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Abstract

Diffusion tensor imaging is often used to assess white matter (WM) changes following

traumatic brain injury (TBI), but is limited in voxels that contain multiple fibre tracts.

Fixel-based analysis (FBA) addresses this limitation by using a novel method of ana-

lysing high angular resolution diffusion-weighted imaging (HARDI) data. FBA examines

three aspects of each fibre tract within a voxel: tissue micro-structure (fibre density

[FD]), tissue macro-structure (fibre-bundle cross section [FC]) and a combined measure

of both (FD and fibre-bundle cross section [FDC]). This study used FBA to identify the

location and extent of micro- and macro-structural changes in WM following TBI.

A large TBI sample (Nmild = 133, Nmoderate–severe = 29) and control group (healthy and

orthopaedic; N = 107) underwent magnetic resonance imaging with HARDI and

completed reaction time tasks approximately 7 months after their injury (range:

98–338 days). The TBI group showed micro-structural differences (lower FD) in the

corpus callosum and forceps minor, compared to controls. Subgroup analyses revealed

that the mild TBI group did not differ from controls on any fixel metric, but the moder-

ate to severe TBI group had significantly lower FD, FC and FDC in multiple WM tracts,

including the corpus callosum, cerebral peduncle, internal and external capsule. The

moderate to severe TBI group also had significantly slower reaction times than con-

trols, but the mild TBI group did not. Reaction time was not related to fixel findings.

Thus, the WM damage caused by moderate to severe TBI manifested as fewer axons

and a reduction in the cross-sectional area of key WM tracts.
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1 | INTRODUCTION

Traumatic brain injury (TBI) is a major cause of death and disability,

affecting an estimated 69 million people each year (Dewan et al.,

2018). Cognitive, physical, psychological, and behavioural problems

are all common following TBIs and can vary in both severity and

duration (Bigler & Stern, 2015; Cristofori & Levin, 2015; Griffen &

Hanks, 2014). Diffuse axonal injury (DAI), which alters white matter

(WM) micro-structure and affects the ability of axons to relay infor-

mation, is thought to be a primary contributor to these problems (Hill,

Coleman, & Menon, 2016; Huisman et al., 2004; Hulkower, Poliak,

Rosenbaum, Zimmerman, & Lipton, 2013). Widely available imaging
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modalities, such as computed tomography and conventional magnetic

resonance imaging (MRI), lack the sensitivity to visualise the full extent

of this DAI (Shenton et al., 2012; Voelbel, Genova, Chiaravalotti, &

Hoptman, 2012). However, with the development of diffusion-

weighted imaging, it is now possible to examine micro-structural

changes to WM (e.g., DAI), even after mild TBI (Shenton et al., 2012;

Strauss et al., 2015).

Diffusion-weighted imaging assesses WM changes by measuring

the movement of water molecules, which is constrained by the cellular

structure of axons (Niogi & Mukherjee, 2010). Diffusion tensor imaging

(DTI) is the most commonly used model for quantifying the data

obtained from diffusion-weighted imaging; providing voxel-level infor-

mation regarding the coherence (fractional anisotropy [FA]) and magni-

tude or amount (mean diffusivity [MD]) of diffusion (Asken, DeKosky,

Clugston, Jaffee, & Bauer, 2017; Shenton et al., 2012). FA and MD are

often used to examine WM changes following TBI, with high FA (range

0–1) and low MD both thought to indicate intact WM, and low FA and

high MD suggesting WM damage in voxels containing single fibre

populations (Niogi & Mukherjee, 2010). Many studies use a region of

interest (ROI) approach to analyse DTI data, whereby mean (or median)

measures (FA, MD) are extracted from pre-determined regions within

the brain (Froeling, Pullens, & Leemans, 2016). Lower FA and higher

MD are typically reported following TBI, particularly in the subacute

and chronic periods (Asken et al., 2017; Shenton et al., 2012; Wallace,

Mathias, & Ward, 2018) and after moderate to severe TBIs (Castano-

Leon et al., 2018; Wallace et al., 2019).

The single tensor model does not take into account the different

fibre orientations that are contained within a voxel and are therefore

of limited use when voxels contain multiple tracts and/or crossing

fibres because any damage that is detected cannot be attributed to a

specific tract (Raffelt et al., 2017). Fibres cross when a single fibre

tract changes direction/orientation or when multiple fibre tracts are

contained within a single voxel (Mori & Tournier, 2014), which is esti-

mated to occur in up to 90% of all voxels (Jeurissen, Leemans,

Tournier, Jones, & Sijbers, 2013). This limitation can be overcome

using high angular resolution diffusion-weighted imaging (HARDI),

which is a higher order MRI protocol producing data that can be used

to differentiate between fibre orientations when fibres cross (Mori &

Tournier, 2014). A number of methods have been developed to esti-

mate fibre orientation distributions (FODs) from HARDI data, includ-

ing constrained spherical deconvolution (Mori & Tournier, 2014;

Tournier, Calamante, & Connelly, 2007). The FODs obtained from

constrained spherical deconvolution can be analysed using a recently

developed statistical method, known as fixel-based analysis (FBA)

(Raffelt et al., 2017), which examines the different fibre orientations

within a single voxel in order to provide specific anatomical informa-

tion about individual WM tracts. A “fixel” refers to a specific fibre

population within a single voxel (Raffelt et al., 2015; Raffelt et al.,

2017), with most voxels containing multiple fixels.

FBA assesses tissue micro- and macro-structure using three met-

rics: fibre density (FD, which assesses micro-structure), fibre-bundle

cross section (FC, which assesses macro-structure), and a measure

that combines the two (FD and fibre-bundle cross section; FDC)

(Raffelt et al., 2017). WM damage that reduces the number of axons

within a fibre bundle, but not the area they occupy (i.e., fewer axons

less densely packed within the same number of voxels), will lead to a

decrease in FD. If the density of axons is not reduced, but the fibre

bundle occupies less area/space (fewer voxels), FC will decrease.

Finally, if there is both a reduction in the density of axons within a

fibre bundle and the area that the fibre bundle occupies, FDC will

decrease (Raffelt et al., 2017).

FBA has been used to examine a number of different neurological

conditions, including multiple sclerosis (Gajamange et al., 2018), temporal

lobe epilepsy (Vaughan et al., 2017), and Alzheimer's disease (Mito et al.,

2018), but has yet to be used with a TBI sample. Overall, FBA appears to

provide a promising technique for detecting micro- and macro-structural

changes that addresses one of the main limitations of DTI (multiple tracts

and crossing fibres) and yields more readily interpreted data.

The current study therefore used FBA to examine WM changes

following TBI. Specifically, it compared the FD, FC and FDC obtained

from a TBI group to those of a control group (orthopaedic and healthy

controls) in order to identify which WM tracts of the brain were most

damaged. The impact of injury severity was also investigated by sepa-

rately examining the mild and moderate to severe injuries (the latter

being combined due to low participant numbers); the expectation

being that more severe injuries would lead to larger and more spatially

extensive changes (i.e., lower FD, FC, FDC).

2 | METHODS

2.1 | Participants

Participants were recruited as a part of a larger research project inves-

tigating cognitive, psychological and brain imaging outcomes following

TBI, which was conducted at the Royal Adelaide Hospital (Adelaide,

Australia). Three samples were recruited on a prospective basis

between 2008 and 2012, comprising (a) participants who had

sustained a mild, moderate or severe TBI; (b) orthopaedic controls

who had sustained injuries that did not involve the face or head; and

(c) healthy controls who were friends or family of the TBI group or vis-

itors to the Royal Adelaide Hospital. Participants were eligible for the

research project if: (a) they were aged between 18 and 80 years;

(b) English was their first language; (c) they did not have a known his-

tory of substance abuse, intellectual disabilities, or psychiatric or neu-

rological problems; and (d) they were able to complete the cognitive

tests and MRI (no contraindications).

The lowest recorded Glasgow Coma Scale (GCS) scores were

used to classify TBIs as mild (GCS: 13–15), moderate (GCS: 9–12), or

severe (GCS: ≤8). Where this information was not available, the length

of loss of consciousness (mild: <20 min; moderate: 20 min–6 hr;

severe: >6 hr) and/or post-traumatic amnesia (mild: <60 min; moder-

ate: 60 min–24 hr; severe: >24 hr) were used.

A total of 221 people who had sustained a TBI and 168 controls

(84 healthy, 84 orthopaedic controls) were initially recruited for the

research project. Participants who did not have usable MRI images
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(e.g., did not complete the MRI, image registration failed, MRI signal

dropout, excessive participant movement; NTBI = 45, Nhealthy = 8,

Northopaedic = 15), had incidental findings on their MRI (NTBI = 11,

Nhealthy = 16, Northopaedic = 22), or who sustained their TBI more than

400 days before the MRI examination (Nmild = 1, Nmoderate = 1,

Nsevere = 1) were excluded from the current study. Therefore, the cur-

rent sample comprised 162 people who had a TBI (Nmild = 133,

Nmoderate = 15, Nsevere = 14) and 107 controls (Nhealthy = 60,

Northopaedic = 47). The healthy and orthopaedic controls did not differ

demographically (age: t(105) = −.488, p = .626; education:

t(103) = .432, p = .667; proportion of males and females: X2

(1) = 3.324, p = .068) or in terms of reaction times (compatible reac-

tion time: t(101) = −.107, p = .915; incompatible reaction time:

t(101) = −.526, p = .600) or fixel findings (see Supplementary figures);

thus, all analyses were completed using a combined control group

(Mathias, Dennington, Bowden, & Bigler, 2013; Wallace et al., 2019).

The moderate and severe TBI groups were additionally combined for

the subgroup analyses because they were too small to examine sepa-

rately (Nmoderate–severe = 29).

2.2 | Procedure

The original study was approved by the Human Research Ethics Com-

mittees at the Royal Adelaide Hospital and the University of Adelaide.

All participants provided written informed consent. Hospital records

were used to identify potential participants for the TBI and orthopaedic

control groups, who were sent a letter from the Royal Adelaide Hospi-

tal providing information about the study and inviting them to partici-

pate. Recipients were given an opt-out procedure if they did not want

to be contacted by the researchers regarding the study. Healthy con-

trols consisted of friends or family of the TBI group, and visitors to the

Royal Adelaide Hospital who responded to flyers promoting the study.

All participants were initially screened by phone for study eligibility.

Eligible participants subsequently completed an interview (which

collected demographic and medical information), self-report question-

naires (not examined here), and 2–3 hr of cognitive testing in a single

session with a researcher at the University (selected data only exam-

ined here). All participants additionally underwent MRI with HARDI in

a separate session within a few days of the cognitive assessment,

which occurred after an average of around 7 months after the injury

(TBI = 209 days, SD = 91.5; orthopaedic controls = 218 days,

SD = 41.8). Participants were paid an honorarium of $40 to assist with

expenses incurred when travelling for the MRI. All data were collected

solely for research purposes and could not be used for litigation.

2.2.1 | Image acquisition

Participants underwent MRI using a 3T Siemens scanner (TimTrio,

Erlangen, Germany). Importantly, all scans were performed at the

same site on the same machine, therefore alleviating the inconsis-

tencies and artefacts that can arise from the use of multiple scanners

(e.g., Fortin et al., 2017). An optimised diffusion sequence (Jones,

Horsfield, & Simmons, 1999) was used to acquire diffusion data for

each participant. The following parameters were used: 64 diffusion-

weighted images (b = 3,000 s/mm2) and one nondiffusion-weighted

image; 60 axial slices; FOV = 25 × 25 cm2; TR/TE = 9,400/116 ms;

slice thickness = 2.5 mm; acquisition matrix = 100 × 100; isotropic

image resolution = 2.5 mm. The total acquisition time for diffusion

imaging was 10:41 min. A field map was acquired (TE1/TE2

4.76/7.22 ms) that assists the correction for susceptibility distortions

in diffusion data.

2.2.2 | Fixel-based analysis

The diffusion images underwent preprocessing, including corrections

for head motion, eddy-current distortions, susceptibility distortions

and intensity inhomogeneities using the FMRIB Diffusion Toolbox

(FMRIB, Oxford, UK) (Andersson & Sotiropoulos, 2016; Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012). Global intensity

normalisation was performed across participants, using the median

WM b = 0 intensity using tools implemented in MRtrix3 (www.mrtrix.

org; Tournier, Calamante, & Connelly, 2012; Tournier et al., 2019).

Next, a group response function was calculated from all participants'

fibre response functions, which reflect the signal that would be

expected from a voxel containing a single, typical fibre bundle

(Tournier, Calamante, Gadian, & Connelly, 2004). Individual fibre

response functions were estimated using the convenient and reliable

“tournier” algorithm in MRtrix3 (mrtrix.org), and these were subse-

quently averaged to result in a group response function. Diffusion-

weighted images underwent upsampling by a factor of 2, to improve

image resolution. Constrained spherical deconvolution, a technique

that uses the response function to estimate the distribution of fibre

orientations contained within each voxel (Tournier et al., 2004;

Tournier et al., 2007), was used to estimate the FODs (Tournier

et al., 2004).

A subset of 40 participants (NTBI = 20,Nhealthy = 10,Northopaedic = 10)

were used to generate a study-specific FOD template using both

linear and nonlinear registration of FOD images (Raffelt et al., 2011).

FOD images from all participants were then nonlinearly registered to

this template, and MRtrix3 was used to calculate three fixel metrics:

FD, FC, and FDC (Raffelt et al., 2017).

2.2.3 | Processing speed

Processing speed, which is frequently impaired following a TBI

(e.g., Cristofori & Levin, 2015; Rabinowitz & Levin, 2014), was

assessed using four-choice compatible and incompatible visual reac-

tion time tasks (Mathias, Beall, & Bigler, 2004; Mathias, Bigler, et al.,

2004). These tasks formed part of a larger battery of cognitive and

self-report measures that were administered to all participants. Four

white rectangles were presented on a computer screen, two either

side of a central fixation point. When one of the rectangles turned red
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(stimulus), participants were required to press a button as quickly and

accurately as possible (response). For the four-choice compatible reac-

tion time task, participants were required to press a button using the

hand on the same side as the stimulus (e.g., right side stimulus, right

hand response), with either their index (inner rectangle) or middle

(outer rectangle) finger. The incompatible task required participants to

press a button using the hand on the opposite side of the stimulus

(e.g., right side stimulus, left hand response), and thus required inter-

hemispheric processing. Participants completed 60 trials to control for

anticipatory responses and attentional lapses, with median reaction

times calculated (Mathias, Beall, & Bigler, 2004; Mathias, Bigler, et al.,

2004; Wallace et al., 2019).

2.3 | Statistical analysis

IBM SPSS Statistics version 21.0 (IBM Corp., 2012) was used to compare

the TBI and control groups in terms of their mean age and education

(t tests), and the proportion of males and females (chi-square test), and

to determine whether reaction times were slower following a TBI (all TBI

vs. controls). Additionally, Welch's F tests (Welch, 1951) and Games–

Howell post hoc comparisons (Toothaker, 1993) were used to examine

whether reaction times differed depending on the presence and severity

of injury (mild TBI, moderate–severe TBI, controls). Standardised mean

differences (Hedges' g) were calculated to assess the extent of the group

differences, with g = −0.2, −0.5, and −0.8 corresponding to small,

medium, and large effects, respectively (Cohen, 1992).

MRtrix3 was used for all fixel-based statistical analyses. A WM

analysis mask was generated, with a threshold of 0.33 applied to the

average FOD amplitude. Connectivity-based fixel enhancement—which

identifies fixels that are connected and likely to share anatomy and

pathology, using probabilistic tractography—was used to correct for

multiple comparisons, with 5,000 permutations (Raffelt et al., 2015).

FD, FC, and FDC values from each WM fixel in the TBI and control

groups were compared (Raffelt et al., 2017), and any fixels that showed

group differences in terms of the specific measure (FD, FC, FDC) were

colour coded by the corresponding t-statistic (thresholded at p < .05).

WM integrity is often reduced in older people, and males and females

show some differences in WM micro-structure (Kanaan et al., 2012;

Sullivan & Pfefferbaum, 2006), both of which can affect FBAs. Thus,

age and sex were controlled for in these analyses. Time post-injury was

also considered as a covariate, given that there was a wide range in the

intervals between injury and MRI, and that the progression of WM

changes can be affected by time. However, it was found that time

post-injury was not associated with fixel findings; as such, it was not

controlled for in subsequent analyses. FC and FDC were additionally

corrected for brain volume, which is also known to affect these two

measures (see Raffelt et al., 2017). Three group comparisons were per-

formed in order to examine whether FD, FC, and FDC differed

depending on injury severity: TBI group (all) versus controls, mild TBI

versus controls, and moderate–severe TBI versus controls. The associa-

tion between reaction time and fixel findings (FD, FC, FDC) in the TBI

group (all TBI, mild TBI, moderate–severe TBI) was also investigated.

3 | RESULTS

3.1 | Participants

Table 1 summarises the demographic and injury information for the TBI

(all TBI, mild TBI, moderate–severe TBI) and control groups. Participants

in the TBI (all) and control groups were mostly young to middle-aged

adults who had, on average, completed high school (12 years) and one to

2 years post-secondary training/education. The TBIs and orthopaedic

injuries were sustained, on average, 7 months prior to undergoing brain

imaging. Consistent with the known risk factors for TBI (Chua, Ng,

Yap, & Bok, 2007), there were many more males than females in this

sample (79%); however, this was not the case for controls (56%). Also

consistent with the epidemiology of TBI (Faul & Coronado, 2015), fewer

participants sustained moderate (N = 16) and severe (N = 15) TBIs, thus

the TBI group was divided into mild (N = 134) and moderate–severe

(N = 31) subgroups when examining the impact of injury severity

(see Table 1 for summary subgroup data). GCS scores were not available

for 22 TBI participants (Nmild = 20, Nmoderate-severe = 2). TBIs were largely

the result of motor vehicle accidents, falls, bicycle accidents or assaults.

Most participants were right-handed and had not previously sustained

a TBI, and very few were involved in litigation regarding their injuries

(TBI or orthopaedic).

When the demographic characteristics of the TBI (all TBI) and

control groups were compared, the TBI group was found to be signifi-

cantly older (t(270) = −1.978, p = .049, Hedges' g = .25), had com-

pleted slightly less education (t(263) = 2.489, p = .013, Hedges'

g = .31), and had more males (χ2 (1) = 15.901, p = .000) than the con-

trol group. Not only did the groups differ in terms of age and sex, but

these variables are also known to be associated with differences in

WM structure (Kanaan et al., 2012; Sullivan & Pfefferbaum, 2006);

consequently, they were used as covariates in the statistical analyses.

Although significant, the difference in education was small and there-

fore not entered as a covariate. There was no significant difference

between the two groups in the number of volumes rejected for

motion (t(267) = −.851, p = .396).

3.2 | TBI (all) versus controls: FD, FC, and FDC

The FD, FC, and FDC values for each fixel were compared for the TBI

(all TBI: mild, moderate, and severe; N = 162) and control (N = 107)

groups in order to determine whether TBI affected tissue micro-

structure and macro-structure and, if so, what regions were most

affected. Figure 1 provides eight axial slices overlaid with the fixels that

showed significant group differences in FD (Figure 1a), FC (Figure 1b),

and FDC (Figure 1c), with Figure 2 labelling the brain regions that were

identified by this analysis. The fixels where FD, FC, and FDC were signif-

icantly lower (p < .05) in the TBI group, relative to controls, are colour

coded according to the corresponding t-statistic (blue: t = −5; red: t = 5),

thresholded to display only those fixels that are significant at p < .05.

Age and sex were covariates in all analyses, and brain volume was addi-

tionally included in the FC and FDC analyses.
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As seen in Figure 1a, the TBI group (all TBI) showed significantly

lower FD in the corpus callosum (genu, body) and forceps minor (see

Figure 2 for labelled regions). Unlike FD, there were no significant

group differences in FC (see Figure 1b) or FDC (see Figure 1c). These

findings indicate that, approximately 7 months after sustaining a TBI,

there were changes to WM micro-structure that were not attributable

age or sex. WM macro-structure (cross section) was unaffected.

3.3 | Mild TBI versus controls: FD, FC, and FDC

Next, the FD, FC, and FDC values of the mild TBI and control groups

were compared to determine whether mild injuries caused micro-

structural and/or macro-structural changes that were detectable using

FBA. Supplementary Figure S2 shows eight axial slices overlaid with

the fixels that displayed significant group differences (p < .05) in FD,

FC, and FDC, after correcting for both age and sex (FC and FDC also

corrected for brain volume) (blue: t = −5; red: t = 5), thresholded to

display only those fixels that are significant at p < .05. The mild TBI group

did not have significantly lower FD, FC, or FDC in any of the fixels, when

compared to controls (see Supplementary Figure S2). Therefore, the cur-

rent sample did not show significantly altered WM micro- or macro-

structure approximately 7 months after their mild TBI.

3.4 | Moderate–severe TBI versus controls: FD,
FC, and FDC

Finally, the moderate–severe TBI and control groups were compared,

with Figure 3 showing the brain regions that differed significantly

(thresholded at p < .05) in terms of FD (Figure 3a), FC (Figure 3b), and

FDC (Figure 3c), after correcting for age and sex (all analyses) and

brain volume (FC, FDC analyses). As seen in Figure 3a, FD was signifi-

cantly lower in multiple regions, including: the corpus callosum, cere-

bral peduncle, internal and external capsule, corona radiata, cingulum,

and tapetum (see Figure 2 for labelled regions). Similar WM structures

F IGURE 1 Fixels showing significant differences in the fibre density (FD), fibre-bundle cross section (FC) and FD and bundle cross
section (FDC) of the traumatic brain injury (TBI; all TBI) and control groups, controlling for age and sex (all analyses) and brain volume
(FC and FDC), and colour coded by effect size (t-statistic, thresholded at p < .05): (a) FD, (b) FC, and (c) FDC

F IGURE 2 Labels for the brain regions identified by the fixel-based analyses shown in figures 1, 3, and 4. 1: corticospinal tract, 2: superior
cerebellar peduncle, 3: sagittal stratum, 4: cingulum (hippocampus), 5: uncinate fasciculus, 6: cerebral peduncle, 7: fornix (cres)/stria terminalis, 8:
external capsule, 9: posterior thalamic radiation, 10: anterior limb of internal capsule, 11: posterior limb of internal capsule, 12: retrolenticular part
of internal capsule, 13: genu of corpus callosum, 14: splenium of corpus callosum, 15: tapetum, 16: fornix, 17: anterior corona radiata, 18:
posterior corona radiata, 19: body of corpus callosum, 20: superior longitudinal fasciculus, 21: superior corona radiata, 22: cingulum
(cingulate gyrus)
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also showed lower FC, but the affected regions tended to be smaller

(Figure 3b). Finally, FDC was reduced in a number of regions, including

the corpus callosum, internal and external capsule and cingulum

(Figure 3c). Thus, more serious TBIs resulted in altered micro- and

macro-structure in multiple important WM tracts approximately

7 months after sustaining an injury: changes that could not be attrib-

uted to age, sex or brain volume.

When the un-thresholded effect size maps for both the mild and

moderate–severe groups were compared (see Supplementary figures),

the pattern of injury appeared to be quite consistent, but with consid-

erably larger effects found following more severe injury. This suggests

that similar brain regions are affected by TBIs of all severities.

3.5 | Reaction time

Table 2 displays the reaction times for the TBI (all TBI) and control

groups. The reaction times for the compatible and incompatible tasks

were both significantly slower in the TBI group, with these differences

equating to small effects (g = −.30 and −.33, respectively). Subgroup

analyses (Table 3) revealed that, although the reaction times of the

mild TBI group did not differ from the controls (p > .05, small effects),

the moderate–severe TBI group was significantly slower on the both

the compatible and incompatible tasks (large effects: g = −.82 and

− .72, respectively).

The association between reaction time and fixel findings was also

examined. No statistically significant associations were found,

suggesting that reaction time is not related to fixel findings. Further

analysis showed that age was strongly and significantly related to

both the compatible and incompatible reaction time tasks (r = −.58

and −.57, respectively; see Table 4).

4 | DISCUSSION

This study undertook a FBA of diffusion-weighted data to examine

micro- and macro-structural changes in the WM of adults who had

sustained mild, moderate, and severe TBIs on average 7 months ear-

lier. As a whole, the TBI group (all TBI) showed evidence of altered tis-

sue micro-structure (lower FD) in the corpus callosum (genu, body)

and forceps minor. Subgroup analyses additionally revealed that there

was no evidence of altered WM in the mild TBI group: FD, FC, and

FDC were all unaffected. However, the WM micro- and macro-

structure of the moderate to severe TBI group was altered (lower FD,

F IGURE 3 Fixels showing significant differences in the fibre density (FD), fibre-bundle cross section (FC) and FD and bundle cross
section (FDC) of the moderate–severe TBI and control groups, controlling for age and sex (all analyses) and brain volume (FC and FDC), and
colour coded by effect size (t-statistic, thresholded at p < .05): (a) FD, (b) FC, and (c) FDC

TABLE 2 Reaction time data for the traumatic brain injury and control groups

Cognitive test
TBI Controls

N Mean SD N Mean SD Hedges' g t p

Four-choice compatible RT task 154 464.7 94.3 103 437.20 90.63 −0.30 −2.33 .021

Four-choice incompatible RT task 152 700.4 198.9 103 638.13 173.76 −0.33 −2.58 .010

Abbreviations: N, number of participants; RT, reaction time; SD, standard deviation; t, t test; TBI, traumatic brain injury.
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FC, FDC) in multiple WM tracts, including the corpus callosum, corona

radiata, and internal and external capsule. According to Raffelt et al.

(2017), these changes indicate that there were fewer axons within

these WM tracts and that they occupied a smaller cross-sectional

area. The moderate to severe TBI group also had significantly slower

reaction times than the controls, but the mild group did not. There

was, however, no significant association between reaction times and

fixel findings.

DTI has previously been used to examine WM changes following

TBI and has identified many regions where there appears to be dam-

age (for reviews, see Amyot et al., 2015; Niogi & Mukherjee, 2010;

Shenton et al., 2012; Wallace et al., 2018). However, DTI is limited by

the fact that the measures obtained from it (FA, MD) are averaged

across all of the fibre tracts that are contained within a voxel, making

interpretation problematic when more than one fibre tract is present

(Mori & Tournier, 2014). Although low FA values often occur when

WM is damaged following a TBI, damage to a single fibre tract in a

voxel that contains multiple tracts/populations may result in null find-

ings if the other fibre tracts are undamaged. This, in turn, may be

incorrectly interpreted as indicating a lack of damage because the

information provided by FA is not tract-specific (Mori & Tournier,

2014; Raffelt et al., 2012). FBA provides an alternative method of

analysing diffusion data that is able to overcome this considerable lim-

itation. Specifically, changes can be attributed to individual WM fibre

tracts in voxels that contain more than one tract (Raffelt et al., 2015).

In addition, FBA is able to determine the specific ways in which the

WM has been affected: namely, whether there are fewer axons that

are less densely packed (FD), the tracts have a reduced cross-sectional

area representing morphometric changes (FC), and/or there is a com-

bination of both changes (FDC) (Mito et al., 2018; Raffelt et al., 2017).

FBA may therefore provide more specific anatomical information

than DTI.

The TBI group, as a whole, displayed lower FD in the corpus cal-

losum (genu, body) and forceps minor, indicating that there were

fewer axons contained within these fibre tracts. There were no differ-

ences in WM macro-structure (FC), or in the combined measure of

micro- and macro-structure (FDC). Following mild TBI, there was no

evidence of WM changes. These findings contrast with those of previ-

ous DTI studies, which report that mild TBI is associated with altered

WM in multiple regions, including the corpus callosum, fornix, superior

longitudinal fasciculus, thalamic radiations, external and internal cap-

sule, cingulum, and corona radiata (e.g., Grossman et al., 2012; Messe

et al., 2012; Wallace et al., 2018; Zhu et al., 2014). Although FBA isT
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TABLE 4 Pearson r correlations (p-value) between reaction time
and age

Cognitive tests Age

Four-choice compatible visual RT task −.58 (.000)

Four-choice incompatible visual RT task −.57 (.000)

Note: Four-choice compatible visual RT task (N = 257) and four-choice

incompatible visual RT task (N = 255).

Abbreviation: RT, reaction time.
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designed to be more sensitive to damage to individual WM tracts in

areas where fibres cross (Raffelt et al., 2017), it may still be unable to

detect the subtle damage that can occur following minor injuries.

Alternatively, the mild participants may not have sustained WM dam-

age as a consequence of their injuries, given that most had a GCS of

15 (63%). Indeed, this mild group did not differ significantly from the

controls in terms of FA and MD in the five regions that were exam-

ined in a recent ROI study (genu, body, and splenium of corpus cal-

losum, fornix, superior longitudinal fasciculus) (see Wallace et al.,

2019). There was, however, a weak trend toward lower FA and higher

MD in the mild TBI group, relative to controls (Wallace et al., 2019).

As expected, the largest WM alterations were found in people

who had sustained more serious injuries. Specifically, moderate to

severe TBI led to micro- and macro-structural differences (lower FD,

FC, FDC) in a large number of important WM tracts, including com-

missural fibres that connect equivalent regions in the two hemi-

spheres (e.g., corpus callosum), association fibres that provide within-

hemisphere connections (e.g., superior longitudinal fasciculus) and

projection fibres that connect cortical and subcortical regions

(e.g., internal capsule) (Aralasmak et al., 2006). People with more

severe injuries also had considerably slower reaction times, but reac-

tion times were not associated with fixel findings. It is possible that an

association exists; however, no significant relationship was found

after the fixel data were corrected for age; it is therefore possible that

any effect was confounded by age. Although the physical, psychologi-

cal, behavioural, and cognitive impairments experienced by people

who suffer a TBI (Cristofori & Levin, 2015; Griffen & Hanks, 2014)

may be the result of decreased FD in addition to alterations to the

broader WM structure (i.e., fewer axons contained within WM tracts

that have a reduced cross-sectional area), further research is needed

to determine this.

5 | LIMITATIONS

Although FBA was able detect damage to specific WM tracts in our

TBI sample, group comparisons fail to consider individual differences

in the extent and location of WM changes post-TBI (Hulkower et al.,

2013). Given the heterogeneous nature of TBI damage, injury pro-

gression and recovery (Bigler & Stern, 2015; Hulkower et al., 2013),

the utility of FBA now needs to be investigated with individual partici-

pants. However, a large normative FBA database would be needed in

order to investigate individual differences in WM changes.

The current study examined participants on a single occasion,

which meant that the progression of WM damage was not assessed,

and the range of post-injury intervals was quite large (i.e., interval

between injury and MRI). WM damage may initially manifest as a

reduction in tissue micro-structure (FD), but over time tissue macro-

structure (FC) may be more affected due to WM degeneration and

atrophy (Raffelt et al., 2017). WM degeneration can continue for years

after a TBI (Hill et al., 2016). Therefore FC, which is thought to reflect

accumulated axonal loss (Raffelt et al., 2017), may decrease progres-

sively as this degeneration continues, however FC was not related to

time post-injury in the current study. In addition, thin WM structures

(e.g., fornix, anterior commissure) may not be accurately assessed

using FBA; although micro-structural changes (FD) can be detected in

small structures, FC can be insensitive and any macro-structural

changes may instead present as micro-structural changes (FD) (Raffelt

et al., 2017; Vaughan et al., 2017). This problem may be exacerbated

by the large voxel size used to acquire the images (2.5 mm3), in addi-

tion to partial volume effects, which occur when there are two or

more different types of tissue present within a single voxel (e.g., WM,

grey matter, cerebrospinal fluid) (Raffelt et al., 2017; Vos, Jones,

Viergever, & Leemans, 2011). Image resolution may be improved by

using smaller voxels, enabling thinner WM structures (e.g., fornix) to

be examined more thoroughly (Raffelt et al., 2017), at the cost of

increased scan time and reduced signal-to-noise.

Additionally, there was a group difference in age and sex and,

although these variables were entered as covariates in the fixel ana-

lyses, it is possible that this method may not have entirely accounted

for these differences. Future studies should endeavour to use more

closely matched controls. Finally, the moderate (N = 15) and severe

(n = 14) TBI samples were both small, making it necessary to combine

them for the subgroup analysis. Given that more serious TBIs gener-

ally lead to greater WM damage (e.g., Castano-Leon et al., 2018), it is

likely that the extent and, potentially, location of the changes to the

WM may differ for moderate and severe TBIs. Unfortunately, it was

not possible to examine whether this was the case.

6 | DIRECTIONS FOR FUTURE RESEARCH

The reliability and generalisability of these findings now need to be

evaluated in other TBI samples (e.g., different age groups, different

post-injury periods). Most of the mild TBI group had a GCS of

15 (63%); other groups of mild participants with a wider range of GCS

scores should be examined to determine whether FBA detects

changes following these injuries. Additionally, larger samples of people

with moderate and severe injuries are needed to determine whether

there are differences in the pattern of WM changes following moder-

ate and severe TBI. Furthermore, large-scale, longitudinal FBA studies

are needed to examine the progression of micro- and macro-structural

WM changes following TBI. These studies should assess whether FD,

FC, and FDC are differentially affected at earlier and/or later post-

injury intervals, given that WM degeneration can continue for years

after an injury (Hill et al., 2016). Finally, although the current study

failed to find an association between FBA and reaction times, addi-

tional research is needed to determine whether FBA findings are

related to other cognitive, behavioural, and psychological outcomes.

7 | CONCLUSIONS

This study examined whether micro- and/or macro-structural WM

changes were detected using FBA, 7 months after sustaining a TBI.

Moderate to severe TBI led to WM damage that manifested as a
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reduction in the number of axons, together with broader structural

changes (lower FD, FC, FDC) in multiple brain regions, including the

corpus callosum, corona radiata, cerebral peduncle, and internal and

external capsule. People with moderate to severe TBI also had slower

reaction times; however, no significant associations were found

between reaction time and fixel findings. These findings have shown

that moderate to severe TBI leads to a reduction in the number of

axons within fibre tracts that have a reduced cross-sectional area.

Although these WM changes may limit the ability of axons to relay

information, the impact of these changes needs to be examined further.
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