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Polymorphisms of lipid metabolism enzyme-coding genes
in patients with diabetic dyslipidemia

Introduction

Diabetes mellitus is a metabolic disorder with a complex eti-
ology resulting from the disturbance of insulin secretion/action 
and is characterized by carbohydrate, fat, and protein metabo-
lism dysfunction (1). Dyslipidemia occurs in conjunction with 
insulin resistance and is considered to be one of the most im-
portant risk factors for cardiovascular (CV) disease (2). Quantita-
tive and qualitative changes in the properties of lipoproteins, the 
degradation of lipoprotein metabolism, genetic predispositions, 
and environmental factors are the main etiologic mechanisms of 
diabetic dyslipidemia. Recent studies have shown that the poly-
morphisms or mutations of genes that encode proteins and en-
zymes involved in lipoprotein metabolism may play an important 
role in the development of diabetic dyslipidemia (3–5). Therefore, 

determining genetic profiles associated with diabetic dyslipid-
emia is gaining importance in terms of reducing the risk of mi-
cro- and macrovascular complications.

Roles of enzymes and enzyme-coding candidate 
genes in cholesterol metabolism
Lipoprotein lipase (LPL) is a key enzyme in lipoprotein me-

tabolism. It hydrolyzes triglycerides from very-low-density lipo-
proteins and separates lipoproteins from the circulation (6, 7). 
This enzyme is coded by the LPL gene, and several genetic va- 
riants of LPL have been associated with plasma lipoprotein lev-
els (7, 8). Lecithin–cholesterol acyltransferase (LCAT) catalyzes 
the esterification of free cholesterol in the blood (9). Both com-
mon and rare LCAT gene mutations/polymorphisms have been 
found to affect high-density lipoprotein (HDL) levels (6). Adipo-
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nectin is a cytokine that inhibits adipose-specific expression in 
the blood (10). Resistin, encoded by the RETN gene, plays a key 
role in glucose homeostasis; RETN has been described as one of 
the candidate genes for type 2 diabetes mellitus (11, 12). Serum 
paraoxonase/arylesterase 1 (PON1) is an enzyme that protects 
low-density lipoproteins from oxidation and is responsible for 
the antioxidant properties of HDL (13). Cholesteryl ester transfer 
protein (CETP) is a hydrophobic glycoprotein that regulates the 
exchange of triglycerides by transferring esterified cholesterol 
from HDL to apo-B-containing particles (14). CETP also plays an 
important role in the regulation of HDL cholesterol levels (6, 14). 
CETP gene polymorphisms have been associated with HDL cho-
lesterol concentrations in many reports (14, 15). Scavenger re-
ceptor class B member 1 (SRB1), encoded by the SCARB1 gene, 
is an HDL receptor involved in reverse cholesterol transport (16). 
Hepatic lipase (LIPC) is an enzyme that regulates the metabolism 
of low-density lipoprotein (LDL), intermediate-density lipoprotein 
(IDL), and HDL particles and plays a crucial role in the selective 
uptake of cholesterol esters from HDL (17). Recent studies have 
reported that polymorphisms of the promoter region of the LIPC 
gene influence the regulation of insulin sensitivity and type 2 
diabetes development (17, 18). Oxidative stress also plays an im-
portant role in the pathogenesis of insulin resistance. Increased 
reactive oxygen species (ROS) levels lead to insulin resistance 
in type 2 diabetes (19). Manganese-dependent superoxide dis-
mutase (MnSOD, SOD2) is a member of the most important family 
of superoxide dismutases and may prevent damage from ROS-
induced hyperglycemia, oxidative stress, and ionizing radiation. 
It has been reported that the polymorphism of the MNSOD gene 
leads to differences in protein function (20).

The aim of this study was to identify the genotype distribu-
tions of enzyme-coding genes involved in the cholesterol path-
way and the development of diabetic dyslipidemia in a group of 
patients from a single outpatient diabetes clinic in Turkey. These 
enzyme-coding genes included LPL, LIPC, SCARB1, LCAT, CETP, 
ADIPOQ, RETN, PON1, and MNSOD.

Methods

Study population
Our case-control study group initially consisted of 250 pa-

tients with diabetic dyslipidemia who were consecutively admit-
ted to the Endocrinology and Metabolic Disease outpatient clinic 
of Ege University School of Medicine between 2007 and 2011. 
This study also included 225 age- and gender-matched healthy 
individuals. Control subjects were recruited from healthy volun-
teers whose routine health checkup was within normal limits. 
The diagnosis of diabetes was based on the presence of fas- 
ting blood glucose (FBG) levels of >126 mg/dL and/or postprandi-
al glucose levels of >200 mg/dL and hemoglobin A1c (HbA1c) lev-
els of >6.5%. The presence of diabetic dyslipidemia was defined 
as triglyceride levels of >200 mg/dL and/or HDL levels of <45 mg/
dL. During the analysis, 13 control subjects were excluded due 

to elevated FBG levels (>126 mg/dL) indicating diabetes mellitus 
and 33 patients were excluded from the study group due to nor-
mal FBG levels. The remaining 429 subjects (217 diabetics and 
212 healthy subjects) constituted the study population. The study 
protocol was approved by the local Ethics Committee, and writ-
ten informed consent was obtained from all subjects. 

The clinical characteristics of the groups were retrospec-
tively obtained from patient charts. Biochemical analysis includ-
ed HbA1c, total cholesterol, triglyceride, HDL cholesterol, LDL 
cholesterol, and FBG levels measured by an Olympus AU2700 
automated analyzer (Toshiba, Tokyo, Japan). All participants’ 
peripheral venous blood samples were collected into EDTA-
containing tubes and were stored at –20°C until genomic DNA 
isolation was performed. 

Genotyping
Genomic DNA was extracted from peripheral blood leu-

kocytes using a MagNA Pure LC instrument and MagNA Pure 
LC DNA Isolation Kit (Roche Applied Science, Mannheim, Ger-
many). The analysis of LPL (rs320), LIPC (rs2070895), SCARB1 
(rs5888), LCAT (rs2292318), CETP (rs708272), ADIPOQ (rs1501299), 
RETN (rs3745367), PON1 (rs662), and MNSOD (rs4880) gene poly-
morphisms was performed using specific primers and a simple 
probe mix with a LightCycler-FastStart DNA Master Hybridiza-
tion Probes Kit (Roche Applied Science). All experiments were 
performed in a LightCyclerTM 480 Instrument (Roche Applied 
Science) according to the protocol provided by the manufactu- 
rer (TIB MOLBIOL, Berlin, Germany). All polymorphisms were 
detected in the F2 channel. Alleles were identified by the spe-
cific melting temperature of the resulting amplicons, as individ-
uals with two copies of the wild-type genotype show a single 
melting peak, individuals with heterozygous alleles show two 
melting peaks, and individuals with two copies of the polymor-
phic genotype show a single melting peak for all polymorphisms. 
Among the patients with diabetic dyslipidemia, errors occurred 
in the analysis of LPL (rs320) in 1 patient, in the analysis of LIPC 
(rs2070895) and ADIPOQ (rs1501299) in 2 patients, and in the 
analysis of PON1 (rs662) in 3 patients; therefore, these 5 patients 
were not included in the final statistical analysis.

Biochemical analyses were compared between the patients 
with diabetic dyslipidemia and the control group according to 
the genotypic status of LPL (rs320), LIPC (rs2070895), SCARB1 
(rs5888), LCAT (rs2292318), CETP (rs708272), ADIPOQ (rs1501299), 
RETN (rs3745367), PON1 (rs662), and MNSOD (rs4880) gene poly-
morphisms.

Statistical analysis
All statistical analyses were performed using SPSS for Win-

dows version 18.0 (SPSS, Chicago, IL, USA). Data are presented 
as percentages for discrete variables and as mean ± standard 
deviation (SD) for continuous variables. Comparisons between 
the groups were made using Student’s t-test, and discrete vari-
ables were compared by chi-square analysis. Distribution analy-
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ses of the variables were performed using the Kolmogorov–
Smirnov test. A p value of <0.05 (two-sided) was regarded to be 
statistically significant.

Results

This study consisted of 217 patients with diabetic dyslipid-
emia (133 females and 84 males) and 212 unrelated healthy in-
dividuals (122 females and 90 males). The comparison of clinical 
characteristics and biochemical parameters between the groups 
is shown in Table 1. FBG, total cholesterol, triglyceride, and LDL 
cholesterol levels were significantly higher in the diabetic dys-
lipidemia group than in the control group (p<0.001), while HDL 
cholesterol levels were significantly lower in the diabetic dys-
lipidemia group. Within our patient group, those with diabetic 
dyslipidemia were treated with oral antidiabetics, insulin, and 
lipid-lowering drugs (Table 1).

LPL (rs320) TT, TG and GG genotype distributions were 10.1%, 
38%, and 51.9% in the diabetic dyslipidemia group and 69.8%, 
25.5%, and 4.7% in the control group, respectively. Patients with di-
abetic dyslipidemia had a higher frequency of the polymorphic GG 
genotype of LPL (rs320) than control subjects (p<0.001) (Table 2).

GG, GA and AA genotype distributions of the LIPC (rs2070895) 
gene were 0.5%, 21.4%, and 78.1% in the diabetic dyslipidemia 
group and 73.6%, 21.4%, and 3.8% in the control group, respec-
tively. Patients with diabetic dyslipidemia showed a higher fre-
quency of the polymorphic AA genotype of LIPC (rs2070895) than 
control subjects (p<0.001) (Table 2).

The frequencies of the CC, CT, and TT SCARB1 (rs5888) geno-
types were 30.9%, 39.2%, and 30% in the diabetic dyslipidemia 
group and 79.6%, 18.9%, and 2.8% in the control group, respec-
tively. Patients with diabetic dyslipidemia had higher frequencies 
of the SCARB1 (rs5888) CT and TT genotypes than control sub-
jects (p<0.001) (Table 2).

LCAT (rs2292318) CC, CT, and TT genotypes were found in 0%, 
17.9%, and 82.1% of patients with diabetic dyslipidemia and in 
69.1%, 30.9%, and 0% of the control subjects, respectively. Geno-
type analysis revealed that patients with diabetic dyslipidemia 
showed a higher frequency of the polymorphic TT genotype of 
LCAT (rs2292318) than control subjects (p<0.001), while control 
subjects had a higher frequency of the CC genotype than pa-
tients with diabetic dyslipidemia (p<0.001) (Table 2).

For the CETP (rs708272) gene, the frequencies of the GG, GA 
and AA genotypes were 31.3%, 51.6%, and 17.1% in the diabe- 
tic dyslipidemia group and 70.8%, 25%, and 4.2% in the control 
group, respectively. The frequency of the AA genotype was sig-
nificantly higher in patients with diabetic dyslipidemia than in 
control subjects (p<0.001) (Table 2).

The GG, GT, and TT genotypes of ADIPOQ (rs1501299) were 
detected at frequencies of 60.5%, 32.1%, and 7.4% in the diabetic 
dyslipidemia group and 73.6%, 23.1%, and 3.3% in the control 
group, respectively. The TT genotype was significantly more 
common in the diabetic dyslipidemia group (p=0.01) (Table 2).

The distributions of the GG, GA, and AA genotypes of RETN 
(rs3745367) were 19.4%, 46.5%, and 34.1% in the diabetic dysli- 
pidemia group and 57.5%, 35.4%, and 7.1% in the control group, 
respectively. The frequency of the polymorphic AA genotype 
was significantly higher among patients with diabetic dyslipid-
emia than among control subjects (p<0.001) (Table 2).

For PON1 (rs662), frequencies of the AA, AG, and GG geno-
types were 51.4, 40.7%, and 7.9% in the diabetic dyslipidemia 
group and 56.1%, 36.3%, and 7.5% in the control group, respec-
tively. No significant differences emerged between patients with 
diabetic dyslipidemia and control subjects (p=0.611) (Table 2).

The distributions of the MNSOD (rs4880) CC, CT, and TT geno- 
types were 46.5%, 34.6%, and 18.9% in patients with diabetic 
dyslipidemia patients and 77.4%, 19.3%, and 3.3% in control 
subjects, respectively. The differences between patients with 
diabetic dyslipidemia and control subjects were statistically sig-
nificant (p<0.001) (Table 2).

In the control group, CETP (rs708272) and PON1 (rs662) gene 
polymorphisms showed a negative correlation with triglycerides 
(r=–0.137, p=0.047) and HDL cholesterol (r=–0.158, p=0.022) levels, 
respectively, whereas no significant correlation was observed 
between LPL (rs320), LCAT (rs2292318), ADIPOQ (rs1501299), 
RETN (rs3745367), LIPC (rs2070895), SCARB1 (rs5888), or MNSOD 
(rs4880) gene polymorphisms and lipid parameters including to-
tal cholesterol, triglyceride, HDL cholesterol, and LDL cholesterol 
levels (p>0.005). Furthermore, no significant association was ob-
served between these gene polymorphisms and HbA1c or FBG 
levels in control subjects. 

In the diabetic dyslipidemia group, SCARB1 (rs5888) and 
ADIPOQ (rs1501299) gene polymorphisms showed a weak posi-
tive correlation with FBG (r=0.172, p=0.011) and HDL cholesterol 
(r=0.176, p=0.010) levels, respectively. However, no significant 
association was found between LPL (rs320), LIPC (rs2070895), 
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Table 1. Characteristics and biochemical parameters of patients with 
diabetic dyslipidemia and control subjects

  Patients with Control P 
  diabetic subjects 
  dyslipidemia 
  Mean±SD Mean±SD 
  n=217 n=212

Gender, female/male 133/84 122/90 –

Age, years 53.2±9.8 52.8±9.2 –

Fasting glucose, mg/dL 161.9±72.5 87.7±11.6 <0.001

Total cholesterol, mg/dL 219.3±61.8 178.2±20.7 <0.001

Triglycerides, mg/dL 231.6±255.8 109.5±25.9 <0.001

HDL cholesterol, mg/dL 48.5±13.6 63±8.9 <0.001

LDL cholesterol, mg/dL 131.6±42.3 117±17.9

Lipid-lowering drugs, n, % 68 (31.3%) –

Oral antidiabetics, n, % 20 (9.2%) –

Insulin, n, % 29 (13.4%) –
HDL - high-density lipoprotein; LDL - low-density lipoprotein
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Table 2. Genotype distributions and allele frequencies of LPL (rs320), LIPC (rs2070895), SCARB1 (rs5888), LCAT (rs2292318), CETP (rs708272), 
ADIPOQ (rs1501299), RETN (rs3745367), PON1 (rs662), and MNSOD (rs4880) gene polymorphisms in the study groups

Gene/SNP Genotype/ Patients with diabetic  Control subjects P 
  haplotype dyslipidemia n (%) n (%)
LPL (rs320) Wild type (TT) 22 (10.1) 148 (69.8) <0.001
T495G Heterozygote (TG) 82 (38) 54 (25.5)
  Polymorphic (GG) 112 (51.9) 10 (4.7)
  T 126 350
  G 164 74
LIPC (rs2070895) Wild type (GG) 1 (0.5) 156 (73.6) <0.001
G250A Heterozygote (GA) 46 (21.4) 48 (21.4)
  Polymorphic (AA) 168 (78.1) 8 (3.8)
  G 48 360
  A 382 64
SCARB1 (rs5888) Wild type (CC) 67 (30.9) 166 (79.6) <0.001
C1050T Heterozygote (CT) 85 (39.2) 40 (18.9)
  Polymorphic (TT) 65 (30.0) 6 (2.8)
  C 219 372
  T 215 52
LCAT (rs2292318) Wild type (CC) 0 (0) 150 (69.1) <0.001
C511T Heterozygote (CT) 38 (17.9) 67 (30.9)
  Polymorphic (TT) 174 (82.1) 0 (0)
  C 38 367
  T 67 386
CETP (rs708272) Wild type (GG) 68 (31.3) 150 (70.8) <0.001
G279A Heterozygote (GA) 112 (51.6) 53 (25)
  Polymorphic (AA) 37 (17.1) 9 (4.2)
  G 248 353
  A 186 71
ADIPOQ (rs1501299) Wild type (GG) 130 (60.5) 156 (73.6) =0.01
G276T Heterozygote (GT) 69 (32.1) 49 (23.1)
  Polymorphic (TT) 16 (7.4) 7 (3.3)
  G 329 361
  T 101 63
RETN (rs3745367) Wild type (GG) 42 (19.4) 122 (57.5) <0.001
G299A Heterozygote (GA) 101 (46.5) 75 (35.4)
  Polymorphic (AA) 74 (34.1) 15 (7.1)
  G 185 319
  A 249 105
PON1 (rs3745367) Wild type (AA) 110 (51.4) 119 (56.1) 0.611
Q192R Heterozygote (AG) 87 (40.7) 77 (36.3)
  Polymorphic (GG) 17 (7.9) 16 (7.5)
  A 307 315
  G 121 109
MNSOD (rs4880) Wild type (CC) 101 (46.5) 164 (77.4) <0.001
Ala16Val Heterozygote (CT) 75 (34.6) 41 (19.3)
  Polymorphic (TT) 41 (18.9) 7 (3.3)
  C 277 369
  T 157 55
ADIPOQ - adiponectin; CETP - cholesterol ester transfer protein; LCAT - lecithin–cholesterol acyltransferase; LIPC - hepatic lipase; LPL - lipoprotein lipase; MNSOD - manganese-
dependent superoxide dismutase; PON1 - paraoxonase; RETN - resistin; SCARB1 - scavenger receptor class B member 1. 
Statistical analysis was performed using SPSS 18.0. The chi-square test was used to compare the genotype distribution and allele frequencies between the groups. The level of signifi-
cance was accepted as P<0.05.
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LCAT (rs2292318), CETP (rs708272), RETN (rs3745367), PON1 
(rs662), or MNSOD (rs4880) gene polymorphisms and lipid pa-
rameters, plasma glucose levels, or HbA1c levels (p>0.005). 

Discussion

To the best of our knowledge, no previous studies have re-
ported the effects of LPL (rs320), LCAT (rs2292318), and PON1 
(rs662) gene polymorphisms in patients with diabetic dyslip-
idemia. Our study is the first comprehensive study to provide 
evidence on possible associations between LPL (rs320), LIPC 
(rs2070895), SCARB1 (rs5888), LCAT (rs2292318), CETP (rs708272), 
ADIPOQ (rs1501299), RETN (rs3745367), and MNSOD (rs4880) 
gene polymorphisms and diabetic dyslipidemia in Turkish adults. 

According to our results, heterozygote and polymorphic geno- 
type rates in patients with diabetic dyslipidemia were found to 
be 38% TG and 51.9% GG for LPL, 21.4% GA and 78.1% AA for 
LIPC, 39.2% CT and 30% TT for SCARB1, 17.9% CT and 82.1% TT 
for LCAT, 51.6% GT and 17.1% TT for CETP, 32.1% GT and 7.4% TT 
for ADIPOQ, 46.5% GA and 34.1% AA for RETN, and 34.6% CT and 
18.9% TT for MNSOD. 

LPL, LIPC, SCARB1, LCAT, and CETP proteins play important 
roles in the endogenous and exogenous pathways of lipoprotein 
metabolism. Genetic and environmental factors such as obesity, 
dyslipidemia, and blood glucose and blood insulin levels are 
defined as risk factors for the development of type 2 diabetes. 
Therefore, the determination of the relationship between LPL 
T495G gene polymorphisms and risk factors associated with 
diabetes mellitus is becoming more important in understan- 
ding the etiology of type 2 diabetes. In our study, the frequency 
of heterozygous and polymorphic genotypes of the T495G poly-
morphism was observed in 38% and 51.9% of patients with dia-
betic dyslipidemia, respectively. Daoud et al. (7) determined TG 
and GG genotype frequencies to be 35.8% and 19%, respectively, 
in Saudi Arabian patients with coronary artery disease (CAD). 
They also found lower TG and GG frequencies than those in our 
population in their subgroups of patients with CAD having diabe-
tes (53.04% and 28.15%, respectively) and dyslipidemia (45.88% 
and 24.35%, respectively). The systemic overexpression of the 
LPL gene may initiate a tissue-specific insulin signaling cascade, 
causing insulin resistance in skeletal muscles as well as other 
metabolic tissues and eventually leading to the development of 
type 2 diabetes mellitus. LPL activity is also sensitive to environ-
mental factors such as hormonal regulation. We believe that the 
LPL GG genotype has utility as a biomarker for type 2 diabetes. Qi 
et al. (8) reported that even in patients with a normal lipid profile, 
the GG genotype of LPL T495G was significantly associated with 
an increased risk of developing type 2 diabetes. Individuals with 
the GG genotype have higher pre-heparin LPL levels and lower 
triglycerides levels than those with the TT genotype. Ariza et al. 
(21) reported that T495G LPL gene variants have a lowering ef-
fect on triglyceride levels (p<0.005) and that this polymorphism 
has a protective effect against the development of hypertrigly- 

ceridemia (p=0.042). In summary, the LPL T495G polymorphism 
may regulate the magnitude of dyslipidemia, but its effects on 
lipid metabolism are not yet clearly understood.

HDL cholesterol levels are associated with the LCAT enzyme 
due to the important physiological function of LCAT; however, 
only a few large studies have determined a significant relation-
ship between LCAT gene polymorphisms and HDL cholesterol 
levels (9, 22). In our study, the CT and TT genotypes were de-
tected in 17.9% and 82.1% of patients with diabetic dyslipidemia, 
respectively. Ghanei et al. (9) reported that LCAT activity is signif-
icantly decreased in patients with type 2 diabetes mellitus. The 
LCAT rs2292318 polymorphism may result in a decreased enzyme 
activity of LCAT. As there are few studies on rs2292318, its ef-
fect on LCAT enzyme activity is unknown. Paré et al. (22) showed 
a significant relationship between the TT genotype of the LCAT 
rs2292318 polymorphism (7.6%) and increased HDL cholesterol 
levels in patients with CAD. In recent studies, 5 LCAT polymor-
phisms (Gly230Arg, P143L, rs4986970, rs5922, and rs2292318) 
have been associated with HDL cholesterol levels, though the 
findings were not entirely consistent with each other (6). To de-
termine the effects of the LCAT rs2292318 genetic polymorphism 
on HDL cholesterol levels and enzyme activity, rare and frequent 
genetic variations of this polymorphism should be investigated in 
genome-wide association studies. 

To date, the direct effects of the SCARB1 C1050T gene poly-
morphism could not be fully explained by in vivo studies. Cons- 
tantineau et al. (16) have investigated the effects of the C1051T 
polymorphism on SRB1 protein expression and function by an in 
vitro study. They concluded that the C1050T variant of SCARB1 
affects the secondary structure and protein translation of SRB1, 
leading to reduced protein expression and function. Roberts et 
al. (23) determined an association between high HDL cholesterol 
levels and C1050T polymorphism in women (<50 years old), but 
any association between lipid levels and the C1050T polymor-
phism in men was not examined. We determined a positive cor-
relation between FBG and the SCARB1 rs5888 variant in patients 
with diabetic dyslipidemia. However, no association was found 
between other lipid parameters and the C1050T polymorphism 
in the diabetic dyslipidemia group. Stanislovaitiene et al. (24) re-
ported that SCARB1 TT genotype frequency (9.4%) was signifi-
cantly lower in the oldest male myocardial infarction group than 
in the control group (22.3%). McCarthy et al. (25) also reported 
that the rs5888 variants of SCARB1 were associated with insulin 
resistance (p=0.0003), particularly in women. In our study, we re-
vealed the SCARB1 C1050T polymorphism to be a risk factor for 
the development of diabetic dyslipidemia, regardless of gender.

CETP plays an important role in the regulation of HDL cho-
lesterol concentrations. Carlquist et al. (15) reported that the 
frequencies of the GG, GA and AA genotypes of CETP rs708272 
were 32.9%, 50.3%, and 16.8%, respectively, in patients with 
CV diseases. We also found very similar genotypic frequen-
cies (31.3% GG, 51.6% GA, and 17.1% AA). However, Dixit et 
al. (14) demonstrated that the prevalence of the AA mutant 
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genotype of CETP rs708272 was higher in patients with type 
2 diabetes than in those without diabetes, whereas no asso-
ciation was observed between the rs708272 polymorphism and 
type 2 diabetes mellitus. They also found that the heterozygous 
genotype of CETP increased the risk of type 2 diabetes-induced 
hypertension (p=0.028), while the wild-type genotype had a 
protective effect against disease development (p=0.038) (14). 
Population studies in Singapore (China, Malaysia, and Indies) 
demonstrated that the AA polymorphic genotype was associ-
ated with higher HDL cholesterol concentrations (26). As our 
study, also Indian patients have a higher frequency of the A 
allele, they have low HDL cholesterol levels than Malaysian 
and Chinese individuals. Our results also support of the results 
obtained by Yılmaz et al. (27) who indicated that polymorphic 
gene carriers in the control group show a negative correlation 
between CETP (rs708272) gene polymorphism and triglyceride 
concentrations. Furthermore, Ağırbaşlı et al. (28) determined 
an association between the CETP (rs708272) polymorphism and 
low HDL cholesterol phenotype in children. However, this re-
sult was not as strong as that in adults. Contrary to the findings 
of Yılmaz et al. (27), we did not find any association between 
the CETP rs708272 polymorphism and biochemical parameters 
such as triglyceride or HDL cholesterol levels in our diabetic 
dyslipidemia patient group. A recent study demonstrated that 
a CETP rs708272 gene variant is associated with low HDL cho-
lesterol phenotype in Turkish children (28, 29). As our patient 
population was on lipid-lowering drugs, insulin, and oral anti-
diabetics, the effects of polymorphisms on lipid parameters and 
glucose might be masked by drug treatments. We also suspect 
that these discrepancies in the results of various studies in the 
same population are attributable to differences between se-
lected patient groups’ baseline characteristics and gene–gene 
and gene–environment interactions. Similar to our study, Yılmaz 
et al. (27) also demonstrated that the CETP rs708272 polymor-
phism was associated with an increased risk of developing 
type 2 diabetes mellitus in Turkish patients.

LIPC plays an important role in the metabolism of LDL, IDL, 
and HDL particles. The common polymorphisms of the LIPC gene 
change the LIPC enzymatic activity by approximately 20–30% of 
the individual variation (18). Population studies have indicated 
that lipid and lipoprotein abnormalities are messengers for de-
veloping type 2 diabetes and that LIPC plays a central role in in-
sulin resistance in dyslipidemia. Regarding the LIPC (rs2070895) 
G250A polymorphism, AA (78.1%) genotype carriers significantly 
outnumbered GA (21.4%) and GG (0.5%) genotype carriers 
among our patients with diabetic dyslipidemia. Although LIPC 
levels were not measured, we can assume that polymorphic 
genotypes (AA) increase LIPC levels by causing the accumula-
tion of visceral fat (17). 

Adiponectin, resistin, PON1, and MnSOD proteins have cru-
cial roles in glucose homeostasis. To date, studies have not fully 
elucidated how the ADIPOQ (rs1501299) G276T polymorphism af-
fects insulin sensitivity and type 2 diabetes development. Şenol 

et al. (30) found the frequencies of G276T genotypes in patients 
with CAD to be 65.5% GG, 29.1% GT, and 5.5% TT in Turkish pa-
tients, which is comparable to the results of our study. Cnop et 
al. (31) and Tschritter et al. (32) demonstrated in large studies 
that plasma adiponectin concentrations are positively corre-
lated with HDL cholesterol levels and negatively correlated with 
triglyceride levels. In our patient group, we found a positive cor-
relation between ADIPOQ G276T polymorphisms and HDL con-
centrations. Therefore, adiponectin may have a direct role in 
HDL catabolism by promoting HDL assembly in the liver. Various 
studies have indicated that adiponectin levels are affected by 
multigenic control, particularly genetic variability in the ADIPOQ 
gene, contributing to the regulation of the protein (33, 34). Hara et 
al. (35) and other previous studies have shown that GG ADIPOQ 
gene variants had a greater effect on adiponectin levels, leading 
to insulin resistance and the progression of glucose intolerance 
to type 2 diabetes (10, 36). Contrary to these results, Ramya et al. 
(37) and Tsai et al. (38) demonstrated that TT genotypes were sig-
nificantly associated with type 2 diabetes in Indian and Taiwan 
Chinese Han populations, respectively. Tu et al. (39) reported that 
ADIPOQ polymorphisms confer genetic susceptibility for type 2 
diabetes in East Asians. ADIPOQ gene polymorphisms (rs2241766 
and rs1501299) were also associated with an increased risk of 
developing type 2 diabetes mellitus in the Chinese Han popula-
tion in a meta-analysis (38). Consistent with our results, various 
studies have concluded that the TT genotype plays an important 
role in the pathogenesis of type 2 diabetes. 

In recent years, resistin was defined as a new potential sig-
naling molecule proposed to link obesity and diabetes mellitus 
(11). Our results revealed that the RETN G299A polymorphism 
AA genotype (34.1%) was significantly associated with an in-
creased risk of diabetic dyslipidemia compared to the control 
group. Ma et al. (12) concluded that obesity and the AA genotype 
were associated with an increased risk of type 2 diabetes. In 
contrast, Fehmann et al. (40) and Ochi et al. (41) did not detect 
any association between the RETN G299A polymorphism and 
type 2 diabetes mellitus. Furthermore, rs3745367 and rs1423096 
RETN variants were significantly associated with resistin levels 
in a genome-wide association study conducted by Chung et al. 
(10). However, rs1423096 variants in the downstream region of 
RETN seem to be more associated with an increased risk of type 
2 diabetes than the rs3745367 variant (42). These discrepancies 
could be attributed to ethnic differences between the selected 
populations.

PON1 is an HDL-associated antioxidant enzyme that prevents 
LDL oxidation (43). According to the genotype analysis of PON1 
Q192R polymorphisms, the diabetic dyslipidemia and control 
groups were 40.7% and 36.3% heterozygous and 7.9% and 7.5% 
polymorphic, respectively. The R allele frequencies of the PON1 
Q192R polymorphism widely vary between distinct ethnic groups; 
rates in Italy, Sardinia, Ethiopia, Benin, and Ecuador were repor- 
ted to be 31.3%, 24.8%, 40.8%, 61.2%, and 78.9%, respectively 
(44). Ghanei et al. (9) reported that the QQ (AA) homozygote and R 
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(G) alleles were associated with myocardial infarction in dyslipi- 
demia cases, whereas only the R (G) allele was associated with 
myocardial infarction in patients with diabetes (p<0.05). Alegria-
Torres et al. (45) identified the Q192R polymorphism of the PON1 
gene as a risk factor for insulin resistance and metabolic syn-
drome in Mexican children. The study determined that for this 
population, the R allele of the PON1 Q192R polymorphism was 
not an independent risk factor for the development of myocar-
dial infarction (p<0.005) (46). Gamboa et al. (13), Pérez-Herrera 
et al. (47), Rojas-García et al. (48), and other studies in Chinese, 
Afro-American, and other Mexican populations demonstrated 
that individuals with the PON1 192RR genotype had lower levels 
of HDL cholesterol than 192QQ genotype carriers. These results 
are similar to those in our control group. Hence, these data sug-
gest that PON1 polymorphisms affect HDL cholesterol levels Al-
though we did not find significant differences in the PON1 Q192R 
genotype distribution and allele frequencies between patients 
and control subjects, in the control group, we observed a nega-
tive correlation between the Q192R polymorphism and HDL cho-
lesterol levels. This result may support the protective effect of 
PON1 Q192R gene polymorphisms on HDL cholesterol levels in 
healthy individuals.

Increased levels of ROS and endogenous antioxidants are 
related to various diseases such as Parkinson’s, Alzheimer’s, 
CV disease, pulmonary disease, diabetes, ocular disorders, and 
cancer, as well as aging and radiation damage (49). Nakani-
shi et al. (19) investigated the effects of the MNSOD Ala16Val 
polymorphism on the development of type 2 diabetes mellitus. 
Of 523 nondiabetic cases, only 65 developed type 2 diabetes 
during the 9.9-year-follow-up period. However, the number of 
homozygous TT genotype carriers (n=55) was higher than that 
of CC genotype carriers (n=10) in patients with type 2 diabetes 
mellitus. Therefore, they concluded that the MNSOD Ala16Val 
polymorphism plays an important role in the development of dia-
betes (p=0.041) (19). Li et al. (20) also demonstrated that MNSOD 
rs4880 gene variants confer an increased risk of type 2 diabetes 
mellitus to the Chinese Han population, whereas Nomiyama et 
al. (50) reported that Ala16Val allele frequency differences were 
not statistically significant between diabetic and nondiabetic 
patients in the Japanese population. Mitochondrial oxidative 
stress plays a key role in beta cell dysfunction, insulin resis-
tance, and glucose tolerance, which leads to diabetes mellitus 
(20). Our data suggest that MNSOD Ala16Val polymorphisms im-
pacts oxidative metabolism and increases the risk of diabetic 
dyslipidemia. 

Study limitations

The main limitation of our study was the lack of whole-gene 
sequencing for LPL, LIPC, SCARB1, LCAT, CETP, ADIPOQ, RETN, 
and MNSOD genes. However, all studied SNPs were well-known 
mutations associated with either dyslipidemia and/or CV di- 
sease. 

Conclusion 

LPL (rs320), LIPC (rs2070895), SCARB (rs5888), LCAT 
(rs2292318), CETP (rs708272), ADIPOQ (rs1501299), RETN 
(rs3745367), and MNSOD (rs4880) gene polymorphisms can be 
used as markers for the early detection of diabetic dyslipidemia. 
We believe that further studies are necessary to determine the 
effects of other enzyme-coding gene polymorphisms and in-
teractions on plasma lipid concentrations. Although the exact 
molecular mechanisms of diabetic dyslipidemia are not yet fully 
understood, our study results will guide further investigations to 
elaborate the development of diabetic dyslipidemia.
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