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H I G H L I G H T S

• Peritumoral information is important for predicting STAS status.
• The model based on intratumoral and peritumoral information improved performance.
• The radiomics nomogram has a stably and accurately clinical application.
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A B S T R A C T

Purpose: The aim of this study was to explore and develop a preoperative and noninvasive model for predicting
spread through air spaces (STAS) status in lung adenocarcinoma (LUAD) with diameter ≤ 3 cm.
Methods: This multicenter retrospective study included 640 LUAD patients. Center I included 525 patients (368 in
the training cohort and 157 in the validation cohort); center II included 115 patients (the test cohort). We
extracted radiomics features from the intratumor, extended tumor and peritumor regions. Multivariate logistic
regression and boruta algorithm were used to select clinical independent risk factors and radiomics features,
respectively. We developed a clinical model and four radiomics models (the intratumor model, extended tumor
model, peritumor model and fusion model). A nomogram based on prediction probability value of the optimal
radiomics model and clinical independent risk factors was developed to predict STAS status.
Results: Maximum diameter and nodule type were clinical independent risk factors. The extended tumor model
achieved satisfactory STAS status discrimination performance with the AUC of 0.74, 0.71 and 0.80 in the three
cohorts, respectively, performed better than other radiomics models. The integrated discrimination improvement
value revealed that the nomogram outperformed compared to the clinical model with the value of 12%. Patients
with high nomogram score (≥ 77.31) will be identified as STAS-positive.

Abbreviations: AUC, Area under curve; CT, Computed tomography; DCA, Decision curve analysis; ET, Extended tumor; IDI, Integrated discrimination improve-
ment; ICC, Intra-class correlation coefficient; IT, Intratumor; LUAD, Lung adenocarcinoma; PT, Peritumor; ROC, Receiver operating characteristic; ROI, Region of
interest; STAS, Spread through air spaces.
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Conclusions: Peritumoral information is significant to predict STAS status. The nomogram based on the extended
tumor model and clinical independent risk factors provided good preoperative prediction of STAS status in LUAD
with diameter ≤ 3 cm, aiding surgical decision-making.

1. Introduction

Lung cancer is the leading cause of malignancy-related deaths, which
may be related to its unique invasion pattern [1]. In 2015, the World
Health Organization (WHO) officially proposed a new invasion pattern
of lung cancer, the concept of spread through air spaces (STAS) [2].
Surgery is the primary treatment option for early-stage lung cancer, and
selection of the surgical method is mainly based on the size of the tumor.
Previous studies have shown that sublobectomy is feasible when the
tumor diameter ≤ 3 cm [3,4]. However, in patients with STAS-positive,
sublobectomy would cause higher postoperative recurrence rate and
poorer prognosis than lobectomy [5,6]. Therefore, for tumors with
diameter ≤ 3 cm, accurate preoperative prediction of STAS status is
particularly important for developing surgical plans and improving
prognosis.

At present, the gold standard for STAS diagnosis is postoperative
pathological examination, which cannot substantially affect surgical
decisions. The accuracy and sensitivity of preoperative bronchoscopic
cytology and intraoperative freezing are still limited [7,8]. As a nonin-
vasive examination method, computed tomography (CT) may help
predict STAS status preoperatively. Previous studies have shown that
some CT morphological features, such as percentage of solid component
[9] and absence of ground-glass opacity [10], were closely related to
STAS-positive in lung adenocarcinoma (LUAD). However, the evalua-
tion of morphological features heavily relies on the radiologist’s sub-
jective interpretation, which inevitably leads to inestimable
misdiagnosis and overdiagnosis.

Radiomics is a method of converting images into data, mining and

analyzing them to develop a model for clinical decision-making. Auto-
matically extracting radiomics features by computer can avoid errors
caused by subjective interpretation [11]. The majority of current studies
[12–15] have focused on intratumoral radiomics, may only indirectly
predict STAS status. From the biological perspective, as STAS is
distributed in the lung parenchyma around the tumor, there may be
more valuable information in the peritumoral than in intratumoral area.
However, fewer studies pay attention to peritumoral radiomics, the
generalization of them is limited by the small sample size [16,17] and
lack of external validation [18,19]. Furthermore, overlooked of inte-
grating radiomics with clinical information and lack of risk stratification
let lots above-mentioned studies were inaccessible to clinical practice.
Therefore, developing a risk stratification model based on large sample
of clinical, intratumoral and peritumoral information, and validating it
in different centers, is necessary to stably and accurately predict STAT
status.

The purpose of this study was to explore the value of intratumoral
and peritumoral information in predicting STAS status, and to develop a
nomogram based on the optimal radiomics model and clinical inde-
pendent risk factors to provide decision support for surgery planning in
LUAD with diameter ≤ 3 cm.

2. Methods

2.1. Patient selection

The study was conducted in accordance with the Declaration of
Helsinki (as revised in 2013). This retrospective study was approved by

Fig. 1. The flowchart for patient’s recruitment. LUAD, Lung adenocarcinoma.
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the ethics committees of the center I (Number: 2022-KY-E-(106)) and
center II (Number: CZLS2022109-A). The requirement for written
informed consent was waived. In accordance with the 2021 WHO clas-
sification [20], we collected patients with LUAD who accepted surgical
resection and confirmed with postoperative pathology. The exclusion
criteria were as follows: (i) neoadjuvant therapy (preoperative chemo-
therapy, radiotherapy, targeted therapy and immunotherapy); (ii) pre-
vious history of other tumors; (iii) multiple primary lung cancer; (iv)
nodule diameter > 3 cm; and (v) incomplete CT image and clinical data.
There were two centers in this study, where center I was used to recruit
the training and validation cohort (the patients were randomly divided
at a ratio of 7:3), and center II was used to recruit the test cohort (Fig. 1).

From medical records, the following clinical and pathological char-
acteristics were collected: age, gender, smoking status (never or
smoker), predominant type of adenocarcinoma (lepidic, acinar, papil-
lary, micropapillary or solid), vascular invasion, perineural invasion,
pleural invasion, T stage (T1mi, T1a, T1b or T1c) and lymph node
metastasis (N0 or N1–3).

2.2. CT acquisition and interpretation

CT examinations were performed using nine different scanners from
two centers. The specific CT scan parameters are shown in Appendix S1.
All images were transmitted to the postprocessing workstation through
the Picture Archiving and Communication System for further operation.
The lung-window sequences of all cases were reconstructed with the
layer thickness ranging from 0.5 to 2.5 mm.

The following CT morphological features were independently
assessed by two radiologists: nodule location (right upper lobe, right
middle lobe, right lower lobe, left upper lobe or left lower lobe), nodule
maximum diameter, nodule type (ground glass, part solid or solid), air
bronchogram, vacuole, margin (smooth, lobulated, spiculated, or
irregular), pleural indentation and vessel convergence. The consensus
was reached by consultation in an event of disagreement. Both radiol-
ogists were blinded to the clinical and pathological results.

2.3. Histological evaluation

Two pathologists made consistent interpretation of postoperative
specimens, and they were blinded to the clinical outcomes. The speci-
mens were fixed with paraformaldehyde, embedded in paraffin and
stained with hematoxylin and eosin. The specimen viewing and graphics
acquisition instruments were white light photography microscope
(Nikon, Eclipse Ci-L) and panoramic section scanner (3DHISTECH,
PANNORAMIC DESK/MIDI).

STAS was defined as micropapillary clusters, solid nests, or single
cells beyond the edge of the tumor into air spaces in the surrounding
lung parenchyma [2]. Micropapillary structures were papillary struc-
tures without central fibrovascular cores, and occasionally formed
ring-like structures. Solid nests were solid tumor cells clustered into
clusters. Single cells were scattered discohesive single cells [5]. The
following artifacts should be distinguished from STAS-positive [5,21]:
(i) tumor cells with irregular edges and randomly distributed at the edge
of the section; (ii) lack of continuum of air spaces containing intra-
alveolar tumor cells back to the tumor edge; (iii) alveolar wall cells,
bronchial epithelial cells with benign cytological features, or linear
strips of cells lifted off of the alveolar walls. The representative patho-
logical images are shown in Fig. S1.

2.4. Image segmentation and radiomics features extraction

The image segmentation and radiomics features extraction used a
software package called “Radiomics” (Ver1.2.6, syngo.via Frontier,
Siemens Healthineers, Forchheim, Germany). We followed the estab-
lished standards for image segmentation [22]. The overall processing
flow is presented in Fig. 2.

(i) The tumor edge was segmented to obtain the intratumor (IT) re-
gion of interest (ROI).

(ii) Amplifying 5 mm equidistant distance of the tumor [23] to
obtain the extended tumor (ET) ROI.

(iii) Cutting out the acreage of the IT ROI from the ET ROI to obtain

Fig. 2. The overall processing workflow. a: Segmenting the tumor edge to obtain the intratumor (IT) ROI. b: Amplifying 5 mm equidistant distance to obtain the
extended tumor (ET) ROI. c: Cutting out the acreage of the IT ROI from the ET ROI to get the peritumor (PT) ROI.
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the peritumor (PT) ROI.
One radiologist with 5 years of experience in chest imaging (reader

1) independently segmented the ROI and another radiologist with 25
years of experience in chest imaging (reader 2) examined the ROI. The
consensus was reached through consultation in an event of disagree-
ment. After one month later, we selected 50 patients in the training
cohort randomly. The reader 1 segmented these cases twice to assess
intra-observer reliability. The other radiologist with 10 years of expe-
rience in chest imaging (reader 3) segmented the same cases indepen-
dently to assess inter-observer reliability.

Before feature extraction, all images were resampled to
1 × 1 × 1 mm voxel size by using trilinear interpolation resampling.
The extracted radiomics feature groups are shown in Appendix S2.

2.5. Radiomics model development

Model development was conducted with R software package
(Ver.4.2.6, R Development Core Team: https://www.r-project.org). We
used Boruta algorithm to reduce dimensions of the radiomics features
and to select important features. The Boruta algorithm is a wrapper
build around the random forest classication algorithm, it can calculate
each feature’s Shapley value and the max shadow value. When a Shapley
value was higher than the max shadow value, the truly relevant feature
were selected for further analysis [24]. The LinearSVM classifier was
used to develop radiomics models. We developed the IT, ET and PT
models. Then, we combined the features of IT and PT models to develop
the fusionmodel. Besides, we calculated the prediction probability value
for each model.

2.6. Nomogram development

The clinical characteristics and CT morphological features with sig-
nificant differences in the univariate analysis were selected into the
multivariate logistic regression to identify clinical independent risk
factors of STAS. The nomogram was developed based on the prediction
probability value of the optimal radiomics model and clinical indepen-
dent risk factors.

2.7. Statistical analysis

Statistical analysis was conducted in SPSS software (Ver. 26, IBM,
Armonk, New York) and the R software package. Two-tailed p value
< 0.05 indicated a statistically significant difference. The normality of
continuous variables was tested using the Kolmogorov− Smirnov test.
Differences among normally distributed variables were analyzed with
the t test, while non-normal distributed variables were analyzed with the
Mann− Whitney U test or Kruskal− Wallis test. Categorical variables
were analyzed using the chi-square test or Fisher’s precision probability
test. Intra-observer and inter-observer reliability were assessed by intra-
class correlation coefficients (ICCs). ICC > 0.80 indicated good
reliability.

The receiver operating characteristic (ROC) curve was plotted, and
the area under curve (AUC) was calculated to evaluate the performance
of each model. Integrated discrimination improvement (IDI) value was
calculated to reflect the improvement of a model performance to
another.

The optimal cutoff value for the nomogram scores in the training
cohort for predicting STAS status was determined using the Youden
index. We used the Hosmer–Lemeshow test and the decision curve
analysis (DCA) to evaluate the goodness of fit and clinical application
value, respectively.

3. Results

3.1. Baseline characteristics

In center I, 525 patients with pathologically confirmed LUAD were
included. Among these patients, there were 307 (58.5 %) patients with
and 218 (41.5 %) patients without STAS. The clinical characteristics and
CT morphological features of the patients are summarized in Table 1.
The pathological characteristics are summarized in Table S1.

Most clinical characteristics and CT morphological features showed
no significant differences between the training, validation and test co-
horts. Therefore, the data was suitable for developing and validating
models in different centers (Table S2).

3.2. Development and evaluation of the clinical model

In the univariate analysis, age, maximum diameter, nodule type,
margin, pleural indentation, predominant type, vascular invasion,
pleural invasion, T stage and lymph node metastasis showed significant
differences between STAS-positive and STAS-negative patients. In the

Table 1
Clinical characteristics and CT morphological features of patients in center I.

Variables Total
(n = 525)

STAS-
(n = 218)

STAS+
(n = 307)

pa pb

Age (y)* 57
(50− 65)

55
(49− 63)

58
(52− 65)

0.002 0.074

Gender ​ ​ ​ 0.782 ​
Female 313 (59.6) 132 (60.6) 181 (59.0) ​
Male 212 (40.4) 86 (39.4) 126 (41.0) ​

Smoking
status

​ ​ ​ 0.079 ​

Never 405 (77.1) 177 (81.2) 228 (74.3) ​
Smoker 120 (22.9) 41 (18.8) 79 (25.7) ​

Nodule
location

​ ​ ​ 0.598 ​

RUL 185 (35.3) 77 (35.3) 108 (35.2) ​
RML 42 (8.0) 16 (7.4) 26 (8.5) ​
RLL 91 (17.3) 36 (16.5) 55 (17.9) ​
LUL 135 (25.7) 53 (24.3) 82 (26.7) ​
LLL 72 (13.7) 36 (16.5) 36 (11.7) ​

Max diameter
(cm)*

1.8
(1.4–2.2)

1.6
(1.2–2.0)

2.0
(1.5–2.3)

< 0.001 < 0.001

Nodule type ​ ​ ​ < 0.001 < 0.001
Ground

glass
57 (10.9) 39 (17.9) 18 (5.8) Referent

Part solid 266 (50.7) 127 (58.3) 139 (45.3) 0.117
Solid 202 (38.4) 52 (23.9) 150 (48.9) < 0.001

Air
bronchogram

​ ​ ​ 0.602 ​

Absent 247 (47.0) 106 (48.6) 141 (45.9) ​
Present 278 (53.0) 112 (51.4) 166 (54.1) ​

Vacuole ​ ​ ​ 0.516 ​
Absent 361 (68.8) 146 (67.0) 215 (70.0) ​
Present 164 (31.2) 72 (33.0) 92 (30.0) ​

Margin ​ ​ ​ 0.024 0.888
Smooth 80 (15.2) 43 (19.7) 37 (12.0) Referent
Lobulated 196 (37.4) 69 (31.7) 127 (41.4) 0.902
Spiculated 106 (20.2) 41 (18.8) 65 (21.2) 0.455
Irregular 143 (27.2) 65 (29.8) 78 (25.4) 0.801

Pleural
indentation

​ ​ ​ < 0.001 0.165

Absent 191 (36.4) 102 (46.8) 89 (29.0) ​
Present 334 (63.6) 116 (53.2) 218 (71.0) ​

Vessel
convergence

​ ​ ​ 0.332 ​

Absent 10 (1.9) 6 (2.8) 4 (1.3) ​
Present 515 (98.1) 212 (97.2) 303 (98.7) ​

Note. STAS, Spread through air spaces; RUL, Right upper lobe; RML, Right
middle lobe; RLL, Right lower lobe; LUL, Left upper lobe; LLL, Left lower lobe.
a: Univariate analysis
b: Multivariate analysis
*: Data are the median, and data in parentheses are the interquartile range.
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multivariate logistic regression, maximum diameter (p < 0.001) and
nodule type (p < 0.001) were clinical independent risk factors of STAS.

Clinical independent risk factors were used to develop the clinical
model. The AUC value was 0.68, 0.69 and 0.72 in the training,

validation and test cohorts, respectively (Table 2 and Fig. 3).

3.3. Development and evaluation of radiomics models

We extracted 1226 radiomics features from each ROI, respectively.
The intra-observer ICCs ranged from 0.89 to 0.97. The inter-observer
ICCs ranged from 0.83 to 0.90. After dimensionality reduction by bor-
uta algorithm, 10, 15 and 9 features were selected to develop the IT, ET
and PT model, respectively (Table S3 and Fig. S2).

In the training, validation and test cohorts, the ET model achieved an
AUC of 0.74, 0.71 and 0.80, respectively, which was higher compared
with the IT model (AUC of 0.72, 0.70 and 0.70) and the PT model (AUC
of 0.71, 0.73 and 0.75). The fusion model based on the features of IT and
PT models had an AUC of 0.73, 0.72 and 0.73 (Table 2). The ET model
performed better than other radiomics models with the IDI value
increased ≥ 9 % (p < 0.05) (Table 3).

3.4. Clinical application

The prediction probability value of the ET model, maximum diam-
eter and nodule type were entered into the nomogram. Fig. 3 shows ROC
curves of the clinical model and nomogram. The nomogram out-
performed compared to the clinical model with the IDI value of 12 %
(p < 0.001) (Table 3). The plot of the nomogram is shown in Fig. 4.

The optimal cutoff value for predicting STAS status by the nomogram

Table 2
Prediction performance of all models.

Cohort Model AUC (95 %CI） Sensitivity Specificity Accuracy PPV NPV F1

Training Clinical 0.68 (0.63, 0.74) 0.69 0.59 0.65 0.70 0.58 0.70
​ Intratumor 0.72 (0.67, 0.76) 0.69 0.66 0.68 0.74 0.61 0.71
​ Extended tumor 0.74 (0.68, 0.79) 0.76 0.63 0.70 0.74 0.65 0.75
​ Peritumor 0.71 (0.66, 0.77) 0.70 0.65 0.68 0.73 0.61 0.72
​ Fusion 0.73 (0.68, 0.78) 0.72 0.64 0.69 0.74 0.63 0.73
​ Nomogram 0.73 (0.68, 0.79) 0.70 0.66 0.69 0.80 0.54 0.75
Validation Clinical 0.69 (0.61, 0.78) 0.66 0.63 0.65 0.73 0.56 0.69
​ Intratumor 0.70 (0.61, 0.78) 0.60 0.71 0.64 0.76 0.54 0.67
​ Extended tumor 0.71 (0.62, 0.79) 0.73 0.67 0.71 0.77 0.63 0.75
​ Peritumor 0.73 (0.65, 0.84) 0.67 0.67 0.67 0.75 0.58 0.71
​ Fusion 0.72 (0.64, 0.80) 0.65 0.71 0.68 0.77 0.58 0.71
​ Nomogram 0.72 (0.64, 0.80) 0.68 0.60 0.66 0.81 0.43 0.74
Test Clinical 0.72 (0.62, 0.81) 0.72 0.52 0.63 0.63 0.62 0.67
​ Intratumor 0.70 (0.60, 0.80) 0.66 0.61 0.63 0.66 0.61 0.66
​ Extended tumor 0.80 (0.72, 0.88) 0.80 0.59 0.70 0.69 0.73 0.74
​ Peritumor 0.75 (0.68, 0.78) 0.75 0.61 0.69 0.69 0.69 0.72
​ Fusion 0.73 (0.64, 0.72) 0.77 0.63 0.70 0.70 0.70 0.73
​ Nomogram 0.80 (0.72, 0.88) 0.70 0.71 0.70 0.77 0.63 0.73

Note. AUC, Area under curve; CI, Confidence interval; PPV, Positive predictive value; NPV, Negative predictive value.

Fig. 3. Receiver operating characteristic curves of the nomogram and the clinical model. a/b/c: receiver operating characteristic curves of two models in the
training, validation and test cohort, respectively. AUC, Area under curve.

Table 3
Performance improvement of models.

Model NRI IDI

Statistics (95 %
CI)

p Statistics (95 %
CI)

p

Peritumor vs
Intratumor

0.16 (0, 0.33) 0.050 0.05 (0, 0.09) 0.040

Extended tumor vs
Intratumor

0.43 (0.23,
0.62)

< 0.001 0.14 (0.08,
0.20)

< 0.001

Extended tumor vs
Peritumor

0.24 (0.05,
0.44)

0.010 0.09 (0.03,
0.15)

0.004

Extended tumor vs
Fusion

0.31 (0.11,
0.50)

0.002 0.11 (0.05,
0.16)

< 0.001

Fusion vs Intratumor 0.12 (0.01,
0.23)

0.040 0.03 (0.11,
0.50)

< 0.001

Fusion vs Peritumor − 0.04 (− 0.17,
0.08)

0.470 − 0.02 (− 0.05,
0.01)

0.300

Nomogram vs
Clinical

0.43 (0.23,
0.64)

< 0.001 0.12 (0.06,
0.19)

< 0.001

Note. CI, Confidence interval; IDI, Integrated discrimination improvement; NRI,
Net reclassification index.

Y. Su et al. European Journal of Radiology Open 14 (2025) 100630 

5 



score was 77.31. When the nomogram score is equal to or greater than
77.31, patients will be identified as STAS-positive. The Hos-
mer–Lemeshow test showed that the nomogram fitted well in the
training, validation and test cohorts (p > 0.05) (Fig. 5). Between the
DCA curves, when the threshold probability was about 0.1–0.9, the
nomogram obtained a better clinical net benefit and diagnostic value
compared with the clinical model (Fig. 6).

4. Discussion

This multicenter study attempted to explore the value of intra-
tumoral and peritumoral information in predicting STAS status and

provide decision support for surgery planning in LUAD with diameter
≤ 3 cm. The results showed that the PT model performed better than the
IT model. The ET model outperformed other radiomics models. The
nomogram performed better than the clinical model and it had good
clinical application value in the prediction of STAS status.

In our study, the maximum diameter and nodule type were inde-
pendent risk factor for STAS, and these results are basically consistent
with other studies [9,10,25–28]. A larger tumor diameter, is associated
with a higher STAS-positive rate, which might be related to the T stage
that reflects the invasiveness of the tumor [29]. Our study revealed that
STAS status significantly correlated with predominant type. Among
these subtypes, micropapillary and solid pattern was prevalent in
STAS-positive patients, whereas lepidic pattern was more common in
STAS-negative patients. Some previous studies [30–32] are consistent
with our results. Zhang et al. [33] reported that different LUAD pre-
dominant types revealed disparate nodule types on CT image, which
might partially explain the reason for the association between STAS and
nodule type.

We segmented the IT, ET and PT ROIs to developed radiomics
models. Our results showed that the PT model had higher predictive
value than the IT model. The reason might be related to the distribution
of STAS. STAS is scattered in the peritumoral lung parenchyma, so
intratumoral features may only indirectly predict STAS status and per-
itumoral information could offer a better prediction of STAS status,
which is consistent with the pathological distribution. Liao et al. [19]
segmented the ROI with equidistant amplification and found the same
result. The ET model performed better than the IT and PT models. The
possible reason might be that the ET ROI not only has the actual spatial
information of STAS, but also includes intratumoral information, which
is highly related to tumor invasiveness [34].

In our study, we developed the fusion model by combining the fea-
tures of IT and PT models. The fusion model underperformed compared
to the ET model, which could be due to the presence of redundancy
when integrating two models with different ROIs, thus causing a nega-
tive impact on the performance [35]. Therefore, when in the same
acreage of the region, the radiomics features extracted from the whole
region directly will perform better than integrating the features
extracted from each part region.

Fig. 4. The nomogram based on the prediction probability value of the extended tumor model, maximum tumor diameter and nodule type. Radiomics prob, pre-
diction probability value of the extended tumor model.

Fig. 5. Calibration curves of the nomogram in the training, validation and
test cohorts.
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The mining of radiomics biomarkers is almost completely driven by
data, and there may be collinearity among radiomics features in the
model, so the poor biological interpretability of radiomics features
would lead to clinical application obstacles [36]. To solve this problem,
we developed the nomogram combined by the prediction probability
value of the ET model and clinical independent risk factors, and we
calculated the optimal cutoff value for the nomogram score to identified
STAS status. The nomogram performed significantly better than the
clinical model, and had important value in risk stratification of STAS
status. In a previous study, Jiang et al. [14] developed a model to predict
STAS status based on tumor radiomics features and clinical data and
obtained a poorer performance than our result. This might be because
some important CT morphological features such as nodule diameter and
nodule type were not included into their model. In another study [37],
the AUC value of the nomogram in test cohort got as high as 0.99,
however the calibration curve performed poorly. This could be because,
when segmenting the ROI, spherical amplification not only lost infor-
mation about the effective region, but also included redundant infor-
mation. Furthermore, their sample capacity was not big enough to
reflect authenticity of the data.

There were several limitations to this study. First, this was a retro-
spective study, which may have led to potential selection bias, and our
results need to be further verified in prospective research. Second, this
was a conventional radiomics study which depends on manual seg-
mentation. Deep learning can automatically learn which features are
best for a task, and will be using in our future study. Third, follow-up
data were not collected due to insufficient period, and we will
continue to collect long-term follow-up data and assess the impact of
STAS for patient prognosis in the future. Fourth, although the nomo-
gram can visually calculate the risk of prediction result, conveying these
concepts to patients is challenging, and we need design more simple-to-
used method such as interactive website in the future.

In conclusion, peritumoral information is significant to predict STAS
status. The nomogram based on the prediction probability value of the
ET model and clinical independent risk factors can predict the STAS
status in LUAD with diameter ≤ 3 cm. When the nomogram score
≥ 77.31, the patients will be identified as STAS-positive, which can
provide decision support for surgery planning. Future studies should
adopt deep learning models to automatically acquire features related to
the STAS status of LUAD, avoiding the bias caused by manual segmen-
tation of traditional radiomics. In addition, further follow-up data

should be collected to assess the impact of STAS on patient outcomes in
the future.
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