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1  | INTRODUC TION

Cancer can be understood as the failure of those regulatory mech-
anisms that guarantee the maintenance of tissue and organ ho-
moeostasis. Cooperative interactions along with extensive feedback 
signalling loops and replication checkpoints provide multiple paths 
to avoid the emergence of undesirable mutations or chromosomal 
abnormalities that can allow rogue cells to start proliferative growth. 
In dynamical terms, what has to be avoided within multicellular or-
ganisms is any kind of individual cell Darwinian evolution (Gatenby & 
Brown, 2017; Greaves & Maley, 2012; Nowell, 1976).

It is generally acknowledged that genetic instability plays a 
key role in tumour progression and carcinogenesis (Hanahan & 
Weinberg, 2011). Unstable genomes result from the failure of mo-
lecular mechanisms responsible for the maintenance of genome in-
tegrity (Negrini, Gorgoulis, & Halazonetis, 2010). That cancer cells 
are unstable is fairly well illustrated by the observation of their 

karyotypes: in sharp contrast with healthy cells, cancer chromo-
somal arrangements reveal a wide degree of aneuploidy (Lengauer, 
Kinzler, & Vogelstein, 1998). Such high levels of mutational load de-
ploy the potential to overcome selection barriers, as well as involve 
a rather uncommon process from multicellularity to reduced cellu-
lar complexity (Solé et al., 2014), giving place to a highly adaptive 
and heterogeneous population. Genetic instability acts as a driver 
as well as the search engine for disease progression. An important 
(and not always appreciated) consequence of instability is that, once 
unleashed, it can easily grow as the lack of proper repair can damage 
other components of the check-and-repair cellular network.

Despite increasing knowledge of the molecular basis of un-
stable tumorigenesis, there is still the need for understanding the 
role of instability on cancer evolution, namely discerning if it is a 
cause or a consequence of carcinogenesis, how does it evolve along 
tumour development, and what are the treatment strategies that 
arise from answering such questions. Many mathematical models 
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Abstract
In most instances of tumour development, genetic instability plays a role in allowing 
cancer cell populations to respond to selection barriers, such as physical constraints 
or immune responses, and rapidly adapt to an always changing environment. 
Modelling instability is a nontrivial task, since by definition evolving instability leads 
to changes in the underlying landscape. In this article, we explore mathematically a 
simple version of unstable tumour progression using the formalism of adaptive dy-
namics (AD) where selection and mutation are explicitly coupled. Using a set of basic 
fitness landscapes, the so-called canonical equation for the evolution of genetic in-
stability on a minimal scenario associated with a population of unstable cells is de-
rived. We obtain explicit expressions for the evolution of mutation probabilities, and 
the implications of the model on further experimental studies and potential muta-
genic therapies are discussed.
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have provided interesting points into this topic, with the introduc-
tion of relevant ideas such as the mutator phenotype (Loeb, 2001) 
and several multi-step models of mutation acquisition (see e.g., 
Komarova et al., 2002; Nowak et al., 2002) that have investigated 
the possible scenarios of correlation between instability and cancer 
progression.

The fact that genetic instability itself changes over cancer evolu-
tion makes it difficult to properly model its behaviour. Particular ef-
forts, such as the computational models of Komarova, Sadovsky, & 
Wan, 2008 and Datta et al., 2013; have given interesting insight into 
understanding how a changing instability level affects, by means 
of modifying the probability of mutations, all kinds of replication 
and control mechanisms within the vast pathways towards cancer 
malignancy. Within this picture, instability cannot be taken as a pa-
rameter, but rather as an evolving phenotypic trait affected by the 
selective pressures of the tumour microenvironment. In this scope, 
the recent work by Asatryan and Komarova represents a further 
step for its proposal of an analytical approach where both instability 
and heterogeneity of cancer populations can be traced along time 
(Asatryan & Komarova, 2016). As a complementary point of view, 
we consider the need to include stochasticity in the process of ac-
quiring either advantageous or deleterious mutations, together with 
considering instability as a trait evolving through changes within 
each single cell, compared to the idea of measuring it by following 
the competition dynamics between subpopulations with fixed mu-
tation probabilities.

Here, we propose that the mean evolutionary paths of such sto-
chastic process followed by unstable populations are describable by 
means of the framework of adaptive dynamics (AD) (Champagnat, 
Ferriere, & Ben Arous, 2001; Dieckmann & Law, 1996), which has 
been used in the study of cancer when focusing on niche construc-
tion (Gerlee & Anderson, 2015). AD models provide a powerful 
alternative to previous formal approaches by explicitly including 
replication, mutation and selection in a consistent way, allowing an 
exploration of the evolutionary dynamics of adaptive traits, while 
at the same time keeping a minimal, treatable model able to pro-
duce explicit expressions for trait evolution depending on a few 
parameters.

A central object in the AD framework is the so-called canonical 
equation. For a given quantitative phenotypic trait s, this equation 
describes the evolutionary trajectory for the mean trait value as

where μ(⟨s⟩) is the probability under which mutant individuals are 
generated, σ2 is the variance of the mutant distribution s′ derived 
from an individual with trait s, n the stationary population size and 
the last term in the right-hand side stands for the fitness gradient 
associated with the specific landscape at work. The standard formu-
lation involves some strong assumptions on the mutation-selection 
process, and we will therefore review the mathematical process in 

order to understand up to which point the framework is suitable for 
our problem.

In the AD models, and in the work presented here, evolution 
takes place within a constant population context, where mutants 
appear and invade in a stepwise process, leading to a formalism 
for evaluating the trajectories of evolving trait values. This picture 
of cancer dynamics stems from classic work on ecological com-
petition (Gatenby, 1995) where tumour cells act as invaders that 
cause the disruption of the local (tissue) ecology. These simplified 
models reveal how a proper formulation of competition can yield 
useful predictions (Gatenby, 1991). In this context, although the 
constant population falls short to describe the behaviour of some 
tumour growth processes, it is a much needed first approxima-
tion. Moreover, it can also be appropriate when dealing with some 
in vitro experiments involving long-term evolution of unstable 
cancer cell populations. We will go back to this at the end of the 
paper.

Understanding how instability becomes a driver of evolvability 
can give further insight about its role as a cancer hallmark, and might 
as well produce relevant steps towards contemplating genetic insta-
bility as potential target for treatment. Is it possible to formulate a 
canonical equation describing the time evolution of instability? The 
answer is affirmative and here we show how it can be obtained.

2  | POPUL ATION DYNAMIC S

With the aim of obtaining a clear understanding of the questions pro-
posed above, we look for a minimal model to implement the unstable 
evolutionary dynamics. Our goal is to consider the process of can-
cer progression, which involves a heterogeneous population of cells 
(Figure 1a). In this population, cells are only characterized by their 
particular replication rate ri and mutation probability μi. However, 
and in the eyes of the AD approach, this preliminary model uses a 
constant population approximation where mutation probabilities are 
small enough so that the dynamics remain in equilibrium in-between 
invasions. This approach, whose limitations will be later thoroughly 
discussed, is best described by means of a so-called Moran process 
(Moran, 1958).

A particularity of the Moran process—here coarse-grained into 
a continuous process, keeping in mind the long-term evolution of 
tumour progression—is that cells of type ci give birth by means of 
occupying other, randomly chosen cell sites at rate ri, so that the 
birth–death process is coupled into a single event (Figure 1c) that 
will eventually lead to selection towards cells with higher ri, thus 
producing a minimal environment where selection can take place. 
Furthermore, mutation is introduced by considering that cells can 
give birth to mutant offspring at probability μi.

Mutations, however, do not occur as in quasispecies or replicator-
mutator models, where genomes mutate from one to another. In our 
model, a newly born mutant cell will have a modified mutation prob-
ability μ� =μi+Δμ, where Δμ is taken from a continuous distribution 

(1)
d⟨s⟩
dt

=
1

2
μ(⟨s⟩)σ2(⟨s⟩)n(⟨s⟩)

�
∂r(s,s�)

∂s�

�

s�=⟨s⟩
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that we discuss later on. With this, we emphasize the wide levels 
of heterogeneity and genomic configurations found within tumours 
by means of giving a different phenotype to each cell rather than 
grouping populations into a countable, finite set of possible genome 
configurations.

Within this minimal model, we aim at understanding how selec-
tion and mutation are coupled when instability, and thus the individ-
ual mutation probability μi, can itself change and affect the rate of 
cell replication ri, and what the evolutionary consequences of this 
coupling are.

3  | SELEC TION ON INSTABILIT Y

As discussed above, a most common event during the process of 
tumorigenesis are mutations in oncogenes that usually result in 
increased levels of replication (Vogelstein & Kinzler, 2002), thus 
giving to instability a role in activating the paths towards higher 
replicative capacity. On the other hand, the same elevated lev-
els of instability can trigger deleterious mutations in genes that 
are vital for correct cellular metabolism and functioning, even-
tually leading to reduced cell viability or death. This apparent 
trade-off supposes the existence of a clear coupling between 
replicative capacity, cell viability and mutation probability that 
sits at the basis of tumour replication, evolvability and adapta-
tion. We hereby propose a minimal adaptive landscape that 
translates such coupling into replication rates being a function of 
instability, r(μ).

3.1 | Adaptive landscape

Within our scope of producing a minimal model we expect 

to describe evolutionary dynamics on an adaptive landscape 

containing a reduced, treatable set of components. Taking 

into account the previously mentioned trade-off, these follow 

from considering the effect of mutations enhancing malignant 

cell replication, provided that such mutations have not dam-

aged any of the necessary machinery for cell viability. We start 

by considering that mutations on oncogenes can translate into 

a linear increase in replication rate, such that r(μ)= r0+NRδRμ

, with r0 being the basal replication rate of normal cells, NR 

the number of oncogenes responsible for increased replica-

tion and δR the mean effect on replication rate when mutating 

one of such genes. Following a linear approximation, we do 

not include a saturation term for the number of nonmutated 

oncogenes. This is actually consistent with early stages of tu-

mour evolution, where only a small fraction of oncogenes has 

been affected and so NR can be kept as a constant. In this pic-

ture, we need as well to take into account the minimal genetic 

material needed for a cell to keep its basic functions. If we 

group such material into a number of house-keeping genes, 

NHK, the probability that none of them has been mutated is 

(1−μ)NHK. Grouping both considerations together we obtain an 

analytical description of the coupling between replication and 

instability

(Solé et al., 2014). This adaptive landscape is of course of qualitative 
nature, and realistic fitness landscapes for unstable tumour environ-
ments are still far from our knowledge. However, certain points can 
be made if we give values within realistic parameter ranges to our 
function. The number of both oncogenes and house-keeping genes 
have been widely assessed, and we take them to be about NR≈140 
(Vogelstein et al., 2013) and NHK≈3804 (Eisenberg & Levanon, 
2013), respectively. Interestingly enough, considering small replica-
tion effects for δR, such experimental values produce an adaptive 
landscape (Figure 2) that has a positive gradient within the region of 

(2)r(μ)= (r0+NRδRμ)(1−μ)NHK

F IGURE  1 The Moran process rules associated with the model of a population of unstable cells competing for resources. We consider 
an idealized model of a heterogeneous cancer cell population (a) described by a well-mixed (mean field) model (b). Here cells occupy a given 
domain that is not explicit and each cell has a distinct phenotype described in particular by its intrinsic instability μi. In the Moran process, 
when a cell replicates it occupies another cell’s niche and produces an identical daughter (c) or a slightly different one due to a mutation 
event proportional to μi, which can lead to an increase Δμi of the instability levels (d)

(a) (b) (c)

(d)

µ

µ
µ

µ µ

µ µ
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μ∈ [10−9,10−4], so that our evolutionary trajectories will be bounded 
within a region of instability levels in accordance with those exper-
imentally measured for tumour cells (Tomlinson, Novelli, & Bodmer, 
1996).

3.2 | Distribution of new mutations

We have assessed so far what is the effect of instability in prolif-
eration, thus coupling mutation and selection for mutation level. 
Up next, we need to evaluate how does instability change during 
reproduction, so that we can finally compute the effects on repli-
cative capacity of a mutated cell. As previously discussed, a broad 
range of mechanisms relates to variations in DNA replication fidelity. 
Such variations, however, are hardly in the direction of increasing 
DNA stability, and in general account for an increase in the mutation 
probability of cancer cells due to accumulation of further tumour-
suppressor or care-taker gene mutations (Vogelstein & Kinzler, 
2002).

This trend of generating more unstable offspring is translated 
into a positively skewed distribution of mutants M(μ,Δμ). To keep the 
mathematical background of our model treatable, a Rayleigh distri-
bution peaked at Δμ=0 has been chosen1 . Under this scheme, insta-
bility of a daughter cell is likely to be similar or slightly higher from its 
parent, controlled by a scale parameter σ2

μ
 depicting the general size 

of mutational increases.

4  | ADAPTIVE DYNAMIC S

Adaptive dynamics is a set of techniques or a mathematical frame-
work that models long-term phenotypic evolution of populations. 
Several works by different authors cover a broad scope of possi-
ble applications, and we hereby focus on the work of Dieckmann 
and Law and others (Champagnat et al., 2001; Dieckmann & Law, 
1996) and adapt it to our particular system. The main biological 
background behind the maths sits in considering the evolutionary 
step as a mutant appearing and invading in a population in ecological 
or dynamical equilibrium (Dieckmann & Law, 1996). Under this pic-
ture, the ecological and evolutionary time scales are considered to 
be uncoupled, so that the process of the mutant competing against 
the resident population, and eventually fixating in it, is considered 
instantaneous in the evolutionary process.

General AD literature (see e.g., Champagnat et al., 2001; 
Dieckmann & Law, 1996; Geritz et al., 1998) follows the evolution 
of a quantitative phenotypic trait or set of traits, s, that can change 
through mutations. In these studies, the probability μ at which mu-
tations appear is considered a possible function of the trait s, but 
afterwards and further on in the AD literature is usually left as a 
constant of each model. In the light of what we have discussed in the 
previous section, however, instability itself is a quantitative trait if 
computed as a mutation probability, and so the coupling of mutation 
and selection results in s  =  μ being the studied trait value.

The starting point of the AD modelling is to consider the evo-
lutionary process, where the population’s mutation probability 
changes as mutants appear and fixate, as a Markov chain for the 
probability of finding the population at time t having trait value μ

1The Rayleigh distribution is an asymmetric probability distribution defined for positive 
random variables (Forbes et al., 2010). We displaced so that its mode is zero, with shape 

accounting for asymmetric probabilities of possible mutation levels, with small forward 
mutations being the most common.

M(Δμ;σ2
μ
)=

Δμ+σμ

σ2
μ

exp

(
−(Δμ+σμ)

2

2σ2
μ

)
,

(3)
dP(μ,t)

dt
=∫

(
w(μ|μ�)P(μ�,t)−w(μ�|μ)P(μ,t)

)
dμ�.

F IGURE  2 Fitness landscape function 
associated with the evolutionary 
dynamics of unstable tumour cells. In (a) 
the full landscape, given by a replication 
rate r(μ)= (r0+NRδRμ)(1−μ)NHK, is plotted 
against the instability probability μ. 
Further discussion is focused on two 
limit cases representing initial linear 
progression of instability (b) and optimal 
mutation (c) domains

(a) (b)

(c)
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The transition probabilities w(μ�|μ) describe the evolutionary step 
and contain the probability of the mutant with trait μ′ appearing (A) 
and fixating (ρ) in the population, so that w(μ�|μ)=A(μ,μ�)ρ(μ,μ�). The 
probability that a mutant appears is A(μ,μ�)=Nr(μ)μM(μ,μ�) , the size 
of the population at equilibrium N, the probability of birth and muta-
tion r(μ)μ and the probability that the mutant has mutation probabil-
ity μ′ provided the parent cell had probability μ.

The probability ρ(μ,μ�) that a mutant with fitness advantage 
r(μ�)∕r(μ) fixates in a population of N individuals has an analytical ex-
pression for the Moran model (Ewens, 2004)

A common procedure of the AD framework is to expand ρ for 
small variations of the trait value under the assumption of large 
populations, assumptions that are not a restriction for our problem. 
Under this view, the probability that the μ′ mutant fixates is zero for 
r(μ�)≤ r(μ) and

for r(μ�)> r(μ). Once a complete expression for the transition proba-
bilities is build, we only need to recall how the evolution of the mean 
mutation probability can be written as

so that, using the original master equation, we obtain

where one recalls that ak(μ)= ∫ (μ� −μ)kw(μ�|μ)dμ� is the k-th jump mo-
ment. If the first jump moment were a linear function of μ, then 
⟨a1(μ)⟩=a1(⟨μ⟩) and the previous expression becomes directly 
treatable.2

The evolutionary trajectory for the mean path (we cease denot-
ing it by angle brackets) will therefore follow

At this point, we recall that only fitter mutants can invade and 
so may eventually contribute to the exploration of the adaptive 
landscape. This translates onto the domain of the integration being 
restricted to μ�>μ , and so we integrate the positive part of our σ2

μ
 

skewed mutant distribution.
These considerations of selection on instability and nonsymmet-

rical mutations result in our first-order approximation of the evolu-
tion of instability for a minimal cancer cell population:

where

is simply a positive constant that results from integrating the asym-
metric Rayleigh mutations distribution. Equation 9 defines the canon-
ical equation for unstable cancer dynamics, describing the evolution 
of the mean mutation probability depending on population size, prob-
ability and effect of mutations and the steepness of the adaptive land-
scape defined by the effects of instability on cellular replication and 
viability.

5  | E VOLUTION OF INSTABILIT Y

The canonical Equation 9 describes the evolution of instability in our 
model population depending on the population size N, the distribu-
tion of mutation jumps σ2

μ
 and the product of the mutation probabil-

ity and the gradient of the adaptive landscape μ ∂μr . For our model 
landscape (Equation 5), this turns out to be

Complicated analytical solutions for this equation might not 
give best insight of the underlying dynamics. However, as a first 
test of our model we compare its numerical solution to averaged 
Moran Process simulations (Figure 3). It is both relevant and useful 
to understand the factors that cause deviations between computer 
experiments and our analytical approach, in order to further com-
prehend the approximations on which AD is build.

In terms of parameter range, these are mostly translated 
into the population being large enough, and mutation proba-
bilities being proportionally small. The second is easily met for 
both healthy and cancerous human cells, but simulating full-size 
clinically detectable tumours (more than 108 cells (Bozic et al., 
2013)) is of large computational cost, and keeping our model and 

(4)ρ(μ,μ�)=
1− (r(μ)∕r(μ�))

1− (r(μ)∕r(μ�))N
.

(5)ρ(μ,μ�)=
μ� −μ

r(μ)

(
∂r

∂μ�

)

μ�=μ

+O(Δμ2),

(6)
d

dt
⟨μ⟩(t)=∫ μ

d

dt
P(μ,t)dμ,

(7)
d

dt
⟨μ⟩(t)=∫ ∫ (μ� −μ)w(μ��μ)P(μ,t)dμ�dμ= ⟨a1(μ)⟩,

2It is interesting to understand the implications of such condition and how do they relate 
to the assumptions of the AD method and the limitations of our model. Between many 
approaches (see e.g., van Kampen, 1981; Kubo, Matsuo, & Kitahara, 1973), and without 
pretending to expose here a deep discussion on this aspect, one might consider extracting 
a Fokker–Planck equation from the Markov chain (6). By means of computing the evolution 
of the mean value ⟨μ̇⟩ for that equation, it can be seen that the dynamics of ⟨μ⟩ are only 
equivalent in both frameworks if either the selection gradient ∂r∕ ∂μ does not depend on 
μ (a linear adaptive landscape), or the population is strictly monomorphic on the trait μ. A 
detailed explanation of this considerations can be found in the Appendix section. 
These conditions will impose a strong constraint when considering a realistic tumour en-
vironment, so that it will become necessary along our computational experiments and the 
discussion to assess the regions of validity of our model.

(8)
d

dt
μ(t)=Nμ

∂r

∂μ ∫ (μ� −μ)2M(μ,μ�)dμ�

(9)
dμ

dt
=γNσ2

μ
μ

(
∂r

∂μ�

)

μ�=μ

(10)γ=
3√
e

−

�
π

2
erfc

�
1√
2

�

(11)
dμ
dt

=γNσ2
μ
μ
(
NRδR(1−μ)NHK

−NHK(r0+NRδRμ)(1−μ)NHK−1
)
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exercise minimal, we have used smaller populations, modelling 
smaller subclones or spatially segregated populations where drift 
comes into play. Such drift produces a nonmonomorphic popula-
tion where evolution deviates from the gradient trajectory and so 
proceeds slightly slower than our estimate. As previously stated 
and discussed along with the Appendix, the high nonlinearity of 
our landscape ensures that ⟨a1(μ)⟩=a1(⟨μ⟩) will be only valid up to 
a certain degree of approximation. It can be seen from Figure 3 
that, still within this restricted range of validity, the canonical 
equation can capture the dynamics of instability up to a reason-
able point.

A better understanding of the underlying dynamics can result 
from dividing the exploration of the landscape in well-behaved re-
gions where simpler equations will arise.

On the one hand, in an initial phase of malignancy exploration 
for small values of μ, the shape of the adaptive landscape is domi-
nated by the linear increase of mutated oncogenes, r(μ)= r0+NRδRμ . 
Within this region, dynamics of instability follow

and the mean evolutionary trajectory is

It is remarkable to understand how, even in a linear adap-
tive landscape, the coupling between mutation and selection 
on unstable cells introduces a further nonlinearity that will ac-
count for exponential exploration of the space of instability and 
the consequent exponential increases in replication capacity. 
Such results can be again compared to computer simulations of 
mutator-replicator cells (Figure 4). The smaller nonlinearity also 

ensures that AD remains a good approximation despite stochastic 
deviation.

Another interesting point is to understand the behaviour of the 
mean instability levels as the population approaches the landscape 
peak. This kind of behaviour is easily studied if one considers a sim-
ple landscape containing a peak, such as r(μ)= r0+δRNRμ−δHKNHKμ

2 
, where the role of house-keeping genes is not considered totally 
deleterious but just reducing fitness quadratically with the mutation 
probability. This landscape has an optimal value at μ∗ =δRNR∕2δHKNHK

, and this peak is explored through

By means of rewriting this trajectory as dμ∕dt=Aμ(B−Cμ) , with 
A=γNσ2

μ
 , B=NRδR and C=2δHKNHK , its solution simplifies to

where c1 ensures that μ(0)=μ0, the normal mutational probability of 
healthy cells. This trajectory saturates for long times at the expected 
result A/B=μ*, and can be again compared to computational experi-
ments of replicating cells (Figure 5).

The same deviation between simulations and the numerical fit is 
found in this case, with evolution proceeding slower than our estimate. 
However, this minimal landscape approximation is able to capture the 
dynamical behaviour of our gene-related landscape model, mainly with 
an initial exponential growth followed by saturation around the peak, 
which can be proven to be an evolutionary stable strategy (Geritz et al., 
1998).

Provided that the canonical equation has a nontrivial, singular 
point, as we found for μ∗ =δRNR∕2δHKNHK , one can study the evolu-
tionary stability of a quantitative trait. We can easily compute if this 

(12)
dμ

dt
=γNσ2

μ
μNRδR

(13)μ(t)=μ0e
γσ2

μ
NNRδRt.

(14)
dμ

dt
=γNσ2

μ
μ(NRδR−2δHKNHKμ).

(15)μ(t)=
BeB(At+c1)

CeB(At+c1)+1
,

F IGURE  3 Evolutionary trajectories of the simulated Moran 
process (grey lines) and numerical solution of the predicted 
AD result (black curve), (population [N] = 2,000, distribution 
scale parameter [effect of mutations, σ] = 0.01, initial instability 
(μ0) = 10−5)

F IGURE  4 Exponential evolution of the mean mutation 
probability on a linear landscape: Moran process simulations (grey 
lines) of populations of 2,000 cells and the AD approximation (black 
curve), (σ = 0.01, μ0 = 5 × 10

−6)
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singular mutation probability will be an evolutionary trap, that is, a 
strategy that no further mutants can invade, if

which holds for our strategy: ∂μμr(μ)=−2δHKNHK<0 .

6  | DISCUSSION

In the present work, we have discussed the implications of the 
coupling between selection and instability for a minimal model of 
a population of mutating cells. We have shown how to determine 
the evolutionary trajectory for the mean instability levels in a basic 
landscape of cancer-related genes. Our AD model, as defined by our 
canonical equation (and consistently with simulated trajectories), 
describes the tempo and mode at which mutation probabilities in-
crease and saturate around fitness peaks. For a simple but sensible 
fitness landscape, a general canonical equation has been derived 
from the Moran process scenario. Several approximations have also 
been considered.

A first relevant result of our model arises from evaluating 
the canonical equation for unstable cells in a linear landscape, 
to be associated with a premalignant stage. The nonlinearity 
resulting from the coupling of mutation and selection predicts 
an exponential increase of instability levels, whereas a trait dif-
ferent from instability would only increase linearly within such 
landscape. This result is presented as a mathematical description 
of genomic instability being an enabling characteristic of cancer, 
by means of generating fast exploration of the space of possible 
mutations towards malignancy. Similarly, we obtained consistent 
matchings between simulated and average predicted instability 
values for the near-optimum state. In this scenario, our model 

predicts an exponential increase followed by saturation around 
a critical mutational load, where, at least for this initial model of 
a nongrowing population, tumour cells are robust to further mu-
tations. Considering that the distribution of mutational effects 
of cancer cells is hard to describe, it is important to understand 
that these results are qualitatively independent of the Rayleigh 
distribution, which we have only chosen in search for an asym-
metric and analytically treatable function to work with. Other 
distributions would account for the same dynamics of explora-
tion and saturation at different evolutionary paces. All in all, the 
possible applications of such minimal evolutionary descriptions 
of tumour instability follow from our set of examples and com-
puter simulations.

Mounting evidence indicates that a successful approach to 
cancer therapy requires an explicit evolutionary perspective 
(Gatenby et al., 2009). One possible instance of this is provided 
by mutagenic therapies that have produced key results in the field 
of virology (Loeb et al., 1999). Would they be effective for can-
cer? Given some key analogies between RNA virus populations and 
unstable tumours (Solé & Deisboeck, 2004), this is an appealing 
possibility, although drug design or resistance mechanisms have 
yet to be assessed (Fox & Loeb, 2010). Prior to that, conceptual 
questions arise, such as do cancer cells live near critical instability 
levels, beyond which viability is no longer possible? is there a sharp 
error threshold for the mutation probability? what evolutionary 
outcomes should we expect when inducing variations on the mu-
tational load of cancer cells, and how can these shed new light on 
mutagenic therapy?

Regarding the later, our model allows to bring instability as the 
evolving trait, while providing potential insights, particularly be-
fore and beyond the optimal instability levels. The exponentially 
fast increase of small mutational loads indicates that reducing in-
stability levels in hope for progression delay might result in rapid 
re-exploration of the mutator phenotype. On the other hand, push-
ing instability beyond optimal levels, even if a critical point is not 
trespassed (Solé & Deisboeck, 2004), might render tumour cells too 
unstable, and there exist relevant efforts towards using DNA re-
pair inhibitors to produce critical instability levels (Helleday et al., 
2008).

Our model differs from previous work in its simple analytical 
formulation, which do not depend on chosen parameter ranges, 
such as those of Datta et al., 2013 and Asatryan & Komarova, 2016; 
and they are thus qualitatively robust. On the one hand, this means 
that we are able to obtain analytical expressions for the exponential 
evolution and saturation of the mutation probability, which could 
eventually be used when studying in vitro long-term evolutionary 
experiments with cancer populations, using serial transfer meth-
ods similar to those performed on viruses (see e.g., Drake, 1993; 
Sanjuán et al., 2010; Solé et al., 1999) or bacterial populations (see 
e.g., Moxon et al., 1994; Sniegowski, Gerrish, & Lenski, 1997; Barrick 
et al., 2009 for experiments and Taddei et al., 1997 for an early 
model for mutator alleles). Given the remarkable similarities found 
between microbial communities found both in the ecological and 

(16)∂
2r

∂μ2 μ=μ∗

<0

F IGURE  5 Mean mutation probability saturation at the fitness 
peak: Moran process simulations (grey lines) of populations of 
2,000 cells and the AD approximation (black curve), (σ = 0.01, 
μ0 = 10−5)
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evolutionary time scales (Lambert et al., 2011), it would be worth ex-
ploring the evolution of instability of cancer cell cultures over many 
transfer generations (Langdon, 2004).

It remains an open question to analyse if any sort of saturating 
dynamics occur for both the fitness or the mutation probability when 
these experiments are performed on malignant cells. Furthermore, 
interesting theoretical approaches have been performed to infer 
the underlying adaptive landscape from the observable evolution of 
traits (Kryazhimskiy, Tkacik, & Plotkin, 2009). This seems a plausible 
point regarding how our model directly relates dynamics and land-
scape gradient and could therefore shed light onto understanding 
the evolutionary pressures underlying genetic instability at each 
stage of tumour progression.

On the other hand, while trying to produce a model that can be 
treated without the use of complex mathematical tools, we have 
been constrained to leaving aside many relevant considerations, the 
one we are most concerned with is the lack of growing population 
dynamics. This leaves our model interesting for the previously dis-
cussed specific confined experiments, while not yet complete when 
trying to study three-dimensional growing tumours. While studying 
modifications to our formalism, following the work of evolution-
ary game theory on growing populations (see e.g., Li et al., 2015; 
Melbinger, Cremer, & Frey, 2010), we have decided to present this 
basic model as it remains a first step into a comprehensible and qual-
itative insight for the dynamics of populations able to evolve their 
mutation probability.
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APPENDIX 

LINE ARIT Y OF 〈a 1(μ )〉

As discussed when introducing the AD approach, we have consid-
ered that the first jump moment is linear in μ to obtain the canonical 
equation. Understanding the mathematical basis behind such condi-
tion can give further insight into the assumptions our model sits on. 
Let us start again from a Master equation that describes the evolu-
tionary biased random walk: the trait substitution sequence that we 
use to model evolution. This is

We knew that w(μ, μ′), the transition probability, was the probabil-
ity of a mutant appearing times the probability of a mutant surviving. 
If we consider the mentioned Moran process as a good evolutionary 
constant population model, the transition probabilities are those of 
our previous AD model

and, supposing for simplicity that M is a symmetric distribution, we 
can obtain a Fokker–Planck transport equation of the form

The question is now: Under which assumptions the equation of 
the first moment of this distribution gives rise to the Canonical 
equation? Understanding these assumptions can give better in-
sight into what are we actually doing with the canonical equation.
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We can compute the dynamics of the first moment of the Fokker–
Planck equation by means of multiplying by μ and integrating over 
the phase space, obtaining

which will only produce the Canonical equation if either the land-
scape is linear (and so 〈μr′〉 ∝ k〈μ〉) or the population is Dirac-
distributed (monomorphic), and so

This can serve as a basic mathematical description of why do 
populations have to be monomorphic in the AD framework for 
the canonical equation to arise, and why simulations with highly 
nonlinear landscapes deviate from our model approximation.
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