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An important application of expression profiles is to stratify patients into high-risk and low-risk groups using limited but key
covariates associatedwith survival outcomes. Prior to that, variables considered to be associatedwith survival outcomes are selected.
A combination of single variables, each of which is significantly related to survival outcomes, is always regarded to be candidates for
posterior patient stratification. Instead of individually significant variables, a combination that contains not only significant but also
insignificant variables is supposed to be concentrated on. Bymeans of bottom-up enumeration on each pair of variables, we propose
a joint covariate detection strategy to select candidates that not only correspond to close association with survival outcomes but
also help to make a clear stratification of patients. Experimental results on a publicly available dataset of glioblastoma multiforme
indicate that the selected pair composed of an individually significant and an insignificant miRNA keeps a better performance than
the combination of significant single variables. The selected miRNA pair is ultimately regarded to be associated with the prognosis
of glioblastoma multiforme by further pathway analysis.

1. Introduction

Survival analysis, which is a branch of statistics for analyzing
time-to-event data, is commonly used in cancer research.
In particular, it helps to assess the prognosis of patients
having specific types of cancer in informing not only the
categories of patients with differing survival outcomes but
also the possible molecular cause of the risk of death. Narrow
down to gliomas, expression profiles are utilized to discover
the subtypes of patients with different survival risks [1].
This kind of data provides a supplementary predictor of
survival due to the limited effectiveness of current clinical
diagnoses. Numerous studies which attempted to use selected
signatures from expression profiles for discrete stratification
(e.g., recurrence,metastasis, and chemotherapy efficacy) have
shown the effectiveness. Correspondingly, several methods
that classified patients into subgroups with differing survival
time have also been performed.

Considering the continuity of the observations’ survival
time with right censoring, Cox proportional hazards regres-
sion analysis [2] was extensively utilized to seek covariates

associated with the overall survival of patients in invasive
breast cancer [3], non-small-cell lung cancer [4], follicu-
lar lymphoma [5], glioblastoma [6–8], and so forth. Due
to the requirement of more observations than covariates,
Cox proportional hazards regression model was combined
with some methods for dimension reduction or shrinkage
such as partial least squares [9] and principle component
analysis [10]. However, these strategies can only provide a
combination of variables other than reporting meaningful
covariates. Since projections derived from these variables
are made, one can only tell these variables together but not
which variables are effective. Besides, top-down methods of
tree-structured survival analysis [11] and random survival
forests [12] associated with hazards regression were proposed
for selection of covariates. Unlike bottom-up enumeration
strategies, these heuristic approaches may get local optimal
solutions although they infinitely approximate to global
optimal solutions despite their efficiencies.

Hence, univariable regression analyses have been placed
firmly in the mainstream. Due to the high-dimensional
space of variables compared to the small observation size,
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a penalized Cox hazards model using least-angle regression
was proposed in order to solve the overfitting problem of
parameter learning [13]. In addition, a sparse kernel method
was proposed on condition that the correlation between the
logarithm of the hazard ratio and covariates was linear, and a
survival supporting vector machine that maximized the clas-
sification margin other than Cox regression was presented
[14]. In practice, univariable Cox regression analysis was
applied to each variable, which was regarded to be significant
considering its correlation with survival time or its distinct
stratification of patients. Significant variables were selected
using either Wald 𝑡-test on regression coefficients [15] or
log-rank test with permutations after dividing patients into
high- and low-risk groups by univariable risk-score analysis
[16, 17]. A risk score of each observation was obtained using
a linear combination of the expression levels of selected
variables weighted by multivariable regression coefficients. A
cut-off threshold was derived from the median risk score or
was determined by receiver operating characteristics (ROC)
analysis [18], and patients within the training set were
divided into high- and low-risk groups.Themajor problem of
univariable Cox regression strategy roots in the assumption
that covariates are derived from individual variables, each
of which is significantly associated with survival outcomes.
In essence, a meaningful set of covariates are probably
composed of different variables, each of which is either
correlated with or apparently unrelated to survival outcomes.

In order to solve this problem, we propose a joint
covariate detection strategy for selection of variable pairs
instead of a combination of variables individually correlated
with survival time from expression profiles. Meanwhile,
stratification of patients is also considered.That is, predictors
not only associated with survival outcomes but also helpful
to classify patients into high-risk and low-risk groups are
chosen. Cox proportional hazards regression is used in order
to detect variable pairs that are most associated with survival
time. In order to overcome the overfitting problem, variable
pairs which may most possibly help to stratify patients with
differing survival risks are further selected. In particular,
patients are stratified according to the corresponding risk-
score analysis derived fromCox proportional hazards regres-
sion. Besides, log-rank test is performed for further confir-
mation whether the selected variable pairs contribute mainly
to the stratification or not. In order to show the effectiveness
of our method, miRNA expression profiles containing 548
patients with glioblastoma multiforme (GBM) downloaded
from the Cancer Genome Atlas (TCGA) database are intro-
duced in. The final selected miRNA pair of significance
as representing the covariates not only most associated
with survival outcomes but also effective to stratification of
patients is ultimately testified using KEGG pathway analysis.

2. Materials and Methods

2.1. Microarray Data. We use the miRNA expression data
(Level 3) of 548 patients with GBM downloaded from TCGA
(http://cancergenome.nih.gov) in order to illustrate the effec-
tiveness of identifying prognostic miRNAs in glioblastoma
using the joint covariate selection method. In total, these

548 GBM cases with overall survival information are selected
from 581 miRNA expression profiles, which were down-
loaded during May, 2015. We choose all the patients, for we
discover that splitting samples using a random dichotomy
or by balancing survival outcomes between training and
testing group cannot achieve the same set of variables as it
is derived from the whole samples. That is to say, how to
reasonably split samples into training and testing ones is still
under discussion. The reason derives from two aspects. One
is that survival outcomes are continuous compared to discrete
stratification (e.g., recurrence, metastasis, and chemotherapy
efficacy). Thus, the distribution of survival outcomes is to be
estimated before splitting samples. The other is that it is hard
to estimate the distribution of survival outcomes because of
including censored following time. Moreover, the survival
time of each patient is recorded, which ranges between 0 and
3881 days. Among them, 450 are dead (uncensored) during
the study and 98 are still alive (censored) at the end of the
study.MatlabR2013b is selected as the experimental platform.
Coefficients of Cox regression are obtained by calling the
library function coxphfit.

2.2. Joint Covariate Detection. Here, it represents a twofold
consideration on detection of variables, which are both
associated with survival outcomes and helpful to classify
patients into different risk groups. In order to seek variables
associated with survival outcomes, Cox hazards regression is
firstly introduced. The partial likelihood function is given by
the expression

𝑙 (𝛽) =
𝑚

∏
𝑖=1

𝑒x
𝑇
(𝑖)𝛽

∑𝑗∈𝑅(𝑡(𝑖)) 𝑒
x𝑇𝑗 𝛽

, (1)

where the product is over the 𝑚 distinct ordered survival
time without any follow-up of right censoring assuming that
there is no tied time. x(𝑖) and 𝛽 denote the 𝑖th expression
levels and the regression coefficients of the detected variables,
respectively. The summation in the denominator is over
all subjects in the risk set at ordered survival time 𝑡(𝑖),
denoted by𝑅(𝑡(𝑖)).Themaximumpartial likelihood estimator
is obtained by differentiating the right hand side of the
logarithm transformation of (1) with respect to 𝛽, setting
the derivative equal to zero, and solving for 𝛽. As to each
component of 𝛽, a Wald statistic that represents the ratio of
the estimated coefficient to its estimated standard error is
presented. That is,

𝑧𝑘 =
�̂�𝑘

ŜE (�̂�𝑘)
. (2)

The 𝑝 value of the 𝑘th component of 𝛽 is obtained by looking
up a table assuming that the Wald statistic in (2) follows the
standard normal distribution. In order to enlarge the sample
size, we make a permutation test by reordering the survival
outcomes for 𝐵 times. And the corresponding 𝑝 value is
expressed as follows:

𝑝𝑘 =
𝐵
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, (3)
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where 𝑧0𝑘 denotes a null statistics by a random rearrangement
of survival outcomes. Enumeration on each single variable
or on each pair is made. Therefore, covariates significantly
associated with survival outcomes are selected according to
the individuals or the pairs with smallest 𝑝 values.

Meanwhile, we consider a best stratification of patients
with differing survival outcomes as an indicator for selection
of covariates. In practice, patients are commonly classified
into low-risk and high-risk groups, which conforms to the
daily doctors’ decision making process. Following the case,
the risk score is the linear portion of Cox regressionmodel, of
which the estimator for the 𝑖th sample containing𝑝 covariates
is

�̂�𝑖 = �̂� (x𝑖, �̂�) =
𝑝

∑
𝑘=1

�̂�𝑘𝑥𝑖𝑘. (4)

Median risk score is utilized as a cut-off value for strati-
fication, in order to keep the equivalent number between
high-risk and low-risk patients. Assuming that the survival
function is the same in each of the two groups, the estimator
of the expected number of deaths in high-risk group is
expressed as

�̂�1𝑖 =
𝑛1𝑖𝑑𝑖
𝑛𝑖

, (5)

where 𝑛𝑖 and 𝑑𝑖 represent the number at risk and of deaths
at the observation of ordered survival time 𝑡(𝑖), respectively.
𝑛1𝑖 denotes the number at risk in high-risk group. Cor-
respondingly, the estimator of the variance of 𝑑1𝑖 on the
hypergeometric distribution is defined as follows:

V̂1𝑖 =
𝑛1𝑖𝑛0𝑖𝑑𝑖 (𝑛𝑖 − 𝑑𝑖)

𝑛2𝑖 (𝑛𝑖 − 1)
, (6)

where 𝑛0𝑖 denotes the number at risk in low-risk group.Under
the null hypothesis that survival functions of the two groups
are the same, the statistic of log-rank test is expressed as
follows:

𝑄 =
[∑𝑚𝑖=1 (𝑑1𝑖 − �̂�1𝑖)]

2

∑𝑚𝑖=1 V̂1𝑖
. (7)

The corresponding 𝑝 value is obtained using the 𝜒2 distribu-
tion with one degree of freedom. In the same way, we make a
permutation test similarly expressed in (3). That is,

𝑝𝑟 =
𝐵

∑
𝑏=1

# (𝑄
0
𝑟

 ≥
𝑄𝑟

)
𝐵

, (8)

where 𝑄0𝑟 also represents a null statistics by a random
rearrangement of survival outcomes. After enumerating on
each individual variable or on each pair, covariates that sig-
nificantly categorize patientswith differing survival outcomes
are detected according to smallest 𝑝 values.

By enumeration on each variable and each pair, signifi-
cant covariates most associated with survival time are chosen
on condition that each component keeps a small 𝑝 value as

expressed in (3). Moreover, the variables for stratification of
patients using the risk score defined by (4) correspond to
small 𝑝 values as seen in (8). In fact, this conception derives
from Integrative Hypothesis Testing (IHT) proposed by Xu
[19]. The obtained covariates may indicate not only a close
correlation with survival time but also distinct stratification
of patients.

2.3. KEGG Pathway Analysis. In order to show the effective-
ness of our method, we submit the final selectedmiRNA pair,
which is not only most associated with survival outcomes but
also effective to stratification of patients to low-risk and high-
risk groups, to DIANA miRPath [20]. We only use TarBase
[21] to select the targets of the miRNA pair, considering
that it is a database of published experiments validated
miRNA-gene interactions. Focusing on the pathways related
to the selectedmiRNA pair instead of those corresponding to
each component of the selected pair, we can find significant
pathways, which may support our finding and show the
effectiveness of our method.

3. Results

3.1. Joint Covariate Detection for GBM Survival Analysis.
In this part, we apply joint covariate detection to seeking
miRNAs which are associated with the risk of death and
the stratification of high-risk and low-risk patients in GBM.
The representation of “joint” is twofold. First, it is a strategy
that combines Cox regression for seeking survival-associated
variables with log-rank test on risk scores for evaluation of
the classification results. Second, it also exhibits the steps
from enumerations on each individual variable to those on
enumerable covariate tuples. Considering the computational
cost, joint covariate detection terminates after finishing enu-
meration on miRNA pairs.

For each miRNA, 𝑝 values expressed in (3) and (8)
were obtained after 10000 rounds of permutations. The
miRNAswith𝑝 values≤ 0.01 were regarded to be individually
significant. We obtained six significant miRNAs, as listed in
Table 1. Using the expression levels of the selected significant
miRNAs, we made Kaplan-Meier survival analyses on high-
risk and low-risk groups derived from cut-off values by cal-
culating themedian risk scores expressed in (4), as illustrated
in Figure 1. Besides, 𝑝 values of each significant miRNA were
also shown in Figure 1. On assumption that hazard ratio (HR)
is constant over survival time, we listed HRs in Figure 1, too.

As to each miRNA pair, permutations with 10000 rounds
were made. 𝑝 values corresponding to each component of
every pair were calculated by (3). After a linear combina-
tion of the expression levels which regarded the learned
Cox regression coefficients as its weights, risk scores were
obtained using (4). The median risk score was utilized as a
cut-off value; therefore, patients were classified into the high-
risk and low-risk groups. Log-rank test expressed in (7) was
performed, and the corresponding 𝑝 value representing the
significant differences of risks between the two groups was
calculated by (8).ThemiRNApairs with𝑝 values≤ 0.001 were
regarded as the significant pairs associated with the risk of
death to patients in GBM.We obtained six significant pairs of
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Figure 1: Kaplan-Meier survival analysis using significant individualmiRNAs, each of which is jointly selected to Cox regression and log-rank
test with 𝑝 values ≤ 0.01.
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Table 1: Individual results using joint covariate detection.

miRNA probe 𝑍 (log-rank) 𝑝 (log-rank) Coef (Cox) 𝑍 (Cox) 𝑝 (Cox) Expressions in high-risk group
hsa-miR-222 3.042262 0.0012 0.245557 6.33205 0.0001 High
hsa-miR-17-5p 2.878053 0.0015 −0.22319 −3.36403 0.0006 Low
hsa-miR-106a 2.841924 0.0028 −0.18956 −3.00119 0.002 Low
hsa-miR-221 2.792194 0.0031 0.283759 5.395549 0.0001 High
hsa-miR-487b 2.711448 0.0032 0.207506 2.849673 0.0046 High
hsa-miR-20a 2.688864 0.0045 −0.1768 −3.16297 0.001 Low

Table 2: Pair results using joint covariate detection.

miRNA probe miRNA probe 𝑝 (log-rank) 𝑝 (Cox) 𝑝 (Cox) Expressions in
high-risk group

Expressions in
high-risk group

hsa-miR-10b hsa-miR-222 0.0002 0.0004 0.0001 High High
hsa-miR-196a hsa-miR-20a 0.0003 0.0007 0.0002 High Low
hsa-miR-222 hsa-miR-422b 0.0003 0.0001 0.0007 High Low
hsa-miR-140 hsa-miR-148a 0.0007 0.0004 0.0001 Low High
hsa-miR-196a hsa-miR-340 0.0007 0.001 0.0003 High Low
hsa-miR-340 hsa-miR-765 0.0009 0.0001 0.0006 Low Low

miRNAs (see Table 2), of which survival analyses were shown
in Figure 2.

Figure 2 illustrated the experimental results of the sig-
nificant pairs. Kaplan-Meier survival analysis was made
between the high-risk and low-risk groups of patients on
each significant pair. 𝑝 values of each component and that
corresponding to log-rank test were also listed in Table 2.
By making a careful comparison between the Kaplan-Meier
curves associated with miRNA pairs shown in Figure 3 and
those related to individually significant miRNAs illustrated
in Figure 1, we discovered that the selected miRNA pairs
contributed to an easier stratification of patients with survival
months less than 10 months, as illustrated in Figure 3.

Next, we tried to validate that covariates most associated
with survival outcomes were not equal to the set of indi-
vidually significant variables. In order to demonstrate it, we
enumerated all possible combinations of the six miRNAs that
were individually significant as listed in Table 1 and illustrated
in Figure 1 and performed joint covariate detection on each
combination.Wemade 10000 rounds of permutations and set
the threshold to be 0.05 for significant detection. Of all the
57 combinations except six individually significant miRNAs,
two significant combinations were obtained, as illustrated in
Figure 4. 𝑝 values of each miRNA and that corresponding to
log-rank test were listed for each combination. After carefully
comparing parameters in Figure 2 with those in Figure 4, we
made a conclusion that covariates selected for discrimination
of GBM prognosis could not only consist of individually
significant variables. In other words, significant covariates
possibly consisted of different variables, each of which is
either individually significant or not.

3.2. Verification of miRNAs Associated with GBM Prognosis.
According to the small 𝑝 values and small HRs illustrated
in Figure 2, we selected the most significant miRNA pair
(i.e., miR-10b and miR-222). In order to validate the chosen

pair’s close association with prognosis of GBM instead of
significant or insignificant individuals, we used DIANA
miRPath [20] and TarBase [21] which provide miRNA/gene
interactions with high quality experimental validations to
identify KEGG pathways related to both miR-222 and miR-
10b. Pathways corresponding to miR-222, miR-10b and their
combination are listed in Tables 3, 4, and 5, respectively.

Comparisons fromTables 3–5 show that pathways includ-
ing glioma andmelanomamay have direct relationswith both
miR-222 and miR-10b, which might indirectly support our
option about the need of joint covariate detection.The glioma
pathway is illustrated in Figure 5.

4. Discussion

In this paper, a joint covariate detection strategy is proposed
for selecting candidates that not only correspond to close
association with survival outcomes but also help to make
a clear stratification of patients. We choose GBM data and
testify the effectiveness of our method on it for three reasons
presented as follows. First, GBM data has a large sample size
containing 548 patients. Such a large sample size ensures the
reliability of statistical results, and that is also the reason why
we keep the whole samples for training the model. Second,
GBM data has a very long follow-up time, the longest of
which has reached a length of over ten years. Third, right
censored observations are keeping in a smaller sample size,
which now has 98 cases compared to 450 having passed away.
Less censored samples make more robust fitting result of Cox
proportional hazards regression.

Joint covariate detection contains the concept that makes
a combination between selecting covariates most associated
with survival outcomes and seeking covariates which is capa-
ble of risk stratification. To the best of our knowledge, it is the
first model using bottom-up enumerations of variable pairs
other than combination of individually significant variables,
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Figure 2: Kaplan-Meier survival analysis using significant miRNA pairs, each of which is jointly selected to Cox regression and log-rank test
with 𝑝 values ≤ 0.001.
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Figure 3: Comparisons between the most significant pair and the most significant individual miRNA.
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Figure 4: Representative survival analysis using combinations of the six significant individual miRNAs, each of which is jointly selected
according to Cox regression and log-rank test with 𝑝 values ≤ 0.05.

which has been widely provided in practice. Considering that
the expression profiles commonly have large dimension and
small sample size, permutation tests are made by reordering
survival outcomes to enlarge sample size. Besides, log-rank
tests may also help to solve the overfitting problem. Model
development such as covariate interaction [22] can be further
introduced in.

However, several limitations of the proposed strategy
have to be listed as follows. First, joint covariate detection
terminates after finishing the pair enumeration due to the

high computational cost. In order to proof our inference,
enumerations on multituples of variables need to be done.
Second, strategies which contain penalties or constraints are
excluded considering a fast performing demand. Third, we
keep Cox proportional hazards assumption that the hazard
ratio is independent of survival time. In fact, it is the
covariate but not the regression coefficient that does not
depend on survival time. Covariates whose values are fixed at
the beginning of observation remain unchanged throughout
the follow-up time. On condition that the difference in log
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Table 3: Pathways associated with miR-222 (𝑝 ≤ 0.01).

KEGG pathway 𝑝 value # genes # miRNAs
Fatty acid biosynthesis 1.64𝐸 − 25 1 1
Fatty acid metabolism 5.15𝐸 − 05 2 1
Arrhythmogenic right ventricular cardiomyopathy (ARVC) 5.15𝐸 − 05 8 1
Viral carcinogenesis 0.000376 22 1
Protein processing in endoplasmic reticulum 0.006288 20 1
Lysine degradation 0.011993 5 1
RNA degradation 0.011993 11 1
p53 signaling pathway 0.011993 11 1
Ubiquitin mediated proteolysis 0.013637 17 1
RNA transport 0.02166 20 1
Cell cycle 0.02166 15 1
Spliceosome 0.024132 11 1
Endometrial cancer 0.038151 6 1
Adherens junction 0.041217 9 1
HTLV-I infection 0.046109 24 1
Central carbon metabolism in cancer 0.047174 6 1
Bacterial invasion of epithelial cells 0.049002 9 1

Table 4: Pathways associated with miR-10b (𝑝 ≤ 0.01).

KEGG pathway 𝑝 value # genes # miRNAs
Fatty acid biosynthesis 4.92𝐸 − 28 1 1
Viral carcinogenesis 1.11𝐸 − 06 16 1
Fatty acid metabolism 2.78𝐸 − 06 1 1
Chronic myeloid leukemia 0.0005 9 1
Central carbon metabolism in cancer 0.002282 7 1
Non-small-cell lung cancer 0.007224 8 1
Glycosphingolipid biosynthesis, lacto- and neolactoseries 0.015745 2 1
Pyrimidine metabolism 0.021438 7 1
Cell cycle 0.022075 13 1
p53 signaling pathway 0.028173 9 1

Table 5: Pathways associated with both miR-10b and miR-222 (𝑝 ≤
0.01).

KEGG pathway 𝑝 value # genes # miRNAs
Fatty acid biosynthesis 5.98𝐸 − 47 1 2
Fatty acid metabolism 6.60𝐸 − 22 1 2
Viral carcinogenesis 1.54𝐸 − 05 5 2
Chronic myeloid leukemia 0.001129 4 2
Glioma 0.015536 4 2
Non-small-cell lung cancer 0.023173 4 2
Melanoma 0.030385 4 2
Cell cycle 0.043136 6 2

hazards depended on time, a nonparametric concordance
measure [23] or an alternative selection of concordance
regression and weighted Cox regression [24] were presented,
respectively, instead of Cox regression. Once the problem

of computational cost is solved, these improvements can
be added in. Fourth and most important, how to rea-
sonably split samples with survival outcomes into training
and testing ones is still a vital problem under discussion.
Actually, splitting samples using a random dichotomy or by
balancing survival outcomes between training and testing
group will not work, especially on low-dimension feature
space. And that has been experimentally demonstrated
(not shown). All these limitations are to be settled in the
future.

Using joint covariate detection, we chose one miRNA
pair associated with GBM prognosis. In order to reveal the
relationship between the chosenmiRNApair and the survival
time of GBM patients, DIANA miRPath [20] and TarBase
[21], which provided miRNA/gene interactions with high
quality experimental validations, were utilized. As listed in
Table 5, two pathways including glioma and melanoma were
manifested, which indicated a joint action of themiRNA pair.
With experimental validations, four common targets of each
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Figure 5: Glioma pathway that shows close association with miR-222 and miR-10b.

component in the miRNA pair (i.e., MDM2, TP53, CDK6,
and E2F3) were focused on. In Figure 5, the four targets were
included in cell cycle pathway, which was also the case in
melanoma pathway. MDM2 and TP53 were reported to be
directly associated with prognosis of GBM [25]. As illustrated
in Figure 5, INK4a and ARF acted as tumor suppressors,
which were upstream genes of the common targets. The loss
of INK4a and ARF together with p53 gene mutation was
reported to be mutually exclusive events in GBM [26].
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