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Abstract

A genome-wide association study among Europeans related polymorphisms of the TLR locus at 

4p14 and the FCGR2A locus at 1q23.3 to Helicobacter pylori serologic status. We replicated 

associations of 4p14 but not 1q23.3 with anti-H. pylori antibodies in 1,402 Finnish males. 

Importantly, our analysis clarified that the phenotype affected by 4p14 is quantitative level of these 

antibodies rather than association with seropositivity per se. Additionally, we annotated variants at 

4p14 as expression quantitative trait loci associated with TLR6/10 and FAM114A1. Our findings 

suggest that 4p14 polymorphisms are linked to host immune response to H. pylori infection but 

not to its acquisition.

Introduction

Chronic Helicobacter pylori infection is causally associated with gastritis, gastroduodenal 

ulcer disease, gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma.
1 

A genome-wide association study (GWAS) of anti-H. pylori serologic status among 

Europeans identified inverse associations with single nucleotide polymorphism (SNPs) in 

the toll-like receptor (TLR) locus at 4p14 and the Fcγ receptor 2a (FCGR2A) locus at 

1q23.3.
2
 Comparing anti-H. pylori immunoglobulin G (IgG) antibody levels in the highest 

quartile vs. lower levels, the 4p14 associations were strongly significant (top-ranked SNP, 

rs10004195; P=1.4e-18) and the 1q23.3 associations were borderline (top-ranked SNP, 

rs368433; P=2.1e-8). In contrast, there were no genome-wide significant associations with 

anti-H. pylori antibody levels in a GWAS among Mexican-Americans.
3
 To extend the 

previous findings among Caucasians, we evaluated associations of anti-H. pylori IgG with 

4p14 and 1q23.3 loci in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study 

(ATBC).
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Results and discussion

Among ATBC participants, rs10004195-A at 4p14 was inversely associated with anti-H. 
pylori antibody levels in the highest 25%. The per-allele odds ratio (OR) was 0.61 (95% 

confidence interval (CI)=0.47–0.79; P=2.2e-4), consistent with the previous report. In 

contrast, seropositivity (73% of participants) was not associated with rs10004195 (OR=1.00; 

95% CI=0.79–1.27; P=9.9e-1). Indeed, the minor allele frequency (MAF) of rs10004195 

among seronegative individuals (MAF=0.15) was intermediate between the subjects with the 

highest 25% of antibodies (MAF=0.11) and all other seropositives (MAF=0.17) 

(Supplementary Table 1).

We also found associations of 4p14 variants with continuous anti-H. pylori antibody levels. 

Notably, the statistical significance as well as magnitude of effects was accentuated when we 

restricted our analysis to seropositive individuals (Figure 1). For example, the per-allele beta 

coefficients of rs10004195-A were −0.15 (standard error (SE)=0.05; P=3.4e-3; PFDR = 

4.0e-2) and −0.20 (SE=0.04; P=3.8e-7; PFDR = 4.8e-6) among all and seropositive 

participants, respectively. The strongest signal was observed at rs6835514 (MAF=0.17; 

beta=−0.23; SE=0.04; P=1.6e-9; PFDR = 1.9e-6), which was in moderate linkage 

disequilibrium (LD) with rs10004195 (r2=0.62). Fifty-one nearby SNPs within moderate to 

high LD (r2 >0.6) of rs6835514 had p-values ranging from 4.7e-7 (PFDR = 5.6e-6) to 3.0e-9 

(PFDR = 1.9e-6) (Supplementary Table 2). In analyses controlling for rs6835514, the effect 

of rs10004195 did not remain significant (beta=−0.03; SE=0.06; P=5.5e-1), indicating that 

the two SNP associations with IgG levels are not independent.

Furthermore, we explored putative functional effects of these 52 4p14 SNPs based on 

publically available data. Except for rs4833095 (Asn248Ser) and synonymous rs5743614 in 

TLR1, all other variants were located in intronic or non-coding regions. However, many of 

these remaining SNPs fall within proximal or distal regulatory elements (Supplementary 

Table 3). Using the Roadmap ChromHMM track, we found 7 promoter SNPs and 8 enhancer 

SNPs in CD19-positive primary blood cells. In ENCODE cell lines, 17 SNPs were mapped 

to DNaseI hypersensitive regions and 42 SNPs altered binding motifs of at least one 

transcription factor. GTEx expression quantitative trait loci (eQTL) data on whole-blood 

samples identified multiple SNPs significantly correlated (P<0.01) with mRNA transcript 

levels of TLR6/10 or FAM114A1 but not with TLR1 (Supplementary Table 3). The low IgG 

allele (G) of rs6835514 was inversely associated with mRNA levels of TLR6 (beta=−0.11; 

P=3.2e-3) and positively associated with FAM114A1 expression (beta=0.31; P=3.7e-5) 

(Figure 2). Of particular interest, rs10034903, which was mapped to an active promoter of 

TLR10 as well as a transcription factor binding site, appeared to be a significant eQTL for 

both TLR10 and FAM114A1 (Figure 2). Similar to rs6835514, the low IgG allele (G) of 

rs10034903 was associated with decreased mRNA expression of TLR10 (beta=−0.13; 

P=6.5e-3) and increased mRNA expression of FAM114A1 (beta=0.27; P=8.0e-4).

Although roles in pathogen recognition and innate immunity have been well established,
4 

little is known about TLR1/6/10 with respect to H. pylori response.
5, 6 In a recent report, 

heterodimeric TLR2/TLR10 was suggested to mediate H. pylori lipopolysaccharide 

recognition in activating the NF-kB signaling pathway.
7
 Additionally, a growing number of 
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studies suggest genetic polymorphisms in TLR genes are associated with infectious disease 

susceptibility
8
. For example, rs5743618 (Ser602Ile of TLR1; r2=0.80 among CEU) in high 

LD with rs6835514 (r2=0.80 among CEU) has been associated with susceptibility to 

tuberculosis
9
, Chlamydia trachomtis infection

10
 and leprosy

11
; while rs4833095 (Asn248Ser 

of TLR1; r2=0.85 with rs6835514 among CEU) has been associated with Atopobium 
vaginae infection

12
 and placental malaria

13
.

Intriguingly, 4p14 has also been implicated as a susceptibility locus for IgE-mediated 

allergic sensitization and for hay fever-related asthma; minor alleles were associated with 

decreased levels of IgE
14

 and decreased risk of asthma
15

 in Caucasians, in parallel with our 

finding of an inverse association with anti-H. pylori antibody levels. However, three TLR 
SNPs included in the current report were inconsistently associated with active H. pylori 
infection determined by 13C-urea breath test in a Chinese population.

16
 Further studies are 

warranted of these genetic polymorphisms in relation to target gene regulation and disease 

consequences. Fine mapping studies are also needed to pinpoint the functionally relevant 

causal variants.

As for the borderline association reported for 1q23.3, we did not find qualitative or 

quantitative associations with anti-H. pylori antibodies. In particular, rs368433 was not 

associated with the highest quartile of antibody levels (OR=1.05; 95% CI=0.72–1.52; 

P=8.1e-1) nor with seropositivity overall (OR=0.84; 95% CI=0.58–1.23; P=3.8e-1) 

(Supplementary Table 1). Moreover, there were no significant associations with continuous 

IgG levels among either all participants or seropositives only (Supplementary Figure 1). 

Based on our observed 0.06 MAF of rs368433, estimated power to detect the previously 

reported 0.73 OR at a 5% significance level was 71% among all individuals and 80% among 

seropositives.

In conclusion, we confirmed the association of the 4p14 locus with anti-H. pylori antibodies 

among Caucasians, and clarified the phenotype affected by these polymorphisms. Our 

findings suggest that the 4p14 locus may modulate intensity of host immune response rather 

than acquisition of H. pylori infection per se. The clinical significance of higher levels of 

antibody to H. pylori remains to be determined; conflicting associations with either 

increased
17, 18

 or decreased
19, 20

 gastric cancer risk have been reported. Antigen specificity 

of the 4p14 locus associations should also be examined in future studies. These findings 

await extension to other ethnic/racial groups with differences in exposure patterns, bacterial 

strain pathogenicity, host genetic characteristics and population burdens of H. pylori-
associated diseases.

Materials and methods

Our study included participants from the ATBC, a randomized, double-blind, placebo-

controlled trial conducted 1985–1993 in 29,133 Finnish male smokers aged 50 to 69 years.
21 

Participants completed questionnaires at enrollment and serum samples were collected and 

stored at −70°C for future analyses. The current study included 1,402 participants who had 

both genotyping and H. pylori serology data available.
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Antibodies to H. pylori were measured by enzyme-linked immunosorbent
22, 23, 24, 25

 and 

multiplex bead-based assays
26, 27

, as described previously. In order to combine 

measurements based on different technologies, we standardized levels using laboratory-

specific means and standard deviations. Detailed information about genotyping and quality 

control was published previously
28, 29

. Briefly, a genome-wide scan was performed with 

Illumina HumanHap550/610 arrays. Imputation was performed using the hidden-Markov 

model algorithm implemented in MACH, based on HapMap CEU reference panel build 36, 

R22.

We defined candidate regions as ±200 kb from the previously reported top SNPs,2 

rs10004195 at 4p14 (chr4:38584724–38984724, Hg19) and rs368433 at 1q23.3 

(chr1:161284210–161684210, Hg19). We additionally included SNPs located in flanking 

regions of rs6835514 (chr4:38694380–39094380, Hg19), the most significant 4p14 SNP in 

our linear regression analysis. After quality control, 1,380 SNPs at 4p14 and 1,127 SNPs at 

1q23.3 were available from genotyping or imputed data. Average call rate for the genotyped 

SNPs was 1 and average quality score for imputed SNPs (Rsq) was 0.92.

To refine the phenotype affected by gene polymorphisms, we tested several definitions of H. 
pylori serologic status. First, we used the same definition as the previous report in 

Caucasians, which compared individuals with IgG levels in the highest 25% to individuals in 

the other 75%. Second, to determine whether the loci are associated with H. pylori 
acquisition, we compared seropositives to seronegatives. Lastly, we analyzed IgG levels as a 

continuous variable. We assumed an additive genetic model with number of minor alleles as 

a predictor, using 10-year age groups and genotying principal components as covariables. 

We used logistic regression for dichotomous outcome variables and linear regression for the 

continuous outcome variable. Adjustment for multiple comparisons at 4p14 was performed 

by the false discovery rate (FDR) based on 1,380 SNPs, ignoring the high correlation among 

the tested SNPs. Analyses were conducted using SAS v9.3 (SAS Institute Inc., Cary, NC) 

and R v3.1.3. Statistical power was estimated with CaTS (http://csg.sph.umich.edu/abecasis/

CaTS/index.html).

We focused functional annotation on the 52 SNPs located in moderate to high (r2>0.6) LD 

with rs6835514. The UCSC Genome browser (http://genome.ucsc.edu) was used to confirm 

genomic regions and to screen NIH Epigenomics Roadmap (http://

www.roadmapepigenomics.org/) and ENCODE (http://genome.ucsc.edu/ENCODE/) tracks. 

HaploReg (http://www.broadinstitute.org/mammals/haploreg/haploreg.php) and 

RegulomeDB (http://regulomedb.org/) were also used to confirm SNP functions and to 

compile summary results.

To map promoter, enhancer, polycomb-repressed or heterochromatin regions, we used the 

chromatin state segmentation by Hidden Markov Model (ChromHMM) track from Roadmap 

reported for CD19 primary cells (presumably, circulating B-lymphocytes). DNase cluster 

assigned by DNase I hypersensitive assay results from 125 cell types, transcription factor 

binding sites defined by chromatin immunoprecipitation sequencing for 161 factors, and 

transcription levels determined by RNA-seq in GM12878 were tracked using ENCODE.
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To identify putative target genes regulated by SNPs, we compiled eQTL results assessed in 

whole blood samples (n=168) from Genotype-Tissue Expression (http://www.gtexportal.org/

home/). Linear regression was conducted for the 52 SNPs on log and quantile normalized 

RNA-seq levels of four genes to which any of these SNPs were mapped, including TLR1 
(ENSG00000174125.3), TRL6 (ENSG00000174130.8), TLR10 (ENSG00000174123.6), 

and FAM114A1 (ENSG00000197712.7). Covariables included three genotyping principle 

components, 15 peer factors and sex. Based on the number of genes tested, our Bonferroni-

corrected significance threshold was P=0.012 (0.05/4 genes).

Informed consents were obtaind from all participants. The study was approved by IRBs of 

the National Public Health Institute of Finland and the US National Cancer Institute.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
4p14 locus (−log10 P) associations with anti-H. pylori antibodies estimated among (A) all 

and (B) seropositive ATBC participants.

Genomic region was defined as ±200 kb surrounding the index SNP (rs6835514, purple). 

Circles and squares indicate genotyped and imputed SNPs, respectively. Figure was 

generated with LocusZoom version 1.1 (http://csg.sph.umich.edu/locuszoom/) using Hg18/

HapMap Phase II CEU as genome build/LD population.
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Figure 2. 
Selected functional annotations of 4p14 locus SNPs.

NIH Epigenomics Roadmap and ENCODE data were screened using the UCSC Genome 

Browser to track transcription levels in GM12878 (ENCODE) and regulatory elements, 

including DNaseI hypersensitivity cluster (open chromatin structure; gray box indicating the 

extent of the hypersensitive region with shading proportional to the maximum signal 

strength observed in any cell line) from 125 cell types (ENCODE), Roadmap Chromatin 

State Segmentation using a Hidden Markov Model (ChromHMM) from CD19 Primary Cells 

(Promoter [Red] and Enhancer [Orange]), layered core histone marks H3K4Me3, H3K27Ac, 

and H3K4Me1 in GM12878 (ENCODE), and transcription factor (TF) binding site (gray 

box with shading proportional to the maximum signal strength; green highlight indicating 

the highest scoring site of a canonical motif for the corresponding TF) identified by ChIP-

seq (ENCODE) experiments. GTEx data on 168 whole-blood samples were analyzed with 

box plots and regression statistics for expression quantitative trait loci (eQTL). The genomic 

location of rs10034903 is shown by the red vertical line.
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