donating and
electron-withdrawing groups at the phenyl ring of the imine, although no strong electron-withdrawing
groups were employed. In addition, a gram scale synthesis was achieved with good yield (65% yield),
showing promise for this reaction methodology to be used in commercial production.
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Catalyst 1 has also recently been used to catalyze a Michael/Mannich [3 + 2] cycloaddition cascade
reaction between α-β-unsaturated aldehydes and trifluoromethyl-substituted iminomalonates to form
trifluoromethyl-substituted pyrrolidines (Scheme 2) [20].
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Substituted pyrrolidines are found in many bioactive natural products and pharmaceutical
agents [21,22]. Particularly, the addition of the trifluoromethyl group to these pyrrolidines makes
them attractive targets for synthetic organic chemists [23,24]. This methodology provides a synthesis
of chiral trifluoromethylated pyrrolidines with good yield and excellent diastereoselectivity and
enantioselectivity. In addition, the reaction proceeded smoothly with electron-withdrawing and
electron-donating groups appended to the α,β-unsaturated aldehyde.

In addition to proline-derived organocatalysts, urea-derived organocatalysts have been used in
domino reactions. Zhou and co-workers recently developed an asymmetric Mukaiyama–Mannich
reaction between fluorinated silyl enol ethers and ketimines catalyzed by a hydroquinine derived
bifunctional urea catalyst 2 (Scheme 3) [25].
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Scheme 3. Formation of fluorinated benzosultam derivatives.

Benzosultam based Cα-tetrasubstituted α-amino acid derivatives, the products of this
reaction, have been shown as valuable chiral auxiliaries and reagents [26–29] and found in
biologically-significant compounds [30,31]. Through a catalyst screening, the authors determined that
both N–H bonds of the urea catalyst were necessary for achieving enantiofacial control. The substrate
scope included difluoroenoxysilanes with appended electron-donating and electron-withdrawing
groups; however, aliphatic difluorinated enol silyl ethers were not reactive enough to give a substantial
amount of product. The reaction was scalable to a 3.0 mmol scale, showing the potential of this
methodology for practical synthetic purposes. In addition to difluorinated substrates, monofluorinated
enol silyl ethers were also successful substrates in this reaction, producing monofluorinated
benzosultam products in high yield (78–99% yield) and good selectivity (>20:1 dr and 90–92% ee).

3. Henry Reactions

The nitro-aldol reaction, or Henry reaction, has been established as a powerful methodology
for the formation of carbon–carbon bonds between nitroalkenes and ketones or aldehydes [32–34].
Though the Henry reaction was discovered in 1896, a chiral variant was not developed until the
1990s [35,36]. Asymmetric organocatalysts were employed in both the Henry reaction and aza-Henry
reaction in the early 2000s [37,38]. Since then, researchers have sought to expand the reaction
scope and reaction conditions, testing new chiral organocatalysts such as squaramide [39], thiourea
derivatives [40], proline derivatives [41], and bipyridine derivatives [42]. Like the aldol reaction,
Henry reactions are often used in tandem with Michael reactions [40,41,43,44]. The following
syntheses involve Michael–Henry or double-Michael–Henry cascades that proceed via different chiral
organocatalysts to form new ring systems with multiple stereogenic centers.

Xie and co-workers reported diastereodivergent syntheses of 2H-thiopyrano[2,3b]quinolones with
three contiguous stereocenters via a domino Michael–Henry reaction (Scheme 4) [45].
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Both the quinolone ring and thiopyran functional group have potential as biological and
pharmaceutical targets [46–51]. Quinoline-derived organocatalysts had previously been identified as
successful catalysts for conjugate additions [52–54]. Unsurprisingly, the authors could identify two
viable catalysts for the tandem Michael–Henry reaction, quinolines 3 and 4. They discovered that the
diastereoselectivity of these catalysts were complementary to each other, where catalyst 3 produced the
1,2-anti diastereomer and catalyst 4 gave the 1,2-syn diastereomer. Using a starting material previously
synthesized by the group, O-thiocyanato-(E)-cinnamaldehyde [55], nitroolefin, and two different
quinoline-derived organocatalysts, the group was able to obtain excellent yields, enantioselectivity,
and diastereoselectivity in 8 h at −30 ◦C using 20 mol % of catalyst and two equivalents of nitroolefin.

Liu and coworkers also used a bifunctional organocatalyst, guanidinium derivative 5, in a
Michael/Michael/Henry cascade (Scheme 5) [56]. Remarkably, this is the first example of a single
chiral organocatalyst being employed to create cyclohexanes with six vicinal stereogenic centers. Prior
to this publication, a combination of organocatalysts [57] or a Lewis acid catalyst with an organic base
co-catalysts [58] were required to achieve this transformation.
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The reaction tolerated a variety of electron-donating and electron-withdrawing groups on
the aryl substituent of the nitroalkene, although the electronic characteristics played a role in the
yield. Those aryl groups with electron-withdrawing substituents typically gave higher yields of the
cyclohexane product. The scope of the reaction with respect to the α-ketoester included alkyl, alkenyl,
and aryl substituents with little effect on the yield or selectivity. While the utility of the products has not
been fully realized, this report provides a remarkable example of an organocatalyzed domino reaction.

Another noteworthy example of an organocatalyzed domino Henry reaction was recently reported
by Lin and co-workers. A squaramide derivative 6 was found to catalyze the first tandem vinylogous
Michael (VMA)/Henry reaction involving a ketone moiety to synthesize tetrahydrofluoren-9-ones
(Scheme 6) [59]. This class of compound was incorporated into medicines used to treat and reduce
brain and spinal injuries as early as the 1970s, and is still pharmaceutically relevant [60]. With a
combined 23 examples, the scope of this reaction included nitroalkenes with aryl rings with various
electron-donating and electron-withdrawing substituents. The 1,3-indandione-derived substrate
typically tolerated aryl and alkyl groups.
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In addition to a wide scope, the authors were also able to provide preliminary results that showed
the generality of the indandione-derived pronucleophiles. Another Michael acceptor, a oxindole
derivative (Figure 1) was used in this reaction, and with slightly modified reaction conditions,
the products were made in high yield (92–98%) and moderate enantioselectivity (81–83%).
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Hong et al. constructed highly functionalized Hajos–Parrish-ketones (HPKs) containing five to six
contiguous stereogenic centers through an organocatalytic enantioselective Michael/Michael/Henry
reaction (Scheme 7) [61]. HPKs have been used as important synthons for a variety of natural
products [62], and are one of the historical origins of organocatalysis [63,64]. The Jorgensen–Hayashi
catalyst was used in a biphasic system of water:acetonitrile at 2:1 over a seven to fourteen day period at
room temperature. The aqueous phase allowed for the necessary dissolution of cyclopentadione
reagent. A variety of HPKs were synthesized (10 examples) with moderate to good yield and
excellent enantioselectivity.
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It is noteworthy that the synthesized HPKs have five to six contiguous stereocenters and two
quaternary carbons. This report provides a hallmark example of the utility of domino reactions to
create complex products efficiently.

4. Aldol Reactions

The aldol reaction is arguably one of the most researched and versatile C–C bond-forming
reactions in all of organic chemistry [65–67]. Not surprisingly, there are many examples
of organocatalyzed aldol reactions, typically catalyzed by proline and its derivatives [68–70].
Aldol reactions have commonly been incorporated in domino reactions and reviewed somewhat
recently [71,72]; therefore, we will focus on reports from this year only.

Rios and co-workers developed a double Michael addition to α,β-unsaturated aldehydes,
followed by an intramolecular aldol reaction to synthesize pyridine derivatives using a chiral secondary
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Scheme 8. Synthesis of pyridine derivative by Michael/Michael/Aldol reaction.

Remarkably, this cascade resulted in the formation of three C–C bonds with moderate yield
and diastereoselectivity and excellent enantiopurity. Enals with appended electron-withdrawing
groups (e.g., p-nitro, p-cyano) were excellent substrates, whereas enal substrates with substituted
halogen atoms provided the final products in only moderate yield (63–72%). Unfortunately, if an
electron-donating group such as an aliphatic aldehyde was employed as the substrate, the reaction
gave a complex mixture. Nevertheless, this report provides an excellent example of the power of the
aldol reaction in a domino process.

The (S)-TMS-diarylprolinol catalyst 1 has also been used recently to catalyze a
Michael/Michael/aldol condensation to provide tricyclic chromanes bearing four contiguous
stereogenic centers, one of which is tetrasubstituted (Scheme 9) [74]. Chromanes are a commonly-found
scaffold in a variety of natural products, some of which have anticancer and antibacterial [75,76],
antifungal [77], analgesic [78], and antimalarial properties [79,80]. This methodology has a
large reaction scope. Nitrochromenes with appended electron-neutral (H), electron-donating,
or electron-withdrawing groups at the C6 or C7 position were excellent substrates in this reaction.
In addition, dihalogenated 3-nitro-2H-chromenes at the C6 and C8 positions provided products
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in moderate yield and excellent enantioselectivity. Many aliphatic aldehydes were also used as
substrates, with moderate yield of chromene products; however, isovaleraldehyde and tert-butyl
acetaldehyde were not successful substrates even after five days of reaction. The authors also screened
different α,β-unsaturated aldehydes, where aliphatic aldehydes (e.g., acrylaldehyde) provided the
desired product in good yield and excellent diastereoselectivity and enantioselectivity. The selectivity
remained high for aromatic α,β-unsaturated aldehydes bearing electron-neutral, electron-donating,
and electron-withdrawing groups. It is noteworthy that this methodology was shown to be viable on a
gram scale, demonstrating the applicability of this protocol.
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Pan and co-workers recently reported a method for the synthesis of
3-acyloxypyrazoles from unsaturated pyrazolones and α-nitroketones through an asymmetric
Michael/Hemiketalization/retro-aldol reaction to product 3-acyloxy pyrazoles (Scheme 10) [81].Molecules 2017, 23, 33  7 of 13 
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Scheme 10. Synthesis of 3-acyloxy pyrazoles through Michael/Hemiketalization/retro-aldol.

Pyrazoles are particularly important nitrogen containing motifs because they are found in a wide
variety of bioactive compounds [82,83]. A wide variety of pyrazolones having different benzylidene
substituents were tolerated in this reaction. Both electron-donating and electron-withdrawing
groups at the ortho-, meta-, and para-position of the aryl group afforded the pyrazoles in
excellent yields and enantioselectivities. In addition, various pyrazolones with N-substitutions
(e.g., 4-MeC6H4) were also successful substrates with yields of pyrazoles ranging from 81% to
93% with excellent enantioselectivities. The generality of the reaction was further demonstrated
as the scope of nitroketones included various those with appended aryl groups, heteroaromatic rings,
and alkyl groups.

5. Other Reactions

5.1. Knoevenegal/Diels-Alder Reactions

Estévez-Braun and co-workers have recently reported two examples of Knoevenegal/
Hetero-Diels–Alder domino reactions (DKHDA) in the synthesis of embelin derivatives
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(Scheme 11) [84,85]. Embelin, a biologically-active compound derived from a plant, has been reported
to be a promising structural backbone for potential drug candidates [86].
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Scheme 11. Synthesis of embelin derivatives via organocatalyzed Knoevenegal/Hetero-Diels–Alder
domino reactions (DKHDA) reaction.

This report is particularly significant because it is the first time intramolecular DKHDA reactions
with non-terminal alkynes type O-(arylpropynloxy)-salicylaldehydes have been used. Thirty-five
aryl-substituted alkynyl ethers were prepared using this methodology, with the majority of reactions
giving moderate to high yields of product. The reaction tolerated a variety of electron-donating and
electron-withdrawing groups on either aryl ring. The authors hypothesized that the added molecular
complexity, introduced with ease because of the domino process, may result in more active and
selective biological molecules when compared to embelin.

5.2. Wittig Reactions

Organocatalyzed Michael/Wittig reactions have been used in the synthesis of pyrazoles [87]
and trisubstituted cyclohexene carboxylates [88]. Recently, Ghorai and co-workers reported the
use of bifunctional squaramide/thiourea catalyst in a Wittig/oxa-Michael reaction to synthesize
benzoxaborole derivatives (Scheme 12) [89].
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Scheme 12. Reaction scope of o-formyl aryl boronic acids.

Benzoxaboroles have been shown to have many potential pharmaceutical applications because
of their anti-parasitic, antimalarial, anti-inflammatory, antibacterial, and antiviral properties [90].
The bifunctional organocatalyst is thought to coordinate to the carbonyl of the substrates through
the squaramide/thiourea functional groups of the catalyst (the pull), and the tertiary nitrogen of the
catalyst coordinates to the boron in the substrate providing the “push”. The substitution on the aryl
moiety was found to be quite general, as electron-donating and electron-withdrawing substituents
worked well, resulting in the isolation of the benzoxaboroles in excellent yield and enantioselectivities.
The authors also were able to use the benzoxaborles as substrates in the synthesis of chiral β-hydroxy
ketones in good yield and enantioselectivity (Scheme 13).
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90. Adamczyk-Woźniak, A.; Borys, K.M.; Sporzyński, A. Recent Developments in the Chemistry and Biological
Applications of Benzoxaboroles. Chem. Rev. 2015, 115, 5224–5247. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jpain.2007.09.002
http://www.ncbi.nlm.nih.gov/pubmed/17974490
http://dx.doi.org/10.1021/np0102861
http://www.ncbi.nlm.nih.gov/pubmed/11678659
http://dx.doi.org/10.1021/np030045o
http://www.ncbi.nlm.nih.gov/pubmed/12828466
http://dx.doi.org/10.1021/acs.orglett.6b03823
http://www.ncbi.nlm.nih.gov/pubmed/28121452
http://dx.doi.org/10.1021/cr2000459
http://www.ncbi.nlm.nih.gov/pubmed/21806021
http://dx.doi.org/10.2174/138527211795378263
http://dx.doi.org/10.1021/acs.joc.6b01818
http://www.ncbi.nlm.nih.gov/pubmed/27680299
http://dx.doi.org/10.1021/acs.jnatprod.5b01038
http://www.ncbi.nlm.nih.gov/pubmed/26924672
http://dx.doi.org/10.1021/ol301983f
http://www.ncbi.nlm.nih.gov/pubmed/22852800
http://dx.doi.org/10.1021/ol9021832
http://www.ncbi.nlm.nih.gov/pubmed/19852490
http://dx.doi.org/10.1039/C6SC04522G
http://www.ncbi.nlm.nih.gov/pubmed/28451370
http://dx.doi.org/10.1021/cr500642d
http://www.ncbi.nlm.nih.gov/pubmed/26017806
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mannich 
	Henry Reactions 
	Aldol Reactions 
	Other Reactions 
	Knoevenegal/Diels-Alder Reactions 
	Wittig Reactions 

	References

