
International  Journal  of

Environmental Research

and Public Health

Article

A Machine Learning Ensemble Approach Based on
Random Forest and Radial Basis Function Neural
Network for Risk Evaluation of Regional Flood
Disaster: A Case Study of the Yangtze River
Delta, China

Junfei Chen 1,2,* , Qian Li 2, Huimin Wang 1,2 and Menghua Deng 1,2

1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing 210098, China; hmwang@hhu.edu.cn (H.W.); dengmh@hhu.edu.cn (M.D.)

2 Business School, Hohai University, Nanjing 211100, China; qianli@hhu.edu.cn
* Correspondence: chenjunfei@hhu.edu.cn; Tel.: +86-25-6851-4613

Received: 12 November 2019; Accepted: 17 December 2019; Published: 19 December 2019 ����������
�������

Abstract: The Yangtze River Delta (YRD) is one of the most developed regions in China. This is
also a flood-prone area where flood disasters are frequently experienced; the situations between
the people–land nexus and the people–water nexus are very complicated. Therefore, the accurate
assessment of flood risk is of great significance to regional development. The paper took the YRD
urban agglomeration as the research case. The driving force, pressure, state, impact and response
(DPSIR) conceptual framework was established to analyze the indexes of flood disasters. The random
forest (RF) algorithm was used to screen important indexes of floods risk, and a risk assessment
model based on the radial basis function (RBF) neural network was constructed to evaluate the flood
risk level in this region from 2009 to 2018. The risk map showed the I-V level of flood risk in the
YRD urban agglomeration from 2016 to 2018 by using the geographic information system (GIS).
Further analysis indicated that the indexes such as flood season rainfall, urban impervious area ratio,
gross domestic product (GDP) per square kilometer of land, water area ratio, population density
and emergency rescue capacity of public administration departments have important influence on
flood risk. The flood risk has been increasing in the YRD urban agglomeration during the past ten
years under the urbanization background, and economic development status showed a significant
positive correlation with flood risks. In addition, there were serious differences in the rising rate of
flood risks and the status quo among provinces. There are still a few cities that have stabilized at a
better flood-risk level through urban flood control measures from 2016 to 2018. These results were
basically in line with the actual situation, which validated the effectiveness of the model. Finally,
countermeasures and suggestions for reducing the urban flood risk in the YRD region were proposed,
in order to provide decision support for flood control, disaster reduction and emergency management
in the YRD region.

Keywords: urban flood; random forest (RF); RBF neural network; YRD urban agglomeration;
regulation countermeasure

1. Introduction

Flood, a kind of sudden natural disaster with the characteristics of high frequency and huge loss,
is closely related to other disasters, which can transfer to each other and produce a chain reaction of
disasters. At present, there is no unified definition of flood [1]. It brings losses and misfortunes to
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people’s normal life and production activities, which are called flood disasters [2]. It has social attributes,
and it is dependent on human society [3]. About two-thirds of the land area has imparity in types and
degrees of flood disasters in China, and the direct economic loss caused by flood disasters accounts for
about 62% of the total economic loss of various natural disasters every year [4]. Furthermore, 70% of
China’s big cities and 50% of its population are located in the eastern and coastal areas. Among them,
the YRD region is one of the most serious flood-prone areas, with a severe flood disaster occurring
every one or two years on average [5]. Flood disasters have been on the rise in recent years and still
will be a serious threat to urban sustainable development [6].

The concept of risks has been around for a long time. The risk depends on the probability
of occurrence and the outcome [7]. However, the best solution to flood disasters was to control
them, until the late 20th century [8–10]. The interaction between human society and the ecological
environment has become more and more profound with the development of urbanization. The United
Nations [11] raised the concept of sustainable development in the 1980s. Since then, the issue of the
socio-economic ecosystem has attracted the attention of scholars at home and abroad [12,13]. In the
late 1980s, the establishment of the Intergovernmental Panel on Climate Change (IPCC) marked the
beginning of modern flood risk management awareness [14]. Contrary to traditional flood control
theory, the modern flood risk management is a process of constantly trying to use limited resources,
such as social resources, environmental resources and financial resources [15,16]. Early scholars on
urban floods mainly focused on the flood disaster status in a recurrent period or a historical typical
flood event and concentrated on the analysis of the flood disaster characteristics and causes [17].
For example, the floods of the Mississippi River in the United States in 1993 and the Rhine River in
Europe in 1997 emphasized the need to search for better flood solutions. In the 21st century, the World
Meteorological Organization published the concept document of integrated flood management for the
first time, which conducted systematic studies on risk management theory, urban flood disaster, climate
variability and adaptive management [18]. The flood risk analysis is the basis of flood risk management
decision. After that, scholars put forward the concepts of risk, exposure and the vulnerability of flood
disaster-bearing bodies systematically, forming a complete risk structure of flood disaster based on the
urban background [19]. Hai et al. [20] further quantified the flood management system framework as
the system of flood risk index, then developed an AHP and interval analysis method to evaluate the
flood risk of Guangzhou metro system. Kotzee et al. [21] employed principal component analysis to
elect key influencing factors and appraise flood elasticity index under the interaction between complex
social systems and ecosystems. They further assessed the level of flood risks in the region based
on the principle of various models that measure the probability and degree of floods. In this paper,
driving force, pressure, state, impact and response (DPSIR) framework was proposed to analyze the
influencing factors of an urban flood system, which improved the traditional PSR method that paid too
much attention to environmental issues. DPSIR involves multiple subsystems, such as social, economic
and ecological systems. Since changes to any element in the system lead to changes to other elements,
the DPSIR framework presents this process in a complete and intuitive way. After that, the core of the
research turned to in-depth analysis of data.

The constantly changing flood disaster scene has variability and unpredictability, which, in
addition to the irreversibility and gray characteristics of the disaster, make it impossible for the
traditional linear architecture to demonstrate the operation of this process effectively [22]. However,
with the increase of the data volume and the improvement of computational accuracy, the advent
of the neural network marked a turning point in flood risk assessment theory [23]. There are many
kinds of neural networks, which are mainly divided into biological neural networks and artificial
neural networks, among which artificial neural networks can be divided into feedforward neural
networks and feedback neural networks [24,25]. The feedforward neural network has strong fitting
ability and can approximate arbitrary continuous nonlinear functions. It marked the transition of
artificial intelligence from a high symbolic knowledge period to a low symbolic learning period as a
typical model of connectivism [26]. The backpropagation (BP) neural network is widely used in the
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field of disaster multiobjective algorithm and control at present. Hinton presented multiple hidden
layers to replace the original single feature layer and examined the BP algorithm to train network
parameters in 1985 [27,28]. Network models such as the recurrent neural network (RNN) and the
convolutional neural network (CNN) are developed on this basis [29–31]. The deep belief neural
network (DBN) is based on stacking limited Boltzmann machines and a layer of ordinary feedforward
network. However, the DBN is more of a means to understand the deep learning thinking mode,
rather than being practical itself [32,33]. The traditional mathematical statistical model has difficulty
in deeply excavating the urban flood data. Urban flood involves the multiclassification problem of
machine learning, and there is a hierarchical relationship among risk categories. The RBF network can
approximate any continuous function accurately and is suitable for solving classification problems [34].
Compared with the above neural network method, the RBF network is the optimal network for
input and output mapping function in a feedforward network, with fast convergence speed and high
accuracy [35,36]. Many studies have verified that the RF has lower generalization error and higher
prediction accuracy than other methods through a large number of theoretical and empirical studies.
Lee et al. [37] practiced the decision tree, Bagging, AdaBoost and the RF methods for modeling, and the
classification accuracy was obtained through 10-fold cross-validation. The analysis results showed that
the RF and AdaBoost had the best accuracy. Sometimes, operation speed of the RF was much faster
than AdaBoost, and there was no overfitting. The RF has a good adaptive function for many practical
problems with unclear prior knowledge, nonlinear multiconstraint conditions and incomplete data [38].
As urban flood risk assessment involves a large number of indexes, it is a typical high-dimensional
nonlinear problem. The RF realized the reduction of indexes by measuring the importance of indexes,
thus effectively solving the high-dimensional nonlinear problem [39], in view of the fact that RBF
network training index matrix did not distinguish the importance of indexes. Therefore, the random
forest was introduced to establish the characteristic training weight matrix of RBF network. An urban
flood risk assessment model based on RF-RBF algorithm was constructed, and the effectiveness of the
algorithm was confirmed by experiments.

As one of the most mature urban agglomerations in China, the YRD region has a solid economic
foundation, but the losses caused by floods have been increasing over the years [40]. This paper aims
to analyze the impact indexes of flood disaster in the YRD through DPSIR framework, introduces
random forest to measure the importance of impact indexes and evaluates the flood disaster level from
2009 to 2018 by RBF neural network. This paper discusses the achievements and problems of flood
management in the YRD region, and proposes corresponding countermeasures. The research results
can provide the basis for the regional integration of flood control and disaster reduction in the YRD,
which is of great significance in improving urban flood control and management.

In summary, the ultimate goal of RF-RBF model is to alleviate urban flood disaster. The paper is
organized as follows. Section 2 depicts the study area, and the YRD region was selected to evaluate
flood risk levels. Section 3 describes the source of materials and research methods and presents the risk
assessment model of urban flood disaster. Details on the main empirical research and assessment results
are discussed in Section 4. Section 5 analyzes the research results and provides the corresponding
countermeasures. The last section is the conclusion and future research needs.

2. Study Area

The YRD is located in the eastern coastal region of China, which is one of the most dynamic
and open regions in the economy. As an important intersection of the “One Belt and One Road”
and the Yangtze River economic belt, it has a crucial strategic position in the overall opening up
and modernization of the country. According to the YRD urban agglomeration development plan
(2016–2020, the planning scope of the YRD urban agglomeration includes 26 cities in China: Shanghai
(one municipality), Nanjing, Wuxi, Changzhou, Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang,
Taizhou (nine cities in Jiangsu Province), Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Jinhua,
Zhoushan, Taizhou (eight cities in Zhejiang Province), Hefei, Wuhu, Ma’anshan, Tongling, Anqing,
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Chuzhou, Chizhou and Xuancheng (eight cities of Anhui Province), as shown in Figure 1. It covers a
land area of 21.17 million square kilometers, accounting for 2.2% of the national total. Also, 11.8%
of the population of China creates 21% of the GDP. The terrain of the YRD is characterized as high
on all sides and low in the middle, which mostly plains. Most of the area is small watersheds with
small catchment areas and storage capacity. The problem of urban floods is particularly prominent
due to the influence of drainage inside the river and the water level of the rivers and lakes, coupled
with the extreme rainfall events caused by typhoons in coastal areas. Here, June to September is
the flood concentration period, which accounts for 80% of the flooding for the whole year. It has
the characteristics of high-frequency occurrence and wide influence range of severe disasters [41].
Therefore, strengthening the risk assessment and prediction of urban agglomeration flood disasters
will have a far-reaching impact on the realization of flood control and disaster mitigation, emergency
management, land utilization and regional sustainable development in eastern China.

Figure 1. The regional schematic diagram of Yangtze River Delta (YRD) urban agglomeration.

3. Material and Methods

3.1. Data Sources

This study collected the rainfall data during the flood season (June to September), socio-economic
data and the data related to urban infrastructure construction of 26 cities in the YRD from 2009 to 2018.
The rainfall data were gathered from the website of the National Meteorological Information Center.
All the socio-economic data, such as population, GDP per square kilometer of land, urbanization
rate and arable land per capita were collected through the national demographic yearbook, Shanghai
statistical yearbook, Zhejiang statistical yearbook, Jiangsu statistical yearbook and Anhui statistical
yearbook. The data of urban infrastructure construction, such as vegetation coverage, density of
drainage networks in built-up areas and direct economic loss from flood disasters were obtained
from the China urban construction statistical yearbook and the China drought and flood disaster
bulletin. In addition, the water resource data were obtained from the Bureau of Hydrology and Water
Resources in 26 cities. Other parts of the data were obtained through official websites or field trips by
relevant departments.
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3.2. Research Methods

3.2.1. DPSIR Conceptual Framework

Urban flood disaster is a typical complex social system problem with multiple influential factors.
Many factors, such as social and economic factors, environmental conditions, land planning, water
and climate changes, have complex and profound influences on the probability of occurrence and
consequences of urban flood disaster; the mutual influence mechanism is random and inevitable [42].
Climate changes make the analysis of these extreme events more complicated [43]. There used to be
no uniform standard for quantitative research on factors affecting flood disaster, and the selection
criteria of risk assessment index systems were also inconclusive [44]. To address this complexity and
improve flood risk analysis methods, the organization for economic cooperation and development [45]
introduced the pressure, state, response (PSR) method, then constructed a layered framework of
environmental assessment indexes to describe the relationships among human activities, resources,
the environment and institutional management. The early PSR framework focused excessively
on environmental issues and neglected other development elements such as society, economy and
institutions. There is not a one-to-one correspondence between the pressure and state, and complex
social networks relationships cannot be fully revealed by a simple chain. Based on the existing problems
of PSR frameworks, the European Environment Agency (EEA) first proposed the DPSIR framework
when studying the relationship between environmental degradation and agriculture [46]. The DPSIR
is a multifactor comprehensive conceptual evaluation model based on PSR, which is widely used in
environmental system evaluation [47]. The driving force refers to the elements that directly contribute
to the development of events. By separating the influence from the state, we can more intuitively
understand the effect of the changing state on the “impact”. Therefore, the DPSIR framework (Figure 2)
was established to analyze the causal relationship among society, economy, environment and resources
in urban flood disaster system. Attempts to quantify complex problems and then implement the
data-driven integration and multidimension evaluation method can provide a realistic basis for more
effective evaluation results [48].

Figure 2. The conceptual framework of driving force, pressure, state, impact and response (DPSIR).
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3.2.2. Random Forest

As we explore more sophisticated data structures, we can come up with explanations that are
closer to the real world. The feature selection is the process of retaining the most effective features
from the original data, and the accuracy of data classification is higher after screening [49]. At present,
the selection methods of this characteristic subset mainly include the analytic hierarchy process (AHP),
Pearson correlation, entropy weight method and regularization, among other algorithms. However, the
RF algorithm is one of the most accurate models for classification prediction [50]. The RF is composed
of a decision tree and a Bagging algorithm. As a multiclassifier algorithm based on ensemble learning,
it makes full use of the concept of single classifier and sampling statistics to solve the problem of
insufficient precision of a single classifier. Compared with other methods, the RF has less generalization
errors and higher accuracy, which makes it suitable for solving problems without prior knowledge or
with nonlinear multivariable constraints and incomplete data [51]. The steps of the RF algorithm are
shown in Figure 3.

Figure 3. The schematic diagram of the random forest (RF) algorithm.

The principle of random forest is summarized as follows: In the first step, bootstrap method is
used to randomly extract samples to form a training set {Sk}, k ∈ {1, 2, · · · , N}, and the classification
regression tree is generated. The second step is to randomly select the characteristics of each tree
during the growth process to split the internal nodes. In this process, each tree has M characteristics,
and mtry variables are randomly extracted from M features at each internal node. The value of mtry
remains unchanged during the growth process of the forest. Then, the steps are repeated to maximize
the growth of each tree. Finally, the randomly growing trees constitute the forest, and the new data are
predicted based on the generated random forest.

Common decision tree algorithms include ID3, C4.5 and CART algorithms. The method of the
ID3 algorithm is to select the best feature according to all possible values of the feature to segment the
data. Specifically, the implementation step of ID3 algorithm is to calculate the information gain of each
attribute separately and select the attribute with the maximum information gain for segmentation,
before calculating the information entropy of the root node, as shown in Equation (1):

Ent(D) = −
n∑

i=1

p(xi) log2 p(xi), (1)

where p(xi) represents the probability of random event D being xi. For example, calculate the
information gain for each attribute in a feature attribute set D = {M, N, · · · , W, Z} to be split. Let the
set of all values of attribute d be called v; the information entropy of the v branch nodes is divided to
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calculate the attribute M, and the information gain of the split feature attribute M is further calculated
as Gain(D, d), as shown in Equation (2):

Gain(D, d) = Ent(D) −
∑

v∈Value(d)

|Dv
|

D
Ent(Dv). (2)

The maximum information gain is selected to divide, the analogy is carried out and finally the
decision tree is obtained.

The C4.5 algorithm improves the data discretization of the ID3 algorithm by calculating the
characteristics of information gain selectivity, with low accuracy, difficulty in processing missing
values, complex decision tree structure and easy overfitting. The CART algorithm can be used for both
regression and classification. It uses binary segmentation method to process the continuous value
and makes full use of binary tree structure to segment. t1 represents the root node, which has no
inward edges but has zero or two outward edges, and ti(i = 2, 3, 4) represents the inner node. In each
decision tree, any leaf node is given a class label. The nonterminal node has an independent variable Xt,
Xt ∈ {X1, · · · , Xm}, and divides different features of the record, called segment variables. As exhibited
from the inner e(T, T′) node within the range of T to T′, it is associated with the predication of q(T, T′).
Among them, the q(T, T′) contains only the nth node segmentation variable Xt. The edge of the node
within a predication set QY cannot leak out; putting the edge node T in the predication of QY represents
node T segmentation predication. Then, segmentation variables and the combination of predication is
referred to as segmentation split criteria crit(T). The decision tree Tr is given, and the recursive model
defines the classification model, which is expressed as Equation (3):

c(xi, · · · , xm, T) =
{

label(T)
c(xi, · · · , xm, T j)

DTr(xi, · · · , xm) = c[xi, · · · , xm, Root(Tr)]

(3)

Here, the model is expressed as label(T) when T is the leaf node, and the model is expressed as
c(xi, · · · , xm, T j) when T is the inner node, with q(T, T j)(xi) = true. Root(Tr) represents the root node
of decision tree Tr.

Regression tree is actually a kind of nonparametric nonlinear regression. The CART regression has
constant values on the leaf nodes and uses variance as a measure of impurity. Therefore, the measure
of the CART regression tree segmentation selection is:

Err(T) = 1
NT

NT∑
i=1

(yi − yi)
2

∆Err(T) = Err(T) −
n∑

j=1
P
[
q j(X)|T

]
·Err(T j)

(4)

where NT is the T trees of N samples in the training set.
The RF provides two feature selection methods, namely mean decrease impurity (MDI) and mean

decrease accuracy (MDA). Overall, the results of MDI are consistent with MDA, but MDI is more
robust than MDA [52]. Gini impurity or information gain are often used to determine the node in MDI.
However, the Gini impurity represents the expected error rate of data items within the set and performs
better in classification problems [53]. The smaller the Gini coefficient and the lower the Gini impurity
are, the better the characteristic is. Generally, regularization and cross-validation are used to prevent
model overfitting. When samples are abundant, cross-validation is a better option [54]. To clarify the
characteristic selection process of the Gini coefficient, feature M = [x1, x2, · · · , xc] is assumed; if the
node of feature x j is in the set M, the importance of x j in the tree i is denoted as VIM. Details are
as follows:

VIMi j
(Gini) =

∑
m∈M

VIM(Gini)
jm , (5)
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Gini(t) = 1−
k∑

j=1

[P( j|t )]2, (6)

∆Gini(t) = (PL + PR − 1)
k∑

j=1

p2
(
j
∣∣∣tp

)
, (7)

where Gini(t) is the Gini coefficient at node t, and the smaller Gini(t) is, the more thorough the
segmentation is. P( j|t ) represents the conditional probability of node t at the risk level j. tp represents
the parent node. PL and PR represent the probabilities of left and right child nodes, respectively.
In general, PL + PR = 1. k is the total number of categories.

The importance scores obtained from n trees were normalized, as shown in Equation (8):

VIM j
(Gini) =

n∑
i=1

VIMi j
(Gini). (8)

Finally, all the obtained importance scores were normalized to obtain the results:

VIM j
′ =

VIM j
c∑

i=1
VIMi

. (9)

3.2.3. Radial Basis Function Neural Network

The RBF neural network is a three-layer feedforward network with a single hidden layer, which
has strong approximation ability, classification ability and learning convergence rate.The set of RBF
functions constructs an arbitrary basis when the input pattern vector extends to the hidden layer space,
so as to transform the original problem of linear inseparability in the low-dimensional space into an
approximate linear separable problem in the high-dimensional space and realize the approximation of
any continuous function with arbitrary accuracy [55].

Set the φ is a nonlinear mapping function that maps any point x ∈ X in the low-dimensional space
X to the high-dimensional space Y, which is termed as φ(x) ∈ Y. If there is a function of x1, x2 in the x
space, then the inner product of Y space vector is defined as:

< y1, y2 >=< φ(x1),φ(x2) >= [x1]
2
1[x2]

2
1 + [x1]

2
2[x1]

2
2 = k(x1, x2), (10)

where the [x] implies the sample x, the <,> is the inner product, the (, ) means the sample coordinates
and the k is called the kernel function. The RBF functions include the Gaussian, multiple quadratic,
inverse multiple quadratic, cubic spline and thin-plate spline functions, among which Gaussian
function is the most widely used [56]. In this survey, the Gaussian radial basis is used as the kernel
function of the RBF neural network, and the Gaussian function is expressed as:

k(x1, x2) = exp
(
−
‖x1 − x2‖

2

2σ2

)
, σ > 0. (11)

After x is mapped, the distance formula between this point and the origin in high-dimensional
space can be expressed as: ∥∥∥φ(xi)

∥∥∥2
=

〈
φ(xi), φ(xi)

〉
= k(xi, xi) = 1. (12)

When the sample x is mapped to a higher dimensional space, the φ(x) exists on the hypersphere.
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Each node of the hidden layer is just a basis in space, which is weighted by linear combination and
output. This can be understood by the Weierstrass approximation theory. According to the Weierstrass
approximation theorem, let f ∈ C[a, b]; then, for any ε > 0 there is P such that:

max
a≤x≤b

∣∣∣P(x) − f (x)
∣∣∣ ≤ ε. (13)

The key dilemma of the RBF network is the selection of the center parameters of hidden layer
neurons. This is generally valued in random selection or k-means clustering method. The optimization
methods include gradient descent method, Newton’s method and conjugate gradient method; the
gradient descent method has the highest accuracy and is widely used. The basic function center was
determined by the gradient descent method in this paper, and then the function center and distance
were modified continuously, as shown in Figure 4. θ is the model parameter, and ξ is the model
optimal parameter.

Figure 4. The iterative flow chart of the gradient descent method.

As a three-layer feedforward network, the RBF neural network can transform parameters between
the two layers to enable learning that can be carried out separately, and the problem of local minimization
can be avoided effectively. The internal approximation principle of the network is as follows:

y(x) =
M∑

j=1

w jφ
(∥∥∥x− x j

∥∥∥), (14)

where M represents the number of nodes in the hidden layer, and W = [w1, w2, · · · , wM] is the weight
of each neural node. The hidden layer has higher dimensions in most cases, and the output layer
realizes linear output through activation function. The structure of the RBF is revealed in Figure 5,
including input layer, hidden layer and output layer.
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Figure 5. The diagram of radial basis function (RBF) structure.

DPSIR framework was adopted to dynamically acquire key elements of the urban flood system
in this study, and the risk assessment model of urban flood was built based on RF-RBF. The RF was
embedded to measure the importance of flood index, and the index with influence factor less than 10%
was eliminated. This study creatively introduced the weight generated by RF into the RBF training
network, which improved the training rate and accuracy of the model to some extent. The number of
model iterations dropped from 10,000 to 3000, and the accuracy increased from 0.55 to 0.62. The results
showed that the loss function was minimized when the learning rate was 0.005 and the penalty
coefficient was 1. The Euclidean distance algorithm was used to fit the model. Compared with other
distance algorithms, Euclidean distance ensures that the model gets the global optimal value without
falling into the local optimal value [57]. The risk levels of flood disaster were classified according to the
relevant standards. Finally, RBF network was employed to train the flood disaster factor matrix of the
YRD urban agglomeration from 2009 to 2015, so as to verify the flood disaster risk level from 2016 to
2018. With the sensitivity to classification problems, the RBF network can realize accurate assessment
of disaster risk level.

4. A Case Study in Yangtze River Delta (YRD)

4.1. System of Evaluation Index

According to the previous analysis, urban flood disaster is the result of interaction among various
factors. This paper studied the regional flood characteristics of urban agglomeration in the YRD and
analyzed the influencing factors of each subsystem of urban flood from the aspects of driving force,
pressure, state, impact and response. On this basis, the experts in related fields were consulted [58,59].
Eighteen indexes were selected to constitute the evaluation index system of urban flood disaster
(Table 1).



Int. J. Environ. Res. Public Health 2020, 17, 49 11 of 21

Table 1. Significance assessment of indexes based on RF model.

Index Code Index Name Index Weight

I1 Flood season rainfall (mm) 0.0923
I2 Elevation (m) 0.0826
I3 Urbanization rate (%) 0.0473
I4 Population density (Person/km2) 0.0608
I5 Urban impervious area ratio (%) 0.0746
I6 GDP per square kilometer of land (¥0.1B/km2) 0.0648
I7 Per capita water resources (L) 0.0272
I8 Arable land per capita (10,000/km2) 0.0564
I9 Water area ratio (%) 0.0416

I10 Vegetation coverage (%) 0.0559
I11 Density of highway network in built-up area (km/km2) 0.0492
I12 Density of drainage network in built-up area (km/km2) 0.0501
I13 Direct economic loss from flood disasters (¥0.1B) 0.046
I14 Flood area population (10,000) 0.037
I15 Municipal flood control investment per unit area (¥10,000) 0.0849
I16 Public disaster response capacity 0.0463
I17 Emergency rescue capacity of public administration departments 0.0494
I18 Reserve and distribution capacity of flood control materials 0.0337

In order to measure the importance of various indexes to flood disaster effectively and construct a
more scientific urban flood risk assessment index system, flood data of the YRD region from 2009 to
2015 (training set) were analyzed by random forest algorithm (Figure 6). Thus, the index system of
urban flood was reduced by eliminating indexes with cumulative importance of less than 10%. The RF
model training parameters include classification trees and node branches. As the number of trees
increases, the model becomes more stable. However, when the quantity increases to a certain value,
the stability improvement brought by the quantity increase will be negatively affected. After several
rounds of tests, it was revealed that the optimal performance of the random model is determined when
the classification tree parameter is set to 300 and the bifurcation tree with nodes parameter is set to 3.

Figure 6. Index significance assessment results based on RF.

According to Figure 6, it can be deduced that the critical indexes are rainfall, municipal flood
control investment per unit area, elevation and urban impervious area ratio. On the contrary, the
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importance of flood area population, reserve and distribution capacity of flood control materials
and per capita water resource are relatively low, accounting for less than 10%. Urban flood disaster
id affected by the population and the reserve and distribution capacity of flood control materials
also, which resulted in low impact on actual flood disaster risk. Therefore, these three indexes were
eliminated and the top 15 indexes were employed as the input matrix of the RBF network.

4.2. Data Processing

Considering the particularity of urban flood disaster measurement and the difference of
corresponding level values among different indexes, the data were normalized to achieve the
comparability between different objectives, so as to clearly quantify the macroscopic regional
distribution of urban flood disasters. Based on the selected flood indexes, the classification standard of
single index of water conservancy department, the Yangtze river water resources commission and
relevant literature were referred [60,61]. These index values were divided into five grades, namely, low
risk (I), relatively low risk (II), medium risk (III), relatively high risk (IV) and high risk (V). The specific
evaluation criteria are shown in Table 2.

Table 2. Classification standard of flood risk rating index.

First-Class
Indicator Second-Class Indicator I II III IV V

Driving
factor

Flood season rainfall (mm) 0–250 250–500 500–750 750–1000 1000–1250
Elevation (m) 100–20 20–15 15–10 10–5 5–0

Urbanization rate (%) 0–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–1

Pressure
factor

Population density (Persons/ km2) 1000–1500 1500–2000 2000–2500 2500–3000 3000–5000
Urban impervious area ratio (%) 0–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–1

GDP per square kilometer of land
(¥0.1B/km2) 0–1 1–2 2–3 3–4 4–10

State factor

Arable land per capita (10,000/km2) 0.5–0.2 0.2–0.15 0.15–0.1 0.1–0.05 0.05–0
Water area ratio (%) 0.5–0.2 0.2–0.15 0.15–0.1 0.1–0.05 0.05–0

Vegetation coverage (%) 10–6 6–5 5–4 4–2 2–0
Density of highway network in

built-up area (km/km2) 0–5 5–6 6–7 7–8 8–9

Density of drainage network in
built-up area (km/km2) 35–20 20–15 15–10 10–5 5–0

Impact
factor

Direct economic loss from flood
disasters (¥0.1B) 0–1.5 1.5–3 3–4.5 4.5–6 6–10

Municipal flood control investment
per unit area (¥10,000) 30–12 12–9 9–6 6–3 3–0

Response
factor Public disaster response capacity 100–85 85–80 80–75 75–70 70–0

Emergency rescue capacity of
public administration departments 100–85 85–80 80–75 75–70 70–0

4.3. Research Results

As we all know, it is critical to divide training and testing sets properly in the field of machine
learning. In general, 7:3 is known as the golden ratio, at which the model can be trained and tested
well [62]. In this paper, the RBF network was constructed to train the urban flood index matrix of
urban agglomeration in the YRD from 2009 to 2015. The data from 2016 to 2018 were used as test set.
The model built the classifier by fitting the parameters and adjusting the parameters to the minimum
value of the loss function. The test set evaluated the quality of the trained model. The RBF network
used the Gaussian function to achieve the optimal approximation, and the gradient descent algorithm
was used for adaptive adjustment in the training process. When the training process was iterated
10,000 times, the network loss function converged to the minimum value of 0.08, reaching the global
optimal value. In order to prevent the model from overfitting, and considering the data quantity,
the paper adopted the method of 5-fold cross-validation. The results showed that the prediction
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accuracy of the training set was 0.77, that of the verification set was 0.75 and that of the test set was
0.748. This indicated that the model has a good prediction accuracy. Finally, the flood risk assessment
value of urban agglomeration in the YRD from 2016 to 2018 was predicted. Application of geographic
information system software (ArcGIS) will be based on RF and RBF (RF-RBF) jointly with the risk
assessment model of urban floods in the YRD region from 2016 to 2018. The risk assessment results are
displayed in Figures 7–9. According to the above classification, risk levels are in order of low risk,
relatively low risk, medium risk, relatively high risk and high risk, corresponding to five colors on the
risk diagram. Figures 7–9 shows the flood risk level of urban agglomeration in the YRD from 2016
to 2018.

Figure 7. Flood risk diagram of YRD urban agglomeration in 2016.

Figure 8. Flood risk diagram of YRD urban agglomeration in 2017.
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Figure 9. Flood risk diagram of YRD urban agglomeration in 2018.

5. Discussions

5.1. Results Analysis

The results of flood risk evaluation are shown in Figures 7–9. The YRD region from 2016 to 2018
showed a spatial pattern of high risk in the central region, low risk in the north and south regions, high
risk in the east region and low risk in the west region. Among them, the risk level of urban floods
is higher in economically developed areas, and the distribution of flood risk regions above level III
changes from points to large areas. In the time dimension, level I flood disaster risk region decreased
from 15% in 2016 to 4% in 2018. The proportion of flood risk region above level III increased from
19% in 2016 to 31% in 2018 and was greater than 42% in 2017. Some cities in the YRD have a higher
level of flood risk in 2016. The characteristics of the super El Nino in 2016 led to an increase in rainfall
frequency of more than 67% in the Jianghuai region of China in the summer, where the damage in
Anhui province accounted for 24.04% of the total loss in the entire basin. Flood risks were relatively
stable in 2017, and the region flood situation was more complex around 2018, showing a trend of more
diverse levels. The flood risk in Taizhou reached level V for the first time. Apparently, flood risks
have been rising over the past ten years. Furthermore, indexes such as the flood season rainfall, urban
impervious area ratio, GDP per square kilometer of land, water area ratio, population density and
emergency rescue capacity of public administration departments have important influence on flood
risk. Therefore, flood mitigation in the YRD should focus on these aspects.

From the provincial perspective, Zhejiang and Jiangsu are both developed provinces, and the city
scale of Jiangsu is generally larger than that of Zhejiang. Among them, geography is an important
factor. There are more mountainous areas and less flat land in Zhejiang, which restricts the urban
development to some extent. The flood risk levels are similar in Zhejiang and Jiangsu provinces, while
the internal differences among cities in Jiangsu is slightly higher. The flood risk in Anhui is in the
relatively low risk level, and the growth rate is relatively slow. The urbanization rate in Anhui is
generally in the middle level; the city scale is relatively small, and the flood risk level is relatively low
compared with other provinces. In general, the risk level of flood disaster varies among provinces, and
the risk level of flood disaster shows an increasing trend in each province from 2016 to 2018.
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From the perspective of cities, development results in a massive influx of population. However, the
resources are limited, and urban pressure leads to an increasing risk of flood disasters. The study shows
that the risk level of flood disasters is higher in provincial capitals, the municipality and developed
cities. Generally, the flood risk in YRD urban agglomeration has increased significantly over the past
three years due to extreme rainfall weather and low-lying terrain. This is also reflected in the research
of Chau [63]. The flood risks in eastern coastal areas of the YRD, southern Jiangsu and Hangzhou Bay
are relatively high, and Shanghai, Suzhou and Hangzhou are typical cities. The population size of
cities such as Shanghai, Nanjing, Hangzhou, Hefei, Suzhou, Ningbo, Changzhou, Nantong, Shaoxing
and Wuhu ranked among the top 11 cities in 2018, which was positively correlated with flood risk
level, indicating that human disturbance factors have significant influence on urban flood risk. It is
worth noting that the urban flood risk in Ningbo has remained stable in the past three years. While
developing the economy, it also pays attention to the construction of urban flood control. Ningbo
municipal government has fully deployed the three-year action plan of “strengthening the foundation
for floods control” since 2013, and continuously strengthened the construction of urban pumping
stations, with a total investment of 16 billion yuan. Since 2017, the “2020” action plan for flood control
and waterlogging has been fully implemented, focusing on 21 major flood control and waterlogging
projects with a planned investment of 33 billion yuan. These series of flood control measures have the
propensity to prevent and control the urban flood risk effectively.

According to the urban region scale, with the rise of Nanjing metropolitan region, Hangzhou
metropolitan region, Hefei metropolitan region, Suzhou–Wuxi–Changzhou metropolitan region and
Ningbo metropolitan region, the flood disaster risk of urban agglomeration in the YRD region has
formed a “multicenter” spatial distribution. From the flood risk diagram, the flood risk level expresses
a descended distribution trend from the center area of the metropolitan to the periphery. The flood risk
level in the Suzhou–Wuxi–Changzhou region of the Taihu basin has increased rapidly in a short time,
which has aroused concern for the overall ecological security of this region. The urban agglomeration
in Anhui section of the Yangtze River still has a large space for urbanization in the near future, and
urban flood risk control is also an urgent problem to be solved in this development. Although the risk
of flood factors is relatively high in the south zone of the YRD, there is no high-grade flood risk, which
is consistent with the research results of Ge et al. [64].

Due to the complexity of flood disaster factors, the risk assessment level of flood disaster presents
an extreme situation. For example, the typhoon Capricorn made landfall in Taizhou in 2018, and the
flood disaster caused by heavy rain was relatively serious, leading to a high level of flood risk in the
city. Therefore, floods are vulnerable to extreme rainfall, which is sporadic to some extent. In general,
the evaluation results in this paper generally reflect the actual situation and provide a theoretical basis
for the YRD urban agglomeration to prevent flood disasters more effectively and improve the ability of
disaster risk management.

5.2. Regulation Countermeasures

The above analysis showed that the level of urban flood disaster is closely related to rainfall,
topography, economic development, land use, urban flood control investment and disaster emergency
response capability. The practice and experience have proved that the single concept of flood prevention
can no longer adapt to the complex social environment. The concept of modern flood management is
an important part of the improvement of water resources management planning and implementation
within the basin, which needs to coordinate the formulation of policies and strategies at the national,
river basin, provincial and sub-river basin levels [65]. The Netherlands, Mexico and other countries
are actively exploring new models of multilevel integrated flood management [66,67]. The flood
control should adhere to the concept of multiscenario, multidimensional and multifactor coordinated
development of the society–economy–ecology. Based on the evaluation results of flood risk in the YRD
region, this paper discusses how to reduce flood risk in the YRD region from three aspects: improving
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urban infrastructure, developing regional ecological economy and strengthening emergency response
to disaster prevention and relief.

First of all, in terms of infrastructure transformation, this paper shows that the indexes such as
municipal flood control investment per unit area, urban impermeable area, vegetation coverage and
the density of drainage networks in built-up areas have the most significant impact on urban flood
disasters. According to the characteristics of poor drainage in cities such as Shanghai and Hangzhou,
governments should increase the investment in urban flood control infrastructure. A relatively perfect
flood control project system should be established in cities, as well as the construction of urban
rainwater pipe networks, confluence pipe networks and urban drainage pump stations. Urban wells
and rainwater outlets should also be repaired. Local governments should control the growth rate of
the impermeable area in Shanghai, Nanjing, Suzhou, Wuxi, Hangzhou, Ningbo and Hefei strictly, and
pave the permeable urban surface. The sponge city initiative needs a joint effort of three ministries:
Housing and Rural–Urban Development, Finance, and Water Resources. Urban agglomerations should
establish a regional management system of the ecological environment, strengthen interprovincial
coordination and protect important ecosystems such as forests, rivers, lakes and wetlands. The sponge
city initiative aims to achieve this goal through permeable surfaces and “green infrastructure”, with
permeable paving, waterways and wetland in urban construction. In addition, the land use pattern
should be changed, and the safety management of flood detention areas and soil erosion should also
be strengthened. In this way, the concept of green urbanization can be integrated into the urban
construction of the YRD region.

Furthermore, in terms of regional ecological economic development, studies have shown that
the key indexes include GDP per square kilometer of land, population density, urbanization rate,
arable land per capita and density of highway networks in built-up areas. The government should
respect the natural economic pattern and adhere to the policy of green development so that the
economic development and ecological joint prevention can complement each other. The YRD city
agglomeration should give full play to the central role of Shanghai, and accelerate the coordinated
development of metropolitan areas in Nanjing, Hangzhou, Hefei, the Suzhou-Wuxi-Changzhou region
and Ningbo, in order to optimize the spatial development pattern of “one core and five metropolitan
areas”. Governments should strengthen connectivity of transport infrastructure and establish an
interconnected transportation network in the YRD region. The networks of golden waterways and
high-grade waterways are particularly important to enhance the radiation capacity of the YRD.
For cities in Jiangsu, Zhejiang, Anhui and coastal areas that still have great potential in terms of resource
carrying capacity, industry and urban space, these can be expanded appropriately, and supporting
measures for satellite cities can be improved to disperse the pressure of over-rapid population growth in
megacities. Cities such as Hefei, Nantong, Yangzhou, Taizhou, Shaoxing, Wuhu, Ma’anshan, Chuzhou
and Xuancheng should actively develop characteristic industries, while undertaking the industrial
transfer effectively. The industrial space should be distributed reasonably, and governments should
adhere to the green ecological bottom-line strictly. The YRD region is vulnerable to the impact of land
development pressure and soil erosion, which aggravates the frequency and loss of flood disaster.
Therefore, it is necessary to accelerate the drawing of flood risk maps in the YRD region, to determine
the impact of regional development strategy on the land use type in flood areas and to evaluate the
loss before and after the implementation of the plan. As for the management of land use in flood
areas, the overall layout of urban construction should be as far away as possible from areas with high
flood risk, and the standard of flood control facilities should be improved in urban core flood areas.
The government should implement zoned management of land use and increase the area of basic
farmland protection areas and ecological protection areas. Moreover, the government should promote
the comprehensive reform of market-based allocation of land elements and establish a cross-provincial
mechanism for supplementary farmland in the YRD region. For some areas in north Jiangsu, west
Anhui and west Zhejiang where the ecological environment is relatively fragile, the pace of industrial
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transformation and ecological restoration construction should be accelerated and the space of ecological
and agricultural land should also be expanded appropriately.

Lastly, in terms of emergency response to disaster prevention and relief, the results showed
that rainfall during flood season, the low-lying terrain, the emergency rescue capability of public
management departments and public disaster response capability are the main factors that affect
flood disasters in the YRD region. At present, nonengineering flood control measures are still not
perfect. Rainfall is concentrated in the YRD in summer; in order to reduce the risk of urban floods,
the three-dimensional monitoring of urban flood information should be strengthened and a real-time
monitoring and rapid warning of flood information system should be developed to provide rapid
response decision for urban flood emergencies. The public awareness of disaster response should be
enhanced, and the disaster relief department should plan scientific personnel and material scheduling
strategies to minimize the loss resulting from urban flood disasters. Relevant departments should
construct an emergency management system for urban flood disasters and accelerate the establishment
of the integrated emergency management mechanism in the YRD region. The YRD region should
strengthen the integrated construction of flood prevention, mitigation and relief in key cities and
metropolitan area. The standards for flood control and drainage of coastal cities should be improved,
and the government’s policies for disaster relief and compensation should be perfected. The spatial
linkage emergency plan of urban agglomeration should be established in the YRD to improve the
regional capacity for flood control and disaster reduction.

6. Conclusions

China’s State Council approved the development plan of urban agglomeration in the YRD and
the integration of YRD became a national strategy when the integration of the YRD entered a new
stage in 2016. However, under the background of global warming and urbanization development,
the flood disaster management in the YRD region has become increasingly urgent. This paper firstly
defined the relevant concepts of urban flood disaster risk and then built the flood risk management
framework from the aspect of driving force, pressure, state, impact and response. Random forest was
used to screen out 15 evaluation indexes of high importance to urban flood disaster risk, such as urban
impervious area, flood season rainfall, urban impervious area ratio, GDP per square kilometer of land
and density of drainage networks in built-up areas. Finally, RBF neural network was used to train
the flood data in the YRD from 2009 to 2015, so as to predict the flood risk level in the region from
2016 to 2018. The assessment results were presented by ArcGIS. The main research conclusions are
detailed below.

Firstly, most of the existing studies on urban flood disaster risk discussed the solution of urban
flood disaster from the perspective of engineering and nonengineering measures, while few of them
applied machine learning theory to assess the flood disaster risk. However, the influencing factors
of urban floods are multisource and complex, and the assessment of the level of urban flood risk
is a multiclassification problem. The machine learning method has a good application scenario for
multiclassification problems. Based on the data-driven model, this paper adopted RF to evaluate the
importance of indexes, and the index weight matrix was extracted as the input of the RBF neural
network. Thus, the in-depth study of samples can ensure the accuracy of the RF-RBF model, which
provided great significance for flood disaster risk prediction and comprehensive management of
disaster prevention and reduction in the YRD region.

Secondly, the index system of flood risk assessment was constructed from five aspects: driving
force, pressure, state, impact and response. The results showed that in terms of driving force, the
rainfall and terrain are the main factors affecting urban floods, which lead to the characteristics of flood
and waterlogging in the YRD. In the pressure aspect, the rapid urbanization has led to the increasingly
prominent contradiction between population growth and land shortage. The ratio of impermeable area
of the urban underlying surface is increasing, while the water surface rate and vegetation coverage are
decreasing. The urban drainage network has insufficient flood discharge capacity. In addition, the
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flood control capacity of small and medium-sized rivers in the basin is reduced, and the construction
of flood storage and detention areas will inevitably be curtailed. As an advantageous region of grain
production, the per capita cultivated land area in the YRD region only is two-thirds that of the national
average. It is difficult to balance the amount of cultivated land. The issue of grain security is an
alarming problem. These are the key social factors that affect urban flood disasters. As for the disaster
response, the paper put forward countermeasures to reduce the flood risk in the YRD from three aspects:
improving the urban infrastructure, developing regional the ecological economy and strengthening
the emergency response to disaster prevention and relief.

Finally, further research could improve two potential limitations. One aspect regards the selection
of indexes. The urban flood disaster is a typical complex system problem. The selected indexes still
need to be perfected, considering the limitations of the current research horizon [68,69]. In the future,
more scientific flood indexes will be incorporated into urban flood research. In addition, as a new
research method to explain the mechanism of flood risk, the neural network model will have more
new methods for the research of this problem. Based on the prospective observational studies of the
flood assessment methods, we believe that these limitations will be overcome in the future.
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