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Abstract

Social structure is proposed to influence the transmission of both directly and environmentally transmitted infectious
agents. However in natural populations, many other factors also influence transmission, including variation in individual
susceptibility and aspects of the environment that promote or inhibit exposure to infection. We used a population genetic
approach to investigate the effects of social structure, environment, and host traits on the transmission of Escherichia coli
infecting two populations of wild elephants: one in Amboseli National Park and another in Samburu National Reserve,
Kenya. If E. coli transmission is strongly influenced by elephant social structure, E. coli infecting elephants from the same
social group should be genetically more similar than E. coli sampled from members of different social groups. However, we
found no support for this prediction. Instead, E. coli was panmictic across social groups, and transmission patterns were
largely dominated by habitat and host traits. For instance, habitat overlap between elephant social groups predicted E. coli
genetic similarity, but only in the relatively drier habitat of Samburu, and not in Amboseli, where the habitat contains large,
permanent swamps. In terms of host traits, adult males were infected with more diverse haplotypes, and males were slightly
more likely to harbor strains with higher pathogenic potential, as compared to adult females. In addition, elephants from
similar birth cohorts were infected with genetically more similar E. coli than elephants more disparate in age. This age-
structured transmission may be driven by temporal shifts in genetic structure of E. coli in the environment and the effects of
age on bacterial colonization. Together, our results support the idea that, in elephants, social structure often will not exhibit
strong effects on the transmission of generalist, fecal-oral transmitted bacteria. We discuss our results in the context of
social, environmental, and host-related factors that influence transmission patterns.
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Introduction

Social structure is thought to play a profound role in the

transmission of both directly and environmentally transmitted

infectious agents [1,2,3,4]. This is because social structure–

including patterns of affiliation, mating behavior, dispersal, and

territoriality–determines contact and habitat use among members

of a population. There is strong evidence that social structure can

influence the transmission of directly transmitted organisms [5–7],

but social structure can also be important for environmentally

transmitted agents. For instance, for fecal-oral transmitted

organisms, members of the same social unit tend to use the same

foraging areas or water sources; hence, hosts might be most often

exposed to fecal contamination from members of their own social

group [8,9,10,11]. Understanding when and how social structure

influences transmission is important because it has implications for

population management and the evolutionary costs and benefits of

social behavior [3,4,5,12,13].

To date, most support for socially structured transmission of

infectious agents comes from theoretical models [3,12,13,14].

While theory predicts important effects of sociality on transmis-

sion, empirical evidence remains relatively scarce (but see

[9,11,15]). Hence, for most host species and infectious agents, it

is unclear how important social structure is compared to other

factors that also influence transmission patterns. Here we consider

four such factors that may obscure or enhance the signature of

host social structure on transmission [4,16,17]. First, host

specificity and the transmission mode of the infectious agent

should determine how strongly its transmission is influenced by the

social structure of a single host species. Infectious agents that are

specific to a single host species and are transmitted by physical

contact among hosts are more likely to reflect host social structure

than generalist agents transmitted via environments or vectors.

Second, host traits such as age or sex may influence differences in

susceptibility and hence transmission. For instance, immune

responses can change with age; hence, some age classes may

dominate transmission more than others [18,19]. In terms of host

sex, males are less immunocompetent than females in many

vertebrates [20,21,22,23,24], and sex-specific differences in

behavior may also lead to sex-specific patterns of transmission

[21,22,23]. Third, competitive and facilitative ecological interac-
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tions among parasites or infectious agents may influence infection

and the establishment of different parasites within hosts [25,26].

Among humans for example, commensal gut bacteria that

colonize early may establish themselves as the dominant bacterial

community, which may influence the establishment of late

colonizers [25,27]. Fourth, for environmentally transmitted agents,

aspects of the environment may enhance or obscure socially

structured transmission. For instance, habitats that are suitable for

bacterial proliferation (e.g. moist, warm places) may increase the

length of time that bacteria can survive in the environment and

enhance the opportunities for transmission. Hence, socially

structured transmission may be dominated by interactions within

a few suitable transmission hotspots in the habitat [28,29].

In this study, we used population genetic information on

Escherichia coli to test the influence of social structure, environment,

and host traits on patterns of bacterial transmission in wild African

savannah elephants, Loxodonta africana (Blumenbach, 1870). African

elephants live in fission-fusion societies where individuals belong to

predictable social groups, but the strength of associations between

individuals and groups can vary depending on ecological

conditions [30,31]. The basic social unit, called a ‘‘core’’ or

‘‘family’’ group, can include up to fifty adult females and their

immature offspring [31,32,33]. At maturity, males disperse from

their natal family and range widely across the population, never

permanently joining another family group [34,35]. Over the

course of hours, days, or weeks, families may fission into

subgroups, or they might fuse together with members of other

families. Members of the same family typically spend 60% to 90%

of their time together in the same group, while members of

different families typically spend much less time together, ranging

from zero to 40% [30,32]. Elephants are not territorial, but

families occupy predictable home ranges that overlap with a

fraction of the other families in the population [36]. Thus, there

are several behaviorally mediated traits that potentially influence

transmission in this species.

E. coli is an enteric commensal and an occasional pathogen in

many vertebrates. It is transmitted between hosts through both

direct physical contact and the ingestion of fecal-contaminated

food and water [37,38]. E. coli is a common model organism to

study patterns of bacterial transmission in wildlife because it is easy

to sample individual E. coli isolates from fecal samples [10,39,40].

Furthermore, these isolates can be genotyped using multi-locus

markers developed for strain typing and population genetics [41].

In addition, E. coli reproduce clonally, and recombination–i.e., the

exchange of genes or gene segments with other bacteria–is usually

too low to obscure its clonal structure and transmission patterns

[42,43]. With respect elephant management, disease dynamics in

elephants is understudied and understanding the transmission of

commensal E. coli may lend insight into the spread of other, more

harmful fecal-oral transmitted microbes, such as Salmonella sp.

[44,45].

Prior studies have found that host social structure can be

correlated with E. coli transmission patterns [9,10,46,47]. For

instance in giraffe, hosts that were more closely linked in a social

network were more likely to be infected with similar sub-types of E.

coli than more distantly connected hosts [9]. In humans, members

of the same household are more likely to be infected with similar

stains of E. coli than members of different households [47].

Similarly in wild gorillas, members of the same social group harbor

more similar E. coli than members of different groups [10].

However, several variables may obscure the signal of socially

structured transmission [48]. For instance, E. coli infects many

vertebrate species; hence, its population structure may often not be

heavily influenced by the social structure of a single host species

[49,50]. In addition, E. coli can persist for several days to several

years in water, sediment, and soil [51,52], and habitats that are

suitable for bacterial proliferation may increase opportunities for

recombination [53] and transmission. Furthermore, E. coli is a

member of the gut microbiome, and host age and ecological

interactions among bacteria may influence which isolates establish

in a given host [54,55].

Our main objective was to test whether host social structure

plays a detectable role in shaping patterns of E. coli transmission

among wild elephants. We examined the role of social structure in

the context of several other factors that may also influence E. coli

transmission, including aspects of the habitat, host sex, and host

age. We inferred patterns of transmission using the population

genetic structure of E. coli isolated from elephants living in two

populations: the Amboseli ecosystem in southern Kenya, and the

Samburu-Laikipia ecosystem in central northern Kenya. Although

both populations occupy areas with a similar climate, they differ in

that the Amboseli population has a permanent swamp in their core

habitat, while the Samburu population does not. We addressed

two main questions: 1) Do host social structure and patterns of

habitat use predict the population genetic structure of E. coli? And

2) what other aspects of individual hosts or their environments are

important in shaping the population genetic structure of E. coli? If

social structure influences E. coli transmission, we predicted that: a)

E. coli infecting elephants from the same family should be

genetically more similar than E. coli infecting members of different

families, and b) the degree of range overlap would predict the

degree of E. coli genetic similarity between families. In terms of

host traits, we tested whether male elephants, which have larger

ranges than females and possible differences in immune function,

harbored genetically more diverse or potentially more pathogenic

E. coli than female elephants. Finally, we explored age-related

effects on patterns of E. coli infection, and specifically tested the

prediction that elephants more similar in age are infected with

genetically more similar E. coli, compared to elephants more

different in age.

Methods and Materials

Ethics Statement
All protocols were noninvasive and adhered to the guidelines

approved by the Institutional Animal Care & Use Committee

(IACUC) of the University of Notre Dame. In Kenya, permission

to conduct research was granted by the Kenyan government

through research permit number NCST RRI/12/1/MAS/118/4.

Study Area and Host Populations
Study subjects were wild elephants living in the Amboseli

ecosystem (8,000 km2), in southern Kenya, and the Samburu-

Laikipia ecosystem (37,360 km2), which lies about 390 km to the

north of Amboseli, in central northern Kenya. Elephant migration

between these parks is probably currently rare, given the level of

urban development between these locations. Both populations

have been subject of long-term research; elephants in Amboseli

have been monitored continuously for over 40 years, while

elephants in Samburu have been monitored continuously for over

15 years [56,57]. In both populations, individuals can be reliably

identified, and for most animals born since the onset of

monitoring, age is known 62 weeks. For animals older than the

onset of monitoring (wild elephants can live 65 years or more), age

is estimated using well-developed morphological metrics, including

shoulder height, hind footprint lengths and body shape [58,59].

Ages were considered accurate within a few months to a few years,

depending on the age class of the animal [60,61].

Escherichia coli Transmission in Wild Elephants
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There are several environmental similarities between the two

habitats. In both Amboseli and Samburu, the elephants use the

protected areas as core areas while making regular forays outside

these protected areas to forage [62,63,64]. The core range of the

Amboseli elephant population (,1400 elephants) is Amboseli

National Park, which covers 390 km2 between 1u 379–3u139 S and

35u 499–38u 009 E [56]. The core range of the Samburu elephant

population (,900 elephants) is the Samburu and Buffalo Springs

National Reserves, which covers 220 km2 between 00u 309–00u
809 N, and 37u–38uE [65]. Both habitats are classified as semi-arid

savannah with mixed open and bushy grassland and sparse

woodland. Both habitats also contain other species of vertebrate

hosts that are likely to be infected with E. coli and that may

influence transmission patterns. Both habitats have similar

patterns of seasonality and rainfall; rainfall occurs between

November and May, and average annual rainfall is 340 mm in

Amboseli and 360 mm in Samburu [66,67].

While there are several ecological similarities between Amboseli

and Samburu, there is one difference that may have implications

for E. coli transmission: Amboseli has perennial swamps that cover

about 12% of the National Park, whereas the Samburu has a free-

flowing river. The presence of extensive, permanent, water-fed

swamps in Amboseli may provide a conducive environment for the

proliferation and transmission of E.coli [53,68].

Defining Family Groups and Measuring Range Overlap
between Groups in Protected Areas
To understand how social structure influenced the transmission

of E. coli, we measured the genetic structure of E. coli isolates

sampled from elephants living in 10 families in Amboseli and 5

families in Samburu (Table S1). Families were defined as a

collection of adult females and their juvenile offspring that

exhibited consistent associations, coordinated activities, and high

rates of affiliative behaviors exchanged exclusively among family

members [32,33,69]. In Amboseli, the families in our study

contained between 7 and 31 adult females and their juvenile

offspring, with an average size of ,21 individuals. In Samburu,

families ranged in size from 10 to 21 animals, with an average size

of ,14 individuals.

To test whether host occupancy patterns influenced the

transmission of E. coli between family groups, the range (km2) of

each group within the protected areas and the percent of spatial

overlap between ranges in the protected areas were estimated

using GPS locations of sightings of family members collected over

a five-year period prior to E. coli sampling (March 2005 to March

2010 in Amboseli and January 2006 to December 2011 in

Samburu). We chose a five-year span to maximize the number of

sightings for each family (Table S1). Elephant GPS locations were

collected while driving on roads within either Amboseli National

Park or the Samburu and Buffalo Springs National Reserves.

When an elephant group was sighted, we left the road and

approached the group to record a GPS point representing the

group’s location. These range estimates under-represent the total

area used by the elephants because they lack data on the

elephants’ ranges outside the protected areas. However, in both

Amboseli and Samburu, the protected areas contain reliable food

and water and are relatively safe from human threats; hence they

comprise a major proportion of each family’s range, especially in

the dry season [62,63,64]. Moreover, in both populations, the

elephants often follow a diurnal pattern whereby they range within

the park during the day and radiate beyond the park’s borders at

night, with lower range overlap between families outside than

inside the park [62,63,64]. As a result, the elephant ranging

patterns we measured represent the areas of highest elephant

density, greatest spatial overlap between elephant families, and

perhaps the highest potential for bacterial transmission [62,64];

however we cannot exclude the possibility that ranging patterns

outside the protected areas also influenced the transmission

patterns we observed.

From these GPS data, we used a kernel density estimator in

BIOTAS software (Version 2.0a.3.8) to calculate a ‘‘protected area

range’’ for each family from 95% of GPS locations by eliminating

5% of the locations that were spatial outliers (Figure 1). To

minimize the influence of large differences in range size between

families, we calculated percent overlap in protected areas as the

ratio of area shared by two families divided by the geometric mean

of the two ranges. Compared to the arithmetic mean, the

geometric mean minimizes bias in percent overlap caused by

large differences in a pair of ranges [70,71]. In Amboseli, we also

estimated the area (km2) of each family’s range in swamp habitat,

and the percent overlap among pairs of families in swamp habitat

(Samburu lacked swamp habitat).

Escherichia coli Collection, DNA Extraction, and
Genotyping
E. coli was cultured from fecal samples collected from known

elephants during intensive 1-month sampling efforts during July

2010 in Amboseli and June 2011 in Samburu (Table S1). When

members of a study group were located, we approached them in a

vehicle and waited to collect fecal samples. As soon as a sample

was produced by a known individual, we drove close to the

sample, donned sterile gloves, and used sterile tongue depressors to

collect pieces from the outside of the fecal bolus into sterile tubes

(we sampled from the outside of the bolus to maximize the region

in contact with the intestinal wall, where we suspected E. coli might

be most likely to be found). Samples were typically collected within

10 minutes of defecation, and we avoided all sections of the fecal

sample that may have made contact with the ground. Samples

were kept at ambient temperature for 1 to 4 hours until we

cultured and collected individual E. coli isolates from each sample.

Specifically, we lit a candle in the workspace to create an up-draft.

We then lightly touched the surface of the fecal sample with a

flame-sterilized metal loop to collect a small amount of feces (an

amount barely visible to the naked eye), and streaked the loop onto

individual MacConkey agar plates (MacConkey agar is selective

for gram negative bacteria and indicates the presence of lactose

fermentation). Samples were incubated at 37uC for 12–24 h to

allow colonies to grow. We collected one fecal sample per

individual, and for each fecal sample, we used sterile toothpicks to

collect 4 to 10 putative E. coli colonies (i.e. colonies matching the

expected colony phenotype for E. coli on MacConkey agar: round,

uniform, bright pink colonies). After collection, each putative E.

coli colony was transferred to its own tube, containing 95%

ethanol. We refer to these preserved colonies as ‘‘isolates’’. Each

putative E. coli isolate was stored at room temperature for up to

four weeks prior to genetic analysis.

We genotyped each putative E. coli isolate using seven multi-

locus sequence typing (MLST) loci [41] consisting of the following

genes: adk (adenylate kinase), fumC (fumarate hydratase), gyrB

(DNA gyrase) icd (isocitrate dehydrogenase), mdh (malate dehydro-

genase), uidA (beta-glucuronidase) and ClpX (caseinolytic protease

6homolog) [72,73]. The combined length of these sequences was

,3700 base pairs. We choose these genes because they have

sufficient variation for discriminating bacterial isolates and have

been used to track and monitor population genetics and

epidemiology of a number of bacterial pathogens, including

pathogenic E. coli. We extracted DNA from 2 to 4 individual E. coli

isolates per Amboseli elephant and 4 E. coli isolates per Samburu

Escherichia coli Transmission in Wild Elephants
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elephant. DNA was extracted using DNAeasy (Qiagen tissue kit)

following the manufacturer’s instructions. We amplified each

MLST marker using the polymerase chain reaction (PCR)

conditions described in [72,73]. Positive PCR reactions were

sequenced in the reverse and forward directions using Dye

Terminator Cycle Sequencing (Applied Biosystems). Sequences

were inspected and cleaned using Sequencher software (version

4.9). A small fraction of sequences with multiple ambiguous

nucleotides were discarded from further analyses. Clean sequences

were subjected to NCBI BLAST to confirm that the isolates were

E. coli (.95% of isolates were assigned to E. coli; others were

excluded from further analyses).

Population Genetic and Statistical Analyses
We concatenated the sequences from each MLST gene for each

E. coli isolate. An E. coli isolate with a distinct concatenated

sequence is henceforth referred to as a ‘‘haplotype’’. Prior research

has shown that E. coli haplotypes can belong to one of four major

phylogenetic groups, referred to as A, B1, B2, and D [74].

Phylogroups A, B2, and D, are common in humans, while

phylogroup B1 is common in animals and abiotic environments

[43,68,75]. Members of phylogroups B2 and D are most often

commensal, but are more likely to be carriers of extra-intestinal

virulence factors than are phylogroups A or B1 [76,77]. We

assigned our haplotypes to phylogroups by comparing our

haplotypes with an E. coli Reference Collection (ECOR) consisting

of 72 sequences with known phylogroup membership [78]. We did

this by constructing a neighbor-joining tree including our isolates

and the 72 ECOR haplotypes in MEGA software (MEGA5.2.1).

We examined basic patterns of genetic diversity, demographic

history, and recombination rates since these forces might influence

the population structure of E. coli and hence our ability to detect

transmission patterns. We calculated nucleotide diversities and

Tajima’s D in Arlequin (Version 3.5.1.3) [79]. We estimated

mutation rates, recombination rates, and population history using

Bayesian inference implemented in ClonalFrame (Version 1.1)

[80]. We calculated two measures of the recombination rate: r/h,
which measures the relative frequency of occurrence of recombi-

nation and mutation in the population, and R/M, which measures

the relative contribution of recombination and mutation to

nucleotide substitution. Four independent runs of ClonalFrame

were performed each consisting of 400,000 MCMC iterations,

with the first half discarded as burn-in. Convergence and mixing

of the MCMC for each simulation run was found to be satisfactory

after visual inspection and after conducting the Gelman-Rubins

statistics for all model parameters for convergence between any

pair of runs.

To test the influence of host social structure on E. coli population

genetic structure, we used analysis of molecular variance

(AMOVA) in Arlequin to partition genetic variance in E. coli

sampled from adult female and juvenile elephants within and

between host populations, family groups and individual hosts.

Measuring the population genetic structure of bacteria can be

challenging because the clonal structure may vary depending on

the rate of recombination. Hence, we performed AMOVA and

calculated FST using two different measures of genetic distance,

each with their own assumptions. First, to account for evolutionary

distance between haplotypes caused by mutations and recombi-

nation events, we calculated genetic distance based on the

ClonalFrame analysis. Specifically, we measured ‘‘patristic dis-

tance’’ or the total branch lengths between each pair of isolates

calculated from a 50% consensus evolutionary tree, assuming

uniform nucleotide substitution and recombination using a

Bayesian analysis in ClonalFrame. This approach to inferring

transmission assumes that genetically more similar haplotypes

share more recent common ancestors and more recent transmis-

sion events. Second, we measured ‘‘haplotype distance’’ by

performing AMOVA using classic haplotype frequency-based

measures of genetic variance, which ignore phylogenetic distance

between haplotypes. This measure of genetic distance, which is

based on the proportion of shared haplotypes, may be better at

capturing patterns of transmission when evolutionary rates are

high.

We next tested whether range overlap in protected areas

influenced E. coli genetic similarity between family groups. As in

the AMOVA’s above, E. coli isolates sampled from adult males

were excluded from these analyses. Mantel tests were used to assess

the correlation between matrices of the percent of range overlap

and matrices of genetic differentiation (FST) based on patristic

distance and haplotype distance between E. coli sampled from

different family groups. In Amboseli we also conducted a second

analysis using percent range overlap in swamps alone.

We next performed three analyses to understand the associa-

tions between host traits (sex and age) and E. coli genetic and

phylogroup structure. First, using samples from Samburu only, we

tested whether independent adult males (N= 7; males who were

Figure 1. Ranges of elephant families within (A) Amboseli NP and (B) Samburu NR. The outline of each protected area is depicted by a
thick black line, and the protected area is shaded in light grey. The ranging patterns for each family are shown by different colors, and areas of
overlap are shown as a blend of colors of the different overlapping family groups. Swamps in Amboseli are represented by a black striped pattern.
doi:10.1371/journal.pone.0093408.g001
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no longer regularly associated with a single family) were infected

with more diverse E. coli than adult females. Specifically, we

performed a regression analysis with host sex and age as predictor

variables and average nucleotide diversity among E. coli isolates

from within a host as the dependent variable. When a covariance

analysis showed that age was not an important predictor of E. coli

nucleotide diversity within individuals, but sex was, we carried out

an independent sample t-test between genetic distances of E. coli

isolates from adult male and adult female hosts.

Second, we used generalized linear mixed modeling (GLMM) to

test whether host age or sex influenced the tendency for individuals

to be infected with each phylogroup. We expected males to be

more often infected with phylogroups associated with greater

pathogenic potential (phylogroups B2 and D). We constructed a

Poisson GLMM for each E. coli phylogroup. To test whether the

proportion of isolates belonging to a given phylogroup changed as

a function of host age and sex, we used the number of E. coli

isolates belonging to a phylogroup from each individual elephant

as the response variable and the total number of E. coli isolates

obtained from that individual host as an offset variable. The use of

the offset variable allowed us to model counts of each phylogroup

as proportions. We used host sex and age as fixed factors, and host

population as a random factor. The effect of age and sex on the

proportion of isolates for some phylogroups did not vary by host

population (e.g. A and B1). For these phylogroups, we instead ran

a generalized linear model (GLM) that retained all the fixed factors

but without including population as a random factor.

Third, we tested the prediction that same-aged elephants are

infected with genetically more similar strains of E. coli, as

compared to animals more disparate in age. Specifically, we used

Mantel tests to correlate pairwise matrices of difference in age with

matrices of genetic distance between E. coli isolates sampled from

that pair of elephants.

Results

Basic Patterns of Genetic Diversity, Phylogroup
Membership, and Sequence Evolution
We assessed the population genetic structure of E. coli using 210

E. coli isolates from 85 adult female and juvenile Amboseli

elephants, and 143 E. coli isolates from 36 Samburu elephants (7

males and 29 adult females and juveniles; Table S1; NCBI

GenBank Accession numbers KJ078651- KJ081101). We observed

140 total haplotypes; 41 of these haplotypes (29%) occurred in

multiple hosts. In Amboseli, we found 93 distinct haplotypes in 85

elephants; in Samburu we found 60 haplotypes in 36 elephants.

Two-thirds of E. coli isolates were assigned to phylogroup B1, while

the remaining third was divided among phylogroups A, B2, D, and

a small unassigned class (Table S2). Nucleotide diversities were

similar in Amboseli and Samburu, with an average percent of

nucleotide differentiation around 1.2% (Table 1). ClonalFrame

analyses indicated that recombination was the dominant evolu-

tionary force in E. coli, and the relative contribution of

recombination was about 3 times the contribution of mutation

(Table S3). In support for the idea that aquatic environments

promote recombination, the relative contribution of recombina-

tion versus mutation was about 1.5 times higher in Amboseli as

compared to Samburu (Table S3).

Neither Host Population nor Social Group were
Significant Barriers to E. coli Transmission
Before exploring the effects of elephant social structure on E. coli

genetic structure, we first investigated how genetic variation in E.

coli was partitioned within and between host populations and

individual hosts (Table 2). We performed AMOVA on two

measures of genetic distance: ‘‘patristic distance’’ from Clonal-

Frame, which estimates phylogenetic distance between haplotypes

controlling for recombination, and ‘‘haplotype distance’’, which

ignores phylogenetic distances between haplotypes (see methods).

As expected for E. coli [49,50], we found little genetic differen-

tiation in E. coli sampled from these two populations, despite being

separated by nearly 400 km (Table 2). For haplotype distance,

around 1% of genetic variance was explained by host population,

indicating that there are small but significant differences in the

frequencies of some E. coli haplotypes in Amboseli versus Samburu

(Table 2). For instance, families of elephants from the same

population (i.e. either Amboseli or Samburu) tended to share a

greater proportion of haplotypes compared to families from

different populations (average proportion of haplotypes shared

between families in the same population 6 SE=7.6% 60.6%;

average proportion of haplotypes shared between families in

different populations 6 SE=3.8% 60.6%). However, the great

majority of genetic variance in E. coli (99%) was found within and

between individual elephants living in the same population.

Indeed, individual hosts tended to contain diverse haplotypes; for

instance, within-host nucleotide diversities were around 1%, and

the average number of pairwise nucleotide differences between

isolates sampled from the same host was 30.8625.1 in Amboseli

and 24.4618.8 in Samburu (Table 1).

We next tested whether families represented significant barriers

to E. coli gene flow. If elephants are more likely to be infected with

E. coli from members of their own family, as compared to members

of other families, then E. coli sampled from members of the same

family should be genetically more similar than E. coli sampled from

members of different families. However, we found no support for

this prediction. Instead, family groups did not explain a significant

fraction of the genetic variance in E. coli in either Amboseli or

Samburu, regardless of the measure of genetic distance (Tables 3

and 4; P= 0.688 in Amboseli; P = 0.142 in Samburu). In support,

individuals were just as likely to share haplotypes with members of

different families as they were with members of their own family

(average proportion of haplotypes shared between members of the

same family 6 SE=8.3% 61.4%; average proportion of

haplotypes shared between members of different families, but

from the same population 6 SE=7.6% 60.7%).

Range Overlap between Family Groups in Protected
Areas is a Mixed Predictor of E. coli Gene Flow
To test whether range overlap in protected areas was correlated

with E. coli genetic similarity, we first examined the degree of range

overlap between elephant families within the two reserves. Within

protected areas, family ranges were larger and had higher percent

overlap with each other in Samburu compared to Amboseli

(Figure 1; Samburu: average 6 SD size = 53.1616.3 km2; average

percent6 SD overlap = 50.2%610.1%; Amboseli: average6 SD

size = 20.767.0 km2; average percent 6 SD overlap = 22.6%

618.7%). In Amboseli, elephant families had considerable overlap

with swamp, which constituted, on average 70% of a family’s

range within this protected area (Figure 1; Average area in swamp

6 SD=2.42562.253 km2; range= 0.051 to 8.240 km2). In terms

of range overlap between families, the mean6 SD percent overlap

in swamp was 27.86% 622.87% (range: 0.95% to 80.84%).

We expected that higher range overlap in protected areas would

be associated with greater E. coli genetic similarity between

families. We found mixed support for this prediction. In Amboseli,

the percent of range overlap was not correlated with E. coli genetic

similarity, whether we tested this relationship for complete ranges

(Figure 2a; patristic FST: rs = 0.085, P= 0.612; haplotype FST:
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rs =20.148, P= 0.387), or only for range overlap in swamp

(patristic FST: rs =20.048, P= 0.777; haplotype FST, rs =20.264,

P = 0.116). However, we did observe a significant relationship

between range overlap between families and genetic similarity of

E. coli in Samburu (Figure 2b; patristic FST: rs =20.770,

P = 0.013; and haplotype FST: rs =20.697, P= 0.031).

Adult Male Elephants are Infected with Genetically More
Diverse and Potentially More Pathogenic E. coli than
Adult Females
We predicted that adult male elephants might harbor greater

genetic diversity of E. coli than adult females. In support, we found

that adult males were infected with genetically more diverse strains

than females as measured by nucleotide diversity (mean nucleotide

diversity for females = 0.00660.005, for males = 0.01160.005;

t =22.743, df = 25 P=0.011, Figure S1). We also predicted that

males might be more likely to be infected with phylogroups B2 and

D, which are more likely to carry virulence factors than other

phylogroups. In support, we found that adult males harbored a

significantly higher proportion of phylogroup D than adult females

(Table 5). We also observed a non-significant trend for males to be

infected with a higher proportion of phylogroup B2 (Table 5).

Elephants from Similar Age Cohorts were Infected with
Genetically More Similar E. coli
For many pathogens, host age plays an important role in

transmission, and there is some evidence that age can influence

patterns of E. coli infection in humans [55,81,82,83]. We tested for

age effects on patterns of E. coli infection by correlating a matrix of

pairwise difference in age between pairs of elephants with a matrix

of pairwise genetic distance between E. coli isolates infecting those

elephants. We found some support for genetic structuring in E. coli

populations based on host age. In both Amboseli and Samburu,

difference in age explained a small but significant fraction of the

genetic variance in E. coli (Figure 3; patristic distance in Amboseli:

r = 0.062, P= 0.0003; patristic distance in Samburu: r = 0.170, P,

0.0001; haplotype distance in Amboseli: r = 0.040, P = 0.019;

haplotype distance in Samburu: r = 0.186, P,0.0001). Specifical-

ly, elephants closer in age were more likely to be infected with

genetically more similar E. coli than elephants more different in age

(Figure 3).

We also examined the correlation between E. coli genetic

distance and host age for E. coli isolated from pairs of elephants

from the two different populations. Interestingly, the effect of age

similarity cut across elephant populations (Figure 3c). Specifically,

using only pairs of elephants from the two different populations,

age similarity still predicted genetic similarity of E. coli (patristic

distance: r = 0.160, P,0.0001; haplotype distance: r = 0.124, P,

0.0001). One explanation for these results is that age might predict

a host’s probability of infection with a given phlyogroup, perhaps

through age-specific patterns of susceptibility [55,81,82,83].

However, we found only limited support for this idea; age did

not predicted the probability that elephants were infected with a

given phylogroup, and phylogroups were evenly distributed across

hosts of different ages, but we observed that the proportion of

strains that did not cluster with a specific phylogroup increased

with age across both elephant populations (Table 5; Figure S2).

Discussion

Social organization and behavior can influence the transmission

of both directly [5–7] and environmentally transmitted infectious

agents [1,2,4,8,9,10,11,84]. However in natural populations,

Table 1. Basic genetic diversity statistics for E. coli sampled from elephants in Amboseli and Samburu.

Parameters Amboseli Samburu Combined

Number of isolates 210 143 353

Number of segregating sites 277 330 388

Number of haplotypes 93 60 140

Mean population Nucleotide diversity 6 SD 0.01260.006 0.01360.006 0.01260.006

Mean Nucleotide diversity within individuals 6 SD 0.00960.007 0.00760.005 0.00860.007

Tajima’s D (p-value) 20.574 (0.331) 20.686 (0.287) 20.795 (0.228)

doi:10.1371/journal.pone.0093408.t001

Table 2. Results of an AMOVA depicting the contribution of host populations and host individuals to the partitioning of genetic
variation in E. coli isolates.

Source of variation d.f. Sum of squares Variance components Percentage variation FST P

Patristic distance

Among host populations 1 0.753 0.002 0.68 0.007 0.094

Among individual hosts within host populations 119 49.492 0.095 40.46 0.407 0.000

Within individual hosts 232 32.181 0.139 58.86 0.411 0.000

Haplotype distance

Among host populations 1 1.608 0.004 0.89 0.009 0.000

Among individual hosts within host populations 119 90.265 0.138 27.57 0.278 0.000

Within individual hosts 232 82.983 0.358 71.54 0.285 0.000

doi:10.1371/journal.pone.0093408.t002
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several other factors may also influence transmission, including

aspects of the abiotic environment that promote or impede

transmission, and host traits such as sex or age that influence

individual exposure and the probability of infection [19,22]. In this

study, we used population genetic tools to explore the effects of

social structure, environment, and host traits on the transmission

of E. coli infecting wild elephants. We found little evidence for

socially structured transmission; instead, the population genetic

structure of E. coli was heavily influenced by processes occurring in

the environment and at the level of individual hosts. Below we

discuss our results, starting with the effects of habitat on patterns of

E. coli transmission.

The Influence of Social-structure and Habitat on
Transmission
Many researchers have hypothesized that exposure to infectious

disease is an important evolutionary cost of group living [1,85,86].

This hypothesis assumes that directly and environmentally

transmitted agents are more likely to spread among members of

the same social group than between members of different groups.

While there is considerable evidence for this assumption, even for

environmentally transmitted infectious agents [8,9,10,11,84], in

our study we found no evidence that elephants were more likely to

be infected with E. coli from members of their own family group

than members of other families. Instead, E. coli isolates sampled

from members of the same family were not genetically more

similar compared to E. coli from different families, and families did

not represent major barriers to E. coli gene flow.

These results differ somewhat from prior studies on other social

species, including giraffes, baboons, gorillas, and humans, which

found that individuals with more frequent social contact were

more likely to be infected with more similar strains of E. coli

[9,10,46,47,87,88,89]. At least four factors may explain why our

results differ from some prior studies. First, variation in social

organization and behavior may explain why socially structured

patterns of E. coli transmission are more common in some species

than others. During rainy periods, elephants aggregate in large

groups and have physical contact between members of different

families, especially during play or mating, which may promote

between-group transmission. In addition, elephants have high

range overlap around water sources, which may serve as

environmental reservoirs for E. coli and promote between-group

transmission. By contrast, aspects of human behavior may make E.

coli transmission within households much more common than

between households, such as high rates of physical contact

between family members, hand washing, cooking and eating at

home, and the use of toilets and latrines.

Second, differences in study design may have led to higher rates

of within- versus between-group contact rates in prior studies

compared to our study. For instance, in the studies on baboons

and gorillas, researchers chose social groups with non-overlapping

home ranges, which should reduce the probability that individuals

Table 3. Results of an AMOVA depicting the contribution of elephant social groups (adult females and juveniles only) to the
partitioning of genetic variation of the E. coli isolates from Amboseli elephants.

Source of variation d.f. Sum of squares Variance components
Percentage of
variation FST P

Patristic distance

Among family groups 9 4.374 20.001 20.40 20.004 0.688

Among individual hosts within family
groups

75 35.457 0.111 35.51 0.354 ,0.001

Within individual hosts 125 25.383 0.203 64.89 0.351 ,0.001

Haplotype distance

Among family groups 9 5.975 0.000 20.09 20.001 0.605

Among individual hosts within family
groups

75 47.844 0.099 19.99 0.200 ,0.001

Within individual hosts 125 49.667 0.397 80.1 0.199 ,0.001

doi:10.1371/journal.pone.0093408.t003

Table 4. Results of an AMOVA depicting the contribution of elephant social groups (adult females and juveniles only) to the
partitioning of genetic variation of E. coli isolates from Samburu elephants.

Source of variation d.f. Sum of squares Variance components Percentage of variation FST P

Patristic distance

Among family groups 4 4.251 0.009 2.57 0.026 0.142

Among individual hosts within family groups 24 20.565 0.175 51.11 0.525 0.000

Within individual hosts 87 13.781 0.158 46.33 0.537 0.000

Haplotype distance

Among family groups 4 4.782 0.006 1.12 0.011 0.116

Among individual hosts within family groups 24 25.539 0.192 38.84 0.393 0.000

Within individual hosts 87 25.817 0.297 60.04 0.400 0.000

doi:10.1371/journal.pone.0093408.t004
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would encounter fecal contamination from non-group members

[10,89]. Third, different E. coli phylogroups vary in their

prevalence across host species and abiotic environments, and the

likelihood of socially structured transmission may depend on

phylogroup identity. For instance, nearly 70% of isolates from the

elephants in our study were attributed to phylogroup B1, a

commensal form that is known to be environmentally ubiquitous,

to infect a wide variety of animals, and to have high turnover

within hosts [75,90,91]. These traits may make it less likely to

detect the effects of host social structure on transmission. In

contrast, most human studies focus on pathogenic or virulent

strains. Such strains are more likely to be epidemic and clonal in

nature [92,93,94], making it easier to detect patterns of socially

structured transmission.

Fourth, differences in genotyping methods may also explain

why our results differed from some prior studies. In particular, two

prior studies that found effects of social structure on E. coli

transmission used the BOX-PCR method of Cesaris et al. [95] to

define genetically similar isolates of E. coli in giraffes. Studies on E.

coli infecting gorillas and humans used a similar approach called

repetitive-element PCR [10,96]. These approaches rely on gel- or

capillary-based banding patterns, and there are fewer statistical

tools to analyze such data, compared to DNA sequences of MLST

markers. However, BOX-PCR and repetitive-element PCR may

Figure 2. E. coli genetic distance as a function of range overlap between elephant families. (A) Depicts data from Amboseli and (B) depicts
data from Samburu. The relationship between percent overlap and FST was statistically significant in Samburu, but not Amboseli. Plots are for
visualization purposes only; statistical analyses were performed using Mantel tests (see text for details). Analyses include data from adult female and
juvenile elephants only.
doi:10.1371/journal.pone.0093408.g002

Table 5. Results of generalized linear models (model 1 & 2) and generalized linear mixed effects models (models 3, 4 & 5) showing
the influence of host age and sex on the proportion of each phylogenetic group of E. coli in elephants.

Model Phylogroup Covariate Estimate Standard error z value P

Model 1 A

Age 20.025 0.016 21.530 0.126

Sex 20.005 0.405 20.012 0.990

Model 2 B1

Age 20.003 0.005 20.607 0.544

Sex 20.225 0.164 21.374 0.169

Model 3 B2

Age 0.027 0.019 1.428 0.153

Sex 0.926 0.554 1.671 0.095

Model 4 D

Age 20.036 0.023 21.598 0.110

Sex 1.069 0.451 2.368 0.018

Model 5 unclassified

Age 0.035 0.012 2.813 0.005

Sex 20.251 0.514 20.487 0.626

doi:10.1371/journal.pone.0093408.t005
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provide genetic information across a greater proportion of the E.

coli genome, which may lend more power to distinguish

relationships among strains. Future studies may find it valuable

to compare results from these two methods of E. coli genotyping.

While our results indicate that elephants were not more likely to

be infected by E. coli from members of their own family than from

members of other families, we observed some support for socially

structured transmission via habitat overlap [10,40,97]. However,

this evidence was equivocal because we only observed significant

patterns in one of our study populations (i.e. Samburu). One

possible explanation for this mixed result is that elephant families

may have substantially different patterns of habitat overlap inside

versus outside protected areas; hence our measure of habitat

overlap may not have accurately captured patterns of environ-

mental exposure. However, at the population level elephant

families exhibit the highest level of habitat overlap within

protected areas, so we think this explanation is unlikely [63].

Another possible explanation for these mixed results is that

differences in habitat moisture and the degree of habitat overlap

between elephant family groups favored socially structured

transmission via range overlap in Samburu, but not in Amboseli.

Specifically, in Samburu, the habitat was drier, and the elephant

groups exhibited a greater degree of range overlap than in

Amboseli. These two forces may act in concert to increase the

strength of socially structured transmission; harsh habitat may

reduce E. coli persistence times [52,98], while higher range overlap

will increase contact between groups, ultimately leading to

relatively high rates of E. coli transmission between elephant

groups.

One final observation on socially structured transmission via

range overlap: while we observed support for this hypothesis in

Samburu, it is as yet unclear whether the patterns of transmission

we observed between elephant groups were driven by socially

mediated factors (i.e., contact with fecal material from members of

different elephant families) or were instead driven by the fact that

these elephant groups used the same areas and so were exposed to

the same environmental sources of E. coli (i.e., shared habitat with

alternative host species that also transmit E. coli). Hence, despite

possible support for socially structured transmission, these results

are far from conclusive about the role of social behavior in the

transmission of E. coli between elephant groups.

The Influence of Host Sex and Age on the Structure of E.
coli Populations within Hosts
Most of the genetic variation in E. coli populations was

structured within and between individual hosts, not family groups

or host populations. This population structure–i.e., high gene flow

between geographically distinct populations, but strong genetic

differentiation between hosts–is typical of E. coli. For instance,

researchers often find high levels of E. coli gene flow between host

populations separated by large geographic distances [50]. More-

over, many studies have found that the majority of genetic

variation in E. coli is structured within and between individual

hosts [40,89,99].

For the elephants in Amboseli and Samburu, most individuals

were infected with multiple, genetically diverse haplotypes, which

often differed in identity and frequency from the haplotypes found

infecting other members of their family or population. These

patterns suggest that processes occurring at the level of individual

hosts, as opposed to families or host populations, are most

important in influencing the structure of E. coli populations. In

particular, E. coli is a normal member of the gut microbiome, and

the process of microbiome assembly–including bacterial coloniza-

tion, interactions among bacterial species, and interactions with

the host’s genome and immune system–may influence which E. coli

haplotypes occur in a given host [25,27,100]. We identified two

specific host traits that were associated with the structure of E. coli

populations in individual hosts: host sex and age. With respect to

sex, we found that adult males were infected with more genetically

diverse E. coli and were more likely to be infected with strains from

phylogroup D than were adult females. This result is based on a

relatively small sample size, and it should be interpreted with

caution. Moreover, phylogroup proportions are not independent

of each other; however, we observed no other significant

relationships between sex and phylogroup proportions, suggesting

that sex is the primary predictor of phylogroup D. If true, one

explanation for this result is that adult male elephants range more

widely than adult females, which may expose males to more

diverse E. coli strains. Indeed, similar effects have been described

Figure 3. E. coli genetic distance as a function of age-difference among hosts. (A) Depicts the relationship between age similarity and E. coli
genetic similarity as measured by patristic distance for pairs of elephants from Amboseli; (B) depicts these relationships for pairs of elephants from
Samburu; (C) depicts these relationships for pairs of elephants where one member was drawn from each population. Plots are for visualization
purposes only; statistical analyses were performed using Mantel tests (see text for details).
doi:10.1371/journal.pone.0093408.g003

Escherichia coli Transmission in Wild Elephants

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e93408



for other infectious agents [23]. In addition, differences in immune

responses between males and females due to the hormonal

challenges of male reproductive states may also underlie sex

differences in E. coli infection [20,21,22]. That said, two prior

studies of marsupials found no sex differences in E. coli infection

patterns [55,101] and it remains to be seen whether sex differences

in E. coli infection are common across vertebrate species.

We also found effects of host age on E. coli populations.

Specifically, elephants born around the same time were infected

with genetically more similar E. coli than pairs of elephants further

apart in age. This pattern occurred for pairs of elephants drawn

from the same host population, as well as for pairs drawn from the

two different populations (i.e., Amboseli and Samburu). One

explanation for these effects is that they are caused by age-related

changes in gut morphology or immune function leading to

differences in the composition of phylogroups in younger versus

older elephants. While this explanation is possible, it is not well

supported by our data, as we found few changes in phylogroup

composition as a function of age.

Instead, we think our results are more consistent with the idea

that age-related patterns of E. coli infection reflect temporal

structure in environmental E. coli. Specifically, individual hosts

may be infected with E. coli when in the first few months of life,

and while individuals are continually exposed to E. coli throughout

life, most of these later strains may fail to establish [50]. In support,

several studies have shown that temporal effects on genetic

variation appear to be a dominant force in the population

structure of E. coli within hosts and in the environment

[55,99,102,103]. For instance, when E. coli was sampled from

several locations in a lake repeatedly for several days or years,

there was strong genetic similarity among isolates collected on the

same day or the same year across different locations separated by

distances of 50 kilometers, as compared to E. coli collected on

different days or years in the same location [102,104]. Similar

effects have been observed in E. coli populations infecting animal

hosts [99,101,102,103]. Our results appear to be novel with

respect to the time scale as temporal effects on E. coli population

structure have typically been explored over the scale of weeks or

months, not decades. Given that elephant births are often

seasonally clustered, and habitat and rainfall conditions can vary

markedly between birth cohorts over their first years of life, these

variations may affect transmission during the early acquisition of

E. coli. That said, the time scale over which we observed temporal

patterns on E. coli communities is surprising, given that B1 strains,

which were the most common in our study, are among the most

transient members of the gut. It is possible that B1 phylogroups

behave differently in elephants as compared to other hosts.

However, our results require further confirmation to see if they

will be upheld. We encourage future researchers to test for similar

temporal patterns within host populations.

Conclusions
Social structure is often proposed to be an important conduit for

the transmission of directly and environmentally transmitted

infectious agents. However, our results indicate that social

structure plays, at most, a weak role in E. coli transmission in

wild elephants. Instead, transmission patterns were dominated by

host habitat and aspects of individual hosts, such as individual sex

and age. Strong patterns of socially mediated transmission may be

limited to infectious agents with high host specificity, transmitted

only via physical contact between hosts, and to hosts with social

structures that minimize habitat overlap and contact between

different group members. Generalist infectious agents that can be

transmitted through the environment, such as E. coli, are common

in wildlife, and they may be some of the most important from an

evolutionary and a management perspective. In the future, we

encourage researchers to incorporate multiple aspects of hosts and

their environment, as well as social contacts, to gain the greatest

insight into transmission patterns.
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