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Abstract: α-Lipoic acid (ALA) is a vitamin-like substance that is an indispensable supporting factor
for a large number of enzymes. Due to its optical activity, ALA has optical isomers RALA and SALA.
The major role of RALA is in energy metabolism. However, RALA cannot be used as a pharmaceutical
or nutraceutical because it is sensitive to heat and acid conditions. Previous studies have shown that
RALA complexed with γ-cyclodextrin (CD) has a higher antioxidant capacity than that of free RALA.
The antioxidant enzyme system protects against intense exercise-induced oxidative damage and is
related to the physical status of athletes. The aim of this study was to examine the effect of CD/RALA
complex supplementation on antioxidant activity and performance during high-intensity exercise.
Twenty-four male C3H/HeSlc mice were divided into four groups (n = 6): swimming+distilled
water administration (C), swimming+CD/RALA supplementation (CD/RALA), swimming+RALA
suplementation (RALA), and swimming+CD supplementation (CD). Blood ammonia elevation due
to exercise stress was repressed by CD/RALA supplementation. The oxidative stress in the kidney
increased after exercise and was reduced by CD/RALA supplementation. Our findings suggest that
CD/RALA supplementation may be useful for improving the exercise performance in athletes.

Keywords: α-lipoic acid; γ-cyclodextrin complex; swimming exercise; oxidative stress

1. Introduction

α-Lipoic acid (ALA) is a vitamin-like substance that is an indispensable supporting
factor for a large number of enzymes [1]. It is present intracellularly in mitochondria and is
widely distributed in living organisms [2,3]. It has been reported that ALA has antioxidant
and anti-inflammatory effects, as well as preventive effects on lifestyle-related diseases
such as cancer, arteriosclerosis, and diabetes mellitus [4–6]. It is currently used in various
medicines and health-promoting foods [7–9].

ALA has optical isomers due to the presence of chiral carbons, which are of two types:
R (RALA) and S (SALA) (Figure 1). RALA is a naturally occurring form that is considered
to have high biological activity [10]. In contrast, SALA has been reported to aggravate
diabetes and is considered to be a potential cause of health problems [11]. However, free
RALA is extremely unstable and weak in heat and acid, so it is used as a racemic mixture
containing equal proportions of RALA and SALA (DLALA) in supplements and other
products [12].
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Figure 1. Chemical formulas of RALA and SALA. 

Cyclodextrin (CD) is a cyclic oligosaccharide that is classified into α (6), β (7), and γ 
(8) according to the number of glucose chains [13]. γCD complexes have an interesting 
feature of stabilization of unstable substances by incorporating them into the hydrophobic 
cavity of γCD (Figure 2). It is possible to stabilize the unstable substance and increase its 
function by encapsulation [14]. It has been reported that the stability of RALA in gastric 
acid was improved by formation of γCD complex with RALA (γCD/RALA) [15]. 

 
Figure 2. Illustration of γ-cyclodextrin inclusion. 

Physical activity (PA) has been reported to protect against cardiovascular diseases 
(CVDs), cancer, metabolic syndrome, depression, anxiety, and cognitive/neurodegenera-
tive disorders, collectively reducing all-cause mortality risk by approximately 30–40% 
[16–21]. Aerobic exercise training (AET) delays the onset of morbidity and enhances both 
health and lifespan [22]. Vigorous AET (for example, running) provides additional sur-
vival benefits of approximately 3–5 times the benefits of the recommended minimum PA 
(75–150 min/week), with up to 10-fold higher training volumes generally considered safe 
and well-tolerated [16,17,19,23]. 

However, there have been many reports on the adverse effects of high-impact exer-
cise on the body; for example, increased oxidative stress due to increased production of 
reactive oxygen species (ROS), deficiency of minerals in the body, and associated symp-
toms such as iron deficiency anemia [24–26]. ROS, a general term for highly reactive com-
pounds containing oxygen, plays an important role in biological defense [27]. However, 
an excessive ROS level has been reported to be involved in the onset of various diseases 
and aging [2]. In other words, a moderate ROS level is necessary for living organisms, but 
an excessive ROS level causes adverse effects in living organisms; as a result, compounds 
having an antioxidant effect are attracting attention. Thus, exercise performance can be 
improved by elimination of these negative effects. 

ALA has potent antioxidant properties, and we believe that γCD enhances its effects. 
In fact, it has been reported that supplementation with a mixture of γCD/DLALA and 
γCD complexed with coenzyme Q10, rather than a mixture of DLALA and coenzyme Q10, 
prolonged swimming time during exercise with increased oxidative stress [28]. However, 
there are no reports on its effects during other types of exercise. In the present study, we 
investigated the effect of CDLA on the improvement of exercise performance. 

Figure 1. Chemical formulas of RALA and SALA.

Cyclodextrin (CD) is a cyclic oligosaccharide that is classified into α (6), β (7), and γ

(8) according to the number of glucose chains [13]. γCD complexes have an interesting
feature of stabilization of unstable substances by incorporating them into the hydrophobic
cavity of γCD (Figure 2). It is possible to stabilize the unstable substance and increase its
function by encapsulation [14]. It has been reported that the stability of RALA in gastric
acid was improved by formation of γCD complex with RALA (γCD/RALA) [15].
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Physical activity (PA) has been reported to protect against cardiovascular diseases
(CVDs), cancer, metabolic syndrome, depression, anxiety, and cognitive/neurodegenerative
disorders, collectively reducing all-cause mortality risk by approximately 30–40% [16–21].
Aerobic exercise training (AET) delays the onset of morbidity and enhances both health and
lifespan [22]. Vigorous AET (for example, running) provides additional survival benefits of ap-
proximately 3–5 times the benefits of the recommended minimum PA (75–150 min/week), with
up to 10-fold higher training volumes generally considered safe and well-tolerated [16,17,19,23].

However, there have been many reports on the adverse effects of high-impact exercise
on the body; for example, increased oxidative stress due to increased production of reactive
oxygen species (ROS), deficiency of minerals in the body, and associated symptoms such
as iron deficiency anemia [24–26]. ROS, a general term for highly reactive compounds
containing oxygen, plays an important role in biological defense [27]. However, an excessive
ROS level has been reported to be involved in the onset of various diseases and aging [2].
In other words, a moderate ROS level is necessary for living organisms, but an excessive
ROS level causes adverse effects in living organisms; as a result, compounds having an
antioxidant effect are attracting attention. Thus, exercise performance can be improved by
elimination of these negative effects.

ALA has potent antioxidant properties, and we believe that γCD enhances its effects.
In fact, it has been reported that supplementation with a mixture of γCD/DLALA and
γCD complexed with coenzyme Q10, rather than a mixture of DLALA and coenzyme Q10,
prolonged swimming time during exercise with increased oxidative stress [28]. However,
there are no reports on its effects during other types of exercise. In the present study, we
investigated the effect of CDLA on the improvement of exercise performance.
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2. Materials and Methods
2.1. Animals and Experimental Design

Male C3H/HeSlc mice aged 5 weeks were obtained from Japan SLC, Inc. (Osaka,
Japan). All animals were housed in a temperature-controlled (22 ± 2 ◦C) environment
under a 12 h light/dark cycle and had ad libitum access to food and water. The mice were
fed a standard MF diet (Japan SLC, Inc.).

After 3 weeks, all mice practiced swimming for 10 min daily for a week in the Kyoto
University Matsumoto swimming apparatus (Anitech Co., Ltd., Tokyo, Japan) at a water
depth of 38 cm, water temperature of 32 ◦C, and flow rate of 10 L/min [28].

After 4 weeks, the mice were divided into the following four groups based on oral
administration of the samples before and after the swimming exercise: (1) distilled wa-
ter administered (C), (2) CD/RALA administered (CD/RALA), (3) RALA administered
(RALA), and (4) γCD-administered (CD). Samples (2) and (3) were prepared by dissolving
them in methylcellulose. CD/RALA, RALA, and CD were provided by CycloChem Bio
Co., Ltd. (Kobe, Japan). The doses of the various samples are listed in Table 1. Starting
from the week 4, all mice exercised for 20 min daily for 10 days (Figure 3).

Table 1. Experimental groups and dose of administered substance.

Groups Compounds Solvent (mL/g BW) Dose (mg/kg BW)

C Distilled Water 0.01 -
CD/RALA RALA-γCD 0.01 50

RALA RALA 0.01 50
CD γCD 0.01 50
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Figure 3. Experimental protocol.

Body weight and food intake were measured daily. After 5 weeks, the mice were
euthanized under isoflurane after measuring the swimming time to exhaustion. Blood
was drawn from the abdominal aorta and transferred to heparin-coated vials. Plasma
was prepared (1000 g, 10 min) and stored at −30 ◦C. The liver, kidney, spleen, lung, heart,
quadriceps, and gastrocnemius were collected, weighted, and stored at −30 ◦C.

2.2. Blood Biochemical Analyses

Plasma ammonia (NH3) and creatinine phosphokinase (CPK) levels were measured using
an automatic dry-chemistry analyzer (Fuji Dri-Chem 3500V; Fujifilm Medical, Tokyo, Japan).
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2.3. Measurement of Artificial Superoxide Anion Production

The superoxide anion (O2
−) is generated from the reaction between hypoxanthine and

xanthine oxidase. For the hepatic and renal superoxide anion measurements, 2-methyl-6-
p-methoxyphenylethnylimidazopyrazinone (MPEC) was used to induce oxidation. Xan-
thine oxidase and hypoxanthine were prepared in a phosphate buffer (0.1 M KH2PO4
buffer, pH 7.5). The reaction solution for the superoxide anion scavenging activity test
consisted of 60 µL crude hepatic or renal enzyme solution, 10 µL 300 µM MPEC, 170 µL
0.1 M KH2PO4 buffer, 60 µL xanthine oxidase solution (0.1 U/mL), and 50 µL 3.6 mM
hypoxanthine/KH2PO4. Crude hepatic or renal enzyme solution was obtained from sam-
ple homogenates prepared in phosphate-buffered saline (PBS) as follows: 0.1 g liver or
kidney isolates was homogenized in 500 µL of 0.1 M PBS (pH 7.3), and the homogenized
samples were collected and used as crude hepatic or renal enzyme solution. The reaction
was initiated by adding hypoxanthine. Fifty microliters of the reaction solution was placed
in each Röhren tube (5 mL; 75 mm × 12 mm; Sartedt, Nümbrecht, Germany) and MPEC
light emission was measured using a luminometer (Lumat3 LB9508; Berthold Technologies,
Bad Wildbad, Germany) [29].

2.4. Trace Element Analysis

The kidney sample (50 mg) was placed in 50 mL tall breaker and heated on a hotplate
to 150 ◦C. Then, 2 mL of 60% (v/v) nitric acid (HNO3; Kanto Chemical, Tokyo, Japan) and
2 mL of 60% (v/v) perchloric acid (HClO4; Kishida Chemical, Osaka, Japan) were added.
This process was repeated thrice. Next, 2 mL of 30% (v/v) H2O2 was added, and the sample
was heated until digestion was complete. The liquid was evaporated, and the sample
residues were cooled. Then, 9 mL of 5% (v/v) HNO3 was added, and the residues were
dissolved for 3 h. The presence of iron (Fe) in the solution was identified and quantitated
by inductively coupled plasma-mass spectrometry (ICP-MS; Agilent7700/Mass Hunter,
Agilent Technologies, Santa Clara, CA, USA). Standard curve was plotted by preparing
1000 µg/mL (ppm) standard solution of Fe (Fujifilm Wako Pure Chemical Industries Ltd.,
Osaka, Japan) and diluting it in 5% (v/v) HNO3 to the final metal concentrations of 0, 1,
5, 10, 50, 100, and 500 ng/mL (ppb). For quality control, 1 ng/mL (ppb) of the reference
internal standard, indium (In), was measured along with the sample [30].

2.5. Exercise Time to Exhaustion in Loading Swimming Test

At the age of 8 weeks, all mice were forced to swim, and the swimming time until
fatigue was measured in all mice. A time point until fatigue was defined by the failure to
rise to the surface of the water for more than 5 s to breathe. To avoid overstressing the mice,
the maximum duration of the swimming exercise was set at one hour, and if it exceeded
one hour, the mice were forcibly withdrawn from the pool [28,31,32].

2.6. Lactic Acid Measurement

At 5 weeks, blood was drawn from the caudal vein of the mice immediately before and
after the completion of exercise training. Lactic acid level was determined using Lactate
Pro2 (Arkray, Inc., Kyoto, Japan).

2.7. Histopathological and Immunohistochemical Examination of the Kidney

Kidneys were fixed overnight in methacarn (methanol: chloroform: acetic acid,
60:30:10 by volume) and then mounted in paraffin. Tissues were embedded in paraffin,
sectioned at 4mm, and stained with hematoxylin and eosin (H&E). Sequential sections were
degreased with xylene and a graded series of alcohol and then washed with phosphate-
buffer saline (PBS) for 10 min. The carbonyl group was converted to DNP hydrazone by
reaction with 1 mg/mL 2,4-dinitrophenylhydrazine (Cosmo Bio Co., Ltd., Tokyo, Japan)
prepared in 2 N hydrochloric acid (HCl) for 30 min. Sections were washed with HCl and
ethanol, blocked with 10% (v/v) normal goat serum, and subjected to microwave irradia-
tion for 20 min, cooled at room temperature for 1 h, quenched with 1% H2O2/methanol
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solution, and washed three times with PBS. The cells were then reacted with the protein
blocking serum to prevent non-specific reactions. The cells were then incubated overnight
with rabbit anti-DNP (1:1000) (Nichirei Bioscience, Tokyo, Japan) at 4 ◦C. After removal of
the primary antibody with PBS, the cells were incubated with Histofine® Simple Stain MAX
PO (Nichirei Bioscience) for 15 min. Sections were washed three times with PBS, stained
with diaminobenzidine tablets (Nichirei Bioscience), and nuclear stained with hematoxylin
solution after the reaction was stopped with distilled water [33].

2.8. Statistical Analysis

Data are expressed as mean ± SD. Means and standard deviations were calculated
using Excel statistics (2012 version), and rejection tests were performed. The difference
between the means of each sample was tested for significance by one-way analysis of
variance, followed by multiple comparisons (Dunnett) with group C as control. Statistical
significance was set at p ≤ 0.05.

3. Results
3.1. General Characteristics

There were no significant differences in body weight and weight of various organs
between the groups (Table 2).

Table 2. General characteristics of animals.

Organs C CD/RALA RALA CD

Body weight (g) 22.5 ± 1.8 23.3 ± 1.4 22.1 ± 1.0 22.8 ± 1.0
Food intake (g/day) 3.0 ± 0.4 3.0 ± 0.5 2.8 ± 0.5 2.9 ± 0.3
Liver (mg/kg BW) 47.6 ± 1.9 47.4 ± 4.8 44.2 ± 1.5 45.0 ± 2.3

Kidney (mg/kg BW) 12.7 ± 0.8 13.0 ± 0.9 13.2 ± 0.7 12.5 ± 0.6
Spleen (mg/kg BW) 2.6 ± 0.2 2.6 ± 0.5 2.5 ± 0.2 2.5 ± 0.2
Lung (mg/kg BW) 6.8 ± 0.3 7.4 ± 1.6 7.4 ± 0.6 7.6 ± 0.4
Heart (mg/kg BW) 4.8 ± 0.3 4.9 ± 0.4 4.8 ± 0.4 4.6 ± 0.3

Data are expressed as the mean ± SD.

3.2. Blood Biochemical Analyses

Blood NH3 concentration was significantly lower in the CD/RALA, RALA, and CD
groups than in the C group (Figure 4).
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3.3. O2
− Radical Scavenging

The O2
− scavenging activity of the kidney was significantly higher in the CD/RALA

and RALA groups than in the C group, and the highest value was observed in the
CD/RALA group (Figure 5). The O2

− radical scavenging activity of the liver was sig-
nificantly lower in the CD group than in the C group. No differences were observed in the
activity of other organs and muscles (Table 3).
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for six mice in each group. C, control group; CD/RALA, R-α-lipoic acid γ-cyclodextrin complex
group; RALA, R-α-lipoic acid group; CD, γ-cyclodextrin group. ** p < 0.01 vs. C. * p < 0.05 vs. C.

Table 3. O2
− radical scavenging activity (%) of each organ.

Organs C CD/RALA RALA CD

Liver 88 ± 1 88 ± 2 88 ± 1 84 ± 3 *
Kidney 84 ± 2 89 ± 1 ** 87 ± 1 * 85 ± 2
Spleen 57 ± 9 51 ± 14 51 ± 11 62 ± 5
Lung 37 ± 8 38 ± 6 30 ± 5 24 ± 10

Quadriceps 44 ± 8 41 ± 10 34 ± 11 37 ± 4
Gastrocnemius 23 ± 9 20 ± 11 20 ± 14 8 ± 14

Values are expressed as the mean ± SD for six mice in each group. *, ** Significant difference from the control
group (p < 0.05, p < 0.01). C, control group; CD/RALA, R-α lipoic acid γ-cyclodextrin complex group; RALA, R-α
lipoic acid group; CD, γ-cyclodextrin group.

3.4. Trace Element Analysis

The concentration of Fe in the kidney was significantly lower in the CD/RALA, RALA,
and CD groups than in the C group (Figure 6).

3.5. Other Experiments

Swimming exercise time to exhaustion for the CD/RALA, RALA, and CD groups
were longer than for the C group (Table 4). The number of mice that swam up to the upper
limit of 60 min was one in the C group, five in the CD/RALA group, three in the RALA
group, and four in the CD group.
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Figure 6. Concentration of Fe in the kidney. Values are expressed as the mean ± SD for six mice
in each group. C, control group; CD/RALA, R-α-lipoic acid γ-cyclodextrin complex group; RALA,
R-α-lipoic acid group; CD, γ-cyclodextrin group. ** p < 0.01 vs. C, * p < 0.05 vs. C.

Table 4. Other experiments.

Experimental item C CD/RALA RALA CD

Swimming exercise time to
exhaustion (minutes) 49.9 ± 6.1 57.0 ± 6.7 56.7 ± 4.6 52.1 ± 12.3

Blood lactate level defference
before and after training

(nmol/L)
1.5 ± 1.0 2.5 ± 1.3 1.3 ± 1.1 1.7 ± 1.5

Blood CPK activity (U/L) 101 ± 29 80 ± 22 69 ± 25 88 ± 22
Values are expressed as the mean ± SD for six mice in each group. C, control group; CD/RALA, R-α lipoic acid
γ-cyclodextrin complex group; RALA, R-α lipoic acid group; CD, γ-cyclodextrin group.

The difference in blood lactate levels before and after swimming exercise tended to be
highest in the CD/RALA group (Table 4).

Blood CPK activity tended to be lower in the CD/RALA, RALA, and CD groups
compared to the C group (Table 4).

3.6. Histopathological and Immunohistochemical Examination of the Kidney

No histopathological changes were detected in any groups (Figure 7). Immunostaining
of kidney sections with antibodies to carbonylated protein, a marker of oxidative stress,
showed no difference between the groups.
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R-α-lipoic acid γ-cyclodextrin complex group; (C) RALA, R-α-lipoic acid group; (D) CD,
γ-cyclodextrin group.

4. Discussion

We investigated whether RALA complexed with γCD is effective in enhancing exercise
performance, and we obtained a great deal of characteristic data in this experiment.

Blood NH3 concentration was significantly lower in the CD/RALA, RALA, and
CD groups than in the C group (Figure 4). The direct source of NH3 is thought to be
deamination of AMP, which accumulates with exercise and has been reported to be a
marker of fatigue [34–36]. Therefore, decreased NH3 generation can reduce fatigue, which
may lead to improved endurance. Although there was no significant difference in the
marginal swimming exercise time, there was a tendency for each intervention group to
extend the time compared to group C (Table 4). In this experiment, the upper time limit
was set at one hour so as not to overstress the mice; five mice in the CD/RALA group
swam up to the upper time limit of one hour, which was more than those in the C, RALA,
and CD groups. If there was no limit to the exercise time, the CD/RALA group may have
extended the time further than the present results. These results suggest that high ammonia
concentration may shorten the marginal exercise time. This means that each intervention
group may have reduced fatigue and improved endurance by suppressing the increase in
ammonia concentration. Given that CD is a carbohydrate, the concentration of NH3 in the
CD/RALA and RALA groups was suppressed. The CD group was in a high-energy state
due to carbohydrate intake because CD is a carbohydrate, which may have reduced fatigue.

The O2
− scavenging activity of the kidney was significantly higher in the CD/RALA

and RALA groups than in the C group (Figure 5). The blood CPK activity was not signif-
icantly different, but tended to be highest in the C group. It has also been reported that
exercise increases ROS and total CPK activity, suggesting that muscle damage is a key
factor related to increased ROS production during exercise [37–41]. In the present study,
the results of CPK activity in blood may also support the results of O2

− scavenging activity
in the kidney (Table 4).

Meo et al. reported that intensive exercise generates ROS in the body [42]. The
main process that generates ROS is thought to be electron transport associated with the
mitochondrial respiratory chain. It is widely believed that during exercise, the rate of ROS
production increases due to the increased flow of electrons through the electron transport
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chain of mitochondria. The mitochondrial respiratory chain is a potential source of ROS in
the kidney, which is partially ischemic due to reduced blood supply during exercise. It is
believed that sufficient oxygen can interact with the reduced respiratory chain to inhibit
ROS generation. ALA intake has been reported to protect mitochondria, as indicated
above [43]. The O2

− scavenging activity of CD/RALA was more than that of RALA in
the present study, suggesting that the antioxidant and mitochondrial protective effects of
RALA were enhanced by CD inclusion. In fact, CD/RALA inhibited excessive oxidative
stress in the kidneys caused by swimming exercise.

It has been reported that when Fe is present in excess amounts in the body, hy-
droxyl radicals (-OH), which are highly reactive among ROS, are produced via the Fenton
reaction [43]. Trace element analysis of the kidney showed that Fe concentration was
significantly lower in all groups than in the control group (Figure 6). This result shows
a similar trend to the O2

− scavenging activity of the kidney, suggesting that there is a
relationship between oxidative stress and Fe concentration in the kidneys.

These results suggest that CD/RALA has a positive effect on exercise performance.
In addition, it was confirmed that the antioxidant potential of RALA was enhanced by
CD. The results suggested that it suppressed the increased NH3 concentration caused by
exercise. These effects may have contributed to the tendency to prolong the exercise time
to the limit in the CD/RALA group. Although the relationship between exercise, oxidative
stress, and muscle fatigue has been demonstrated, the underlying mechanism remains
unclear. There are few reports on the burden of exercise on the kidneys, although in the
present experiment, the burden of exercise on the kidneys was clearly observed. It has
been reported that alpha lipoic acid has anti-inflammatory effects as well as antioxidant
effects [44]. It is possible that these functions may be involved in this experiment as well.
Exploring these related mechanisms will be the subject of future research. In the present
study, a lipoic acid dose of 50 mg/kg BW was administered to mice, and we obtained the
above results. However, as for human intake, the amount of alpha lipoic acid contained in
commercial foods is 50-200 mg per day, and the dosage in this case is quite large. Therefore,
when applying this product to humans in the future, we believe that the form of intake and
the amount of intake need to be considered [45].

5. Conclusions

In male C3H/HeSlc mice, there was suppression of the increased blood ammonia level,
suppression of the blood CPK activity, and an increase in the antioxidant capacity of the
kidney in the CD/RALA-treated group compared to the non-CD/RALA-treated groups.
The improvement in endurance in the CD/RALA group may be due to these factors.
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