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Abstract: Immunotherapy, including chimeric antigen receptor (CAR) T-cell therapy, immune check-
point inhibitors, cancer vaccines, and dendritic cell therapy, has been incorporated as a fifth modality
of modern cancer care, along with surgery, radiation, chemotherapy, and target therapy. Among them,
CAR T-cell therapy emerges as one of the most promising treatments. In 2017, the first two CAR T-cell
drugs, tisagenlecleucel and axicabtagene ciloleucel for B-cell acute lymphoblastic leukemia (ALL)
and diffuse large B-cell lymphoma (DLBCL), respectively, were approved by the Food and Drug
Administration (FDA). In addition to the successful applications to hematological malignancies, CAR
T-cell therapy has been investigated to potentially treat solid tumors, including pediatric brain tumor,
which serves as the leading cause of cancer-associated death for children and adolescents. However,
the employment of CAR T-cell therapy in pediatric brain tumors still faces multiple challenges, such
as CAR T-cell transportation and expansion through the blood–brain barrier, and identification of
the specific target antigen on the tumor surface and immunosuppressive tumor microenvironment.
Nevertheless, encouraging outcomes in both clinical and preclinical trials are coming to light. In this
article, we outline the current propitious progress and discuss the obstacles needed to be overcome
in order to unveil a new era of treatment in pediatric brain tumors.

Keywords: chimeric antigen receptor (CAR) T cells; gene modified-based cellular platform; im-
munotherapy; pediatric brain tumor

1. Introduction of Pediatric Brain Tumors

Primary malignant central nervous system (CNS) tumors, including medulloblas-
tomas, ependymomas, astrocytomas, and germ cell tumors, serve as the second most
common pediatric malignancies, just after hematological cancers [1]. Nevertheless, they
last as a main reason of pediatric cancer-related death [2]. Among them, more than 90% are
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located in the brain, with an incidence of 1.12–5.14 cases per 100,000 children [3]. While the
etiology of childhood brain tumors remains unclear, it has been proposed that genetic fac-
tors, environmental factors, family history, parental age at birth and cancer predisposition
syndromes might be related [4].

Currently, surgical resection, chemotherapy, and radiotherapy are the major therapeu-
tic strategies for pediatric brain tumors [5]. Even though chemotherapy and radiotherapy
are more effective in pediatric patients with brain tumors than their adult counterparts [6],
significant neurologic deficits and neurocognitive morbidities which impede future ability
to live independently are concern [7]. Under these circumstances, immunotherapy, which
only selectively destroys malignant cells expressing target antigen while leaving healthy
tissues undamaged, may be a valuable therapeutic option. Chimeric antigen receptor (CAR)
T-cell therapy, in particular, targeting tumor-specific antigens via genetically modified T
cells, might be more useful for pediatric brain tumors, as they are well-known for the lack
of high somatic tumor mutational burden [8,9].

2. Chimeric Antigen Receptor (CAR) T-Cell Therapy

CARs are artificially synthesized proteins which incorporate three major components:
an extracellular tumor-specific antibody, an intracellular signaling motif, and a transmem-
brane domain serving as a bridge [10,11]. The outermost part is responsible for antigen
targeting, as it possesses a single-chain fragment (scFv) purified from antibody that is
specific for tumor antigens [12]. This part of CARs is responsible for being bound to
tumor cells and triggering consequent T-cell activation and proliferation, and inaugurates
cytokine release and cytolytic degranulation [13]. As for intracellular domain, it deter-
mines the strength, quality, and persistence of a T-cell response to tumor antigens [14],
and it is frequently manipulated to enhance the potency of CAR T-cell therapy. To date,
there are five generations of CARs being developed. The endodomain of the first gen-
eration of CARs comprises the CD3-ζ chain alone, with limited T-cell expansion and
insufficient cytokine release [15]. Under this consideration, the second generation of CARs
incorporated costimulatory domain, either CD28 [16,17] or 4-1BB [18], intracellularly, to
ameliorate T-cell proliferation and persistence [19]. The third generation combined CD28
and 4-1BB [20,21], to further increase T-cell expression and persistence. Meanwhile there
are two main immune systems, namely innate immune and adaptive immune in human
body. Innate immune system, which serves as the first line of immune response and is
antigen-independent, is thought to be helpful in adaptive T-cell therapy. Thus, another
modulation combining innate immune response with CAR T cells was proposed. The
recent fourth generation added cytokines, such as interleukin-12 (IL-12), to the endodomain
of the second generation; they which could activate T cells, as well as natural killer cells,
simultaneously, when encountering tumor cells [22]. A natural killer cell is capable of
appealing cytokine cassette and inducing cytotoxicity against tumor cells [23]. This combi-
nation allows antigen-negative cancer cells to be eliminated concurrently. This mergence
was termed T cell redirected for universal cytokine-mediated killing (TRUCKs) [19]. In
this situation, tumor microenvironments are amended, and the lifespan of CAR T cells is
prolonged. The clinical trials of this concept combining innate and adaptive immunity are
still in cradle [24]. By synchronous installation of IL-2 receptor and binding site for the tran-
scription factor STAT3 to the endodomain, vigorous JAK–STAT3/5 cytokine, cascade can
be instigated in local tumor environment and thus minimizes systemic inflammation [25]
(Figure 1). The contemporary protocol of CAR T-cell therapy adopted autologous T cells
(Figure 2).
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Figure 1. Five generations of chimeric antigen receptor (CAR) T-cell therapy. The blue cloudy shape in the middle sym-
bolizes tumor cells with tumor antigens. The tumor is circled by five generations of CAR T cells. The five generations of 
CAR T-cell therapy are sequentially placed in clockwise direction. Gray Y type represents antigen-binding domains. The 
green shadow symbolizes intracellular space. The transmembrane domain serves as a bridge between the ectodomain and 
the endodomain. The first generation only contains CD3ζ as an intracellular domain, which is the sky-blue box in the 
figure. CD28 or 4-1BB is then added, to generate the second generation. The third generation consists of both CD28 and 4-
1BB motifs. Genes encoding cytokines including IL-12 or IL18 are tethered to the intracellular domain, to develop the 
fourth generation. The fifth generation comprises the IL-2 receptor and binding site for the transcription factor STAT3, in 
order to induce cytokine storm. 

Figure 1. Five generations of chimeric antigen receptor (CAR) T-cell therapy. The blue cloudy shape in the middle
symbolizes tumor cells with tumor antigens. The tumor is circled by five generations of CAR T cells. The five generations of
CAR T-cell therapy are sequentially placed in clockwise direction. Gray Y type represents antigen-binding domains. The
green shadow symbolizes intracellular space. The transmembrane domain serves as a bridge between the ectodomain and
the endodomain. The first generation only contains CD3ζ as an intracellular domain, which is the sky-blue box in the figure.
CD28 or 4-1BB is then added, to generate the second generation. The third generation consists of both CD28 and 4-1BB
motifs. Genes encoding cytokines including IL-12 or IL18 are tethered to the intracellular domain, to develop the fourth
generation. The fifth generation comprises the IL-2 receptor and binding site for the transcription factor STAT3, in order to
induce cytokine storm.
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Figure 2. Protocol of CAR T-cell therapy: (1) T cells are gathered from patient. (2) CAR structure is engineered into the 
collected T cells. (3) The modified CAR T cells are augmented to sufficient amounts. (4) CAR T cells are infused back into 
the patient via either catheter into intratumor cavity or intraventricular, or through peripheral infusion. 
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from 60% to 93% complete remission rate, with minimal residual disease (MRD)-negative 
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apy, tisagenlecleucel, was approved by the FDA in August 2017 for refractory or relapsed 
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the same year, axicabtagene ciloleucel was approved for refractory or relapsed diffuse 
large B-cell lymphoma as well [34]. These striking successes may be due to specific homo-
geneous tumor target antigens in B-cell lineages [35]. With the encouraging results in he-
matological malignancies, CAR-T therapy was used to treat a variety of solid tumors. 
However, the response to solid tumors was not as effective as that of hematological ma-
lignancies [36]. The possible reasons include heterogeneous and low specific target anti-
gen expression on tumor surface, insufficient CAR T cells traveling to and infiltrating into 
the tumor, limited T-cell expansion, and poor persistence because of the immunosuppres-
sive tumor microenvironment [35,37]. Brain tumors are notorious for their immunosup-
pression environment, possibly due to the unique composition of the extracellular matrix; 
distinctive tissue-resident cell types, such as astrocytes, which are known to blunt cyto-
toxicity; and a natural inflammation shelter/blood–brain barrier (BBB) [38]. Furthermore, 
possible on-target off-tumor toxicity of CAR-T therapy may reduce the cytotoxic effect on 
tumor cells and may increase potential treatment-related toxicities on normal tissues [39]. 
Nevertheless, several clinical and preclinical studies have shown favorable efficacy in 
solid tumors, especially anti-carcinoembryonic antigen (CEA) therapy, including CD3ζ, 
CD28–CD3ζ, and locally administered CAR T cells [40]. 

Figure 2. Protocol of CAR T-cell therapy: (1) T cells are gathered from patient. (2) CAR structure is engineered into the
collected T cells. (3) The modified CAR T cells are augmented to sufficient amounts. (4) CAR T cells are infused back into
the patient via either catheter into intratumor cavity or intraventricular, or through peripheral infusion.
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3. Application of CAR T-Cell Therapy, from Hematological Malignancies to Pediatric
Brain Tumors

In 2012, the first child received CD19-targeted CAR-T therapy for her relapsed B-cell
acute lymphoblastic leukemia exhibited complete remission and no refractory or relapse
for more than five years [26]. This finding opened up a new era of CAR-T therapy for
malignancies. Afterwards, several studies demonstrated promising response, ranging from
60% to 93% complete remission rate, with minimal residual disease (MRD)-negative of
CAR-T therapy for pediatric hematological malignancies [27–30]. The first CAR-T therapy,
tisagenlecleucel, was approved by the FDA in August 2017 for refractory or relapsed acute
lymphoblastic leukemia in patients younger than 25 years old [31–33]. In October of the
same year, axicabtagene ciloleucel was approved for refractory or relapsed diffuse large
B-cell lymphoma as well [34]. These striking successes may be due to specific homogeneous
tumor target antigens in B-cell lineages [35]. With the encouraging results in hematological
malignancies, CAR-T therapy was used to treat a variety of solid tumors. However, the
response to solid tumors was not as effective as that of hematological malignancies [36].
The possible reasons include heterogeneous and low specific target antigen expression
on tumor surface, insufficient CAR T cells traveling to and infiltrating into the tumor,
limited T-cell expansion, and poor persistence because of the immunosuppressive tumor
microenvironment [35,37]. Brain tumors are notorious for their immunosuppression envi-
ronment, possibly due to the unique composition of the extracellular matrix; distinctive
tissue-resident cell types, such as astrocytes, which are known to blunt cytotoxicity; and a
natural inflammation shelter/blood–brain barrier (BBB) [38]. Furthermore, possible on-
target off-tumor toxicity of CAR-T therapy may reduce the cytotoxic effect on tumor cells
and may increase potential treatment-related toxicities on normal tissues [39]. Neverthe-
less, several clinical and preclinical studies have shown favorable efficacy in solid tumors,
especially anti-carcinoembryonic antigen (CEA) therapy, including CD3ζ, CD28–CD3ζ,
and locally administered CAR T cells [40].

Zhang et al. demonstrated that 7 of 10 patients with metastatic colorectal cancer
refractory to standard treatments became stable disease (SD) from progressive disease (PD)
after undergoing treatment with CAR T cells [41]. Thistlethwaite and her colleagues also
reported that 7 of 14 relapsed and refractory metastatic gastrointestinal patients achieved
stable disease and persisted for six weeks after CAR T-cells infusion. One of the patients
even stayed alive for 56 months [42]. In other kinds of malignancies, such as high-risk
osteosarcoma, Chulanetra et al. proved that CAR T cells have synergistic effect with
doxorubicin on eliminating tumor cells of osteosarcoma [43]. Some patients developed
transient side effects such as acute respiratory toxicity, but no severe irreversible toxicity
was observed in patients underwent treatment [44]. The outcomes of these abovementioned
trials support the efficacy and safety of the CAR-T therapy. Therefore, more and more
clinical trials aim to achieve the promising results of application in pediatric solid tumors,
especially brain tumors [45–48]. Though medical technology has improved largely in
the past few decades, treatments for brain tumors are still disappointing [49,50]. Highly
specific and personalized treatments such as CAR T-cell therapy offer an opportunity to
fight against pediatric brain tumors [51].

CAR T cells against tumor-specific antigens, including epidermal growth factor re-
ceptor variant III (EGFRvIII), human epidermal growth factor receptor 2 (HER2), and
interleukin 13 receptor alpha 2 subunit (IL13Rα2) of glioblastoma (GBM), were under
clinical studies to collect data about their safety and feasibility in recent years. The routes
of administration, such as intravenous and intratumor infusion, were also evaluated in
these researches. Meanwhile, many preclinical trials are also being conducted to find out
more possibilities of CAR T-cell therapy in pediatric brain tumors. Further details are
discussed below.
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4. Preclinical Results of CAR T-Cell Therapy in Pediatric Brain Tumors
4.1. Current Preclinical Results

The targeted antigens of CAR T cells should be tremendously expressed on cancer cells
but not on normal tissues to have the highest efficacy [52]. An orthotopic xenogeneic mouse
model of medulloblastomas revealed tumor regression, using even the first generation of
CAR T-cell therapy targeting HER2 [53]. The application of the second-generation CAR
T cells further demonstrated improved response and durable regression and promised
practicability and safety in non-human primates via intraventricular delivery [54]. In
pediatric medulloblastoma, it has been revealed that B7-H3 CAR T cells, by producing
IFNg, TNFa, and IL-2, can have antitumor effects in xenograft models [55]. In both mice
medulloblastoma and diffuse intrinsic pontine glioma (DIPG), the survival was extended
remarkably by B7-H3 CAR T cells and exhibited minimal binding to healthy tissues [56].
Intracerebroventricular or intratumoral administration of B7-H3 CAR T cells also medi-
ated antitumor effects against cerebral atypical teratoid/rhabdoid tumors xenografts in
mice [57]. Approximately, preferentially expressed antigen in melanoma (PRAME), a
tumor-associated antigen is expressed in around 80% of medulloblastomas [58], and it
also exhibited promising results when engineered into CAR T-cell targets in orthotopic
medulloblastoma models [59]. Recently, new targets of CAR T cells in glioma: podoplanin
(PDPN), a member of type I transmembrane glycoproteins, as well as CD70, one of the
tumor necrosis factor receptors have been recognized [60,61]. For H3-K27M-mutant diffuse
midline gliomas (DMGs), which are mostly unresectable because of infiltration into the
surrounding areas, Mount et al. [62] also demonstrated exceeding antitumor cytotoxicity
of GD2-directed CAR T cells both in vitro and in vivo. Numerous preclinical trials and
clinical trials of CAR T cell targeting GD2 for various CNS tumors are ongoing [21,63–65].
Currently, many clinical trials have exhibited that CAR T-cell therapy targeting GD2 is well
tolerated in neuroblastoma, and we discuss this further below [21,63,65].

4.2. Identifications of Further Antigens

Patient-derived xenografts (PDXs) is a useful material to identify tumor antigens to
serve as targets of CAR T-cell therapies. Using this method, CXCL5/CXCL6 genes were
recognized to be overexpressed in malignant rhabdoid tumors [66]. PTK7, an intersection
gene of WNT, VEGF, and stem cell function [67], could also be a potential target. Increased
expression of PTK7 RNA was detected in atypical teratoid/rhabdoid tumors and repressed
by PTK7 knockdown, as well as vatalanib, a tyrosine kinase inhibitor that blockades
angiogenesis [68]. A recent study further established an expression hierarchy, B7-H3 = GD2
>> IL13Rα2 > HER2 = EphA2, using orthotopic xenografts derived from 49 patients [69],
which might be of use for future design of immunotherapies.

4.3. Prevention of Tumor Antigens Escape

As heterogeneity of antigen expression is observed in most brain tumors, targeting
multiple antigens is demonstrated to increase antitumor potency and lower the possibility
of tumor antigen escape [70]. The use of trivalent targets to EphA2, HER2, and IL-13Rα2 of
CAR T cells exhibited benefits in preclinical models of recurrent medulloblastoma, GBM,
and ependymomas [71,72]. In a murine GBM model, simultaneously targeting HER2 and
IL-13Rα2 showed better tumor control [70,73]. As a trivalent vaccine targeting EphA2,
HER2, and IL-13Rα2 in pediatric malignant gliomas [74] and ependymomas [75] revealed
feasibility, tolerability, and efficacy pediatric brain tumors, combination of targeted antigens
might be the future direction of the development of CAR T-cell therapy.

5. Clinical Trials of CAR T-Cell Therapy in Pediatric Brain Tumors
5.1. Interleukin 13 Receptor Alpha 2 Subunit (IL13Rα2)

IL-13Rα2 is a plasma membrane receptor highly expressed on 50% to 78% GBM
and associated with poor survival rate. On the other hand, IL-13, an anti-inflammatory
cytokines secreted by CD4+ T cells, nature killer cells, mast cells, and eosinophils can
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signal through IL-13Rα2 to induce the progression of GBM [76,77]. The first in-human
local administration of CAR T cells into the resected cavity of brain tumor was done
in 2015 (NCT00730613). The repetitive intracranial infusions of IL-13Rα2 CAR T cells
against recurrent high-grade glioma resulted in significantly increased necrotic lesions. The
whole procedure was well tolerated, with limited and transient adverse events, such as
brain inflammation [46]. This clinical trial confirmed that IL13Rα2 was a useful and safe
immunotherapeutic target in GBM.

5.2. Epidermal Growth Factor Receptor Variant III (EGFRvIII)

Epidermal growth factor receptor (EGFR) is highly expressed in various tumors
of which EGFRvIII is the most common variant due to an in-frame deletion of EGFR
exons 2–7. Though EGFRvIII is therefore considered to be an oncogene, its characteristics
including expression in about 30% of GBM cases, but absence in normal tissues make it
a suitable target in CAR-T immunotherapy [78]. In 2017, the first-in-human infusion of
EGFRvIII CAR-T therapy via intravenous route for recurrent glioblastoma in adolescents
and adults was reported (NCT02209376). The results revealed median overall survival for
about eight months, with the longest stable disease for at least 18 months. No cytokine
release syndrome (CRS) or neurotoxicity was noted. These findings suggest that perhaps
intravenous administration can pass through the blood–brain barrier and achieve adequate
antitumor activity in the brain, with limited off-target toxicity [48]. However, another
EGFRvIII trial, which was applied to 18 teenagers and adults by Goff and her colleagues,
demonstrated median progression-free survival for only 1.3 months. Some participants
developed adverse effects like dyspnea or hypoxia, which also led to treatment-related
mortality in one patient, suggesting that a safer and more feasible protocol is needed [47].

5.3. Human Epidermal Growth Factor Receptor 2 (HER2)

HER2, a cell surface receptor expressed on numerous malignancies, such as breast
cancer, ovarian cancer, and glioblastoma, is one of the members of EGFR family. The
overexpression of HER2 is associated with poor survival. A previous case report had raised
safety concerns about HER2 CAR-T therapy because of respiratory distress and even death
after treatment. This might be due to HER2 is expressed in both tumor cells and normal
tissues [20,79]. Nevertheless, recent clinical trial with CAR T-cells targeting HER2 demon-
strated that 17 participants including pediatric patients with progressive HER2-positive
glioblastoma achieved 11.1 months and 24.5 months of overall survival after CAR T-cells
infusion and after diagnosis, respectively. One patient had partial responded, and seven
patients achieved stable disease. No dose-limiting toxicity was found after infusion [45].

5.4. Other Ongoing Clinical Trials

An ongoing clinical trial with intraventricular administration of IL-13Rα2 CAR T cells
for recurrent or refractory malignant glioma revealed significant tumor volume reduction
in one patient, followed by complete response for more than 7.5 months [80]. Other targets
for pediatric brain tumors include B7-H3, EGFR806, and GD2. B7-H3 is a transmembrane
protein, as well as an immune checkpoint molecule expressed in several kinds of pediatric
cancer, including diffuse intrinsic pontine glioma and medulloblastoma [81]. EGFR806-
CAR T cells are CARs with mAb806-based binders, which recognize untethered EGFR
on tumor tissues, including malignant glioma [82]. GD2 is one of the subtypes of the
disialoganglioside. It is highly expressed in various type of pediatric tumors, such neurob-
lastomas, retinoblastomas, Ewing sarcomas, and gliomas, but shows minimal expression
in normal tissues [83]. All of the above are regarded as the well-suited targets for cancer
therapy and under recruitment in the ongoing pediatric clinical trials (Table 1).
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Table 1. Published and ongoing clinical trials with CAR T-cell therapy for pediatric brain tumors.

Trial Target Phase N Age Tumor Type Outcome or Recruitment Status

NCT01109095 (Baylor
College of Medicine) HER2 I 17 10–69 years Progressive HER2-positive

glioblastoma

Median OS 11.1 months
1/16 PR, 7/16 SD

(3/16 SD for 24–29 months)

NCT04185038 (Seattle
Children’s Hospital) B7-H3 I 70 1–26 years

Diffuse intrinsic pontine
glioma/diffuse midline
glioma and recurrent or

refractory pediatric
CNS tumors

Recruiting

NCT03638167 (Seattle
Children’s Hospital) EGFR806 I 36 1–26 years

EGFR-positive recurrent or
refractory pediatric

CNS tumors
Recruiting

NCT 04099797 (Baylor
College of Medicine) GD2 I 34 12 months–18 years GD2-expressing brain tumors Recruiting

NCT02442297 (Baylor
College of Medicine) HER2 I 28 3 years and older HER2-positive CNS tumors Recruiting

NCT03500991 (Seattle
Children’s Hospital) HER2 I 48 1–26 years

HER2-positive
recurrent/refractory pediatric

CNS tumors
Recruiting

NCT02208362 (City of
Hope Medical Center) IL-13Rα2 I 92 12–75 years Recurrent or refractory

malignant glioma
Recruiting

(1/1 CR for 7.5 months)

CAR T cell = chimeric antigen receptor T cell; HER2 = human epidermal growth factor receptor 2; OS = overall survival; PR = partial response; SD = stable disease; B7-H3 = CD276; CNS = central nervous system;
EGFR = epidermal growth factor receptor; GD2 = disialoganglioside; IL-13Rα2 = interleukin-13 receptor subunit alpha-2.
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6. Current Challenges of CAR-T Therapy in Pediatric Brain Tumors
6.1. Adverse Effects of the Central Nervous System

CAR T-cell therapy is eminent for its two major toxicities: cytokine releasing syn-
dromes (CRS) and neurotoxicity. CRS is an acute systemic inflammatory response caused
by hypersecretion of cytokines during immune reaction. The symptoms of CRS could be
as easy as isolated fever, or potentially life-threatening, such as refractory hypotension
or consumptive coagulopathy [84,85]. The severity of symptoms usually correlates with
tumor burdens [86], and can be graded from one to four, based on the presence of fever,
hypotension, hypoxia, end organ dysfunction, and admission to intensive care units [87,88].
Those symptoms can happen on the first day of the infusion of CAR T cells or can be
delayed up to 14 days after the initiation of the delivery of CAR T cells. Anti-IL-6 re-
ceptor antibody, tocilizumab, has been demonstrated to reverse CRS [89]. Prophylactic
administration of tocilizumab during CAR T-cell therapy is also undergoing clinical trial
(NCT02906371). For neurotoxicity, namely immune effector cell-associated neurotoxicity
syndrome (ICANS) or CAR-T-cell-related encephalopathy syndrome (CRES), various symp-
toms, including headache, confusion, neurological deficits, and even rarely cerebral edema,
were reported [90]. In preclinical trials, the peritumoral edema caused by T-cell infiltration
and consequent hydrocephalus even led to death in murine model [62]. These results
highlight the significance of closely monitoring the neurological complications of CAR
T-cell therapy henceforth. A meta-analysis of CAR T-cell trials for cancer has demonstrated
around 55% and 37% of all patients experienced CRS and neurotoxicity, individually [8].
Although there is no specific analysis for brain tumor currently, intraventricular or loco-
regional infusion of CAR T cells may mitigate these toxicities due to the lack of systemic
response [52]. In one preclinical study, inflammation following CAR T-cell infusion led
to brain swelling and hydrocephalus, which required emergent neurosurgery [91]. These
results pictured CAR T-cell therapy as a double-edged sword. Further studies and close
monitoring of CAR T-cell therapy in brain tumor are needed.

6.2. Limitations of CAR T-Cell Therapy in CNS Tumors

The applications of CAR T-cell therapy to pediatric brain tumors need to take not only
the poor immune response of solid tumors but also the difficulties in delivery of T cells
across the blood–brain barrier (BBB) into consideration. For solid tumors, on-target, off-
tumor toxicity, tumor immunosuppressive microenvironment (TME), and antigen escape
remain the major concerns (Figure 3). In contrast to lymphoid cancer, whose antigens are
confined to B-cell lineage [92], solid tumors rarely have specific antigens on the cell surface.
Even if the tumor antigens were identified, vital tissue might express the same antigens.
Encouragingly, absence of toxicity was observed in limited expansion of CAR T cells in
solid tumors [93]. Moreover, attuning the affinity of the scFv domain of CAR T cell might
enable T cells to distinguish tumor cells from normal tissues [94]. Besides this, immune
suppression from the TME in solid tumors [7,95], including GBM [96], was noted in several
studies. In the human body, there are a bunch of immune checkpoints that serve as brakes
to prevent T cells from attacking our own cells. However, cancer cells can also titillate
those checkpoints to stave off immune activation. Under these circumstances, the efficacy
of CAR T cells in the tumor microenvironment might be reduced. Thus, combinational
use of immune checkpoint receptor inhibitors, such as PD-1/CTLA-4 inhibitors, might be
beneficial [97,98]. Targeting extracellular components, such as VEGF or TGF-β, might also
improve T-cell migration and expansion [99]. As for antigen escape, targeting multiple
antigens simultaneously is currently under scrutiny for its efficacy and persistence [100].
To cross the BBB, local/regional infusion of CAR T cells directly into the tumor cavity
or ventricular systems might be practical considering the promising results observed,
but its safety requires further investigation [101,102]. Nanoparticles can also serve as a
new platform for CAR T-cell delivery into the CNS [103]. Recently, an affibody molecule
(ZSYM73) was discovered to potentially increase the penetration into the CNS via attaching
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to the transferrin receptor (TfR) [104], which might be applied to the transportation of CAR
T cells into the CNS.
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Finally, the relapsed brain tumors, as observed in leukemia as well [30,105], could be as-
sociated with antigen disguise, antigen density, or genetic mechanism [95], which call for fu-
ture in vitro and in vivo studies to understand their biological characters fully. Challenges
remain in combinations with other therapies, such as Lenalidomide used in hematological
malignancies (NCT03070327) or cereblon-modulating agent CC-122 (NCT03310619) [106]
to improve CAR T-cell potency. Memory T cells, with the capability of self-renew and
the elasticity to differentiate into effective T cells once reencountering antigens, might be
of use in CAR T-cell therapy, to treat minimal residual disease [107]. As the maturation
mechanism of memory precursors T cells is gradually unveiled [108], which involves
IL-7 and IL-15 [107] and is known to function through activation of STAT [109], further
modification of the CAR structure, such as substituting IL-2 with IL-7 and IL-15 [107,110]
or adding JAK-STAT to intracellular domains of CAR structure, might enrich the T memory
stem cell population and prolong its persistence.

7. Conclusions

Pediatric brain tumors, distinct which are from their adult counterparts in both genetic
mutations and expression, as well as treatment-related adverse effects on childhood growth
in functions and capability, need novel therapies urgently. In the past decades, the under-
standing of CAR T-cell therapy has become more comprehensive, and its safety, efficacy,
and persistence have gradually improved. With the advances of “multi-omic” profiling
and CRISPR/Cas 9 genetic modulation, the novel tumor antigens are being developed,
and the potency of CAR T-cell therapy is ameliorated. Future research investigating more
suitable delivery of CAR T cells, minimizing off-tumor toxicity and dwindling the cost of
CAR T-cell therapy, will shed light on the prognosis, as well as improve the quality of life
in children with brain malignancies.
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