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Abstract: The ability to detect residual levels of leukemic blasts (measurable residual disease, MRD)
has already been integrated in the daily routine for treatment of patients with chronic myeloid and
acute lymphoblastic leukemia. In acute myeloid leukemia (AML), a variety of mostly retrospective
studies have shown that individuals in AML remission who tested positive for MRD at specific
time-points or had increasing MRD levels are at significantly higher risk of relapse and death
compared to MRD-negative patients. However, these studies differ with respect to the “MRD-target”,
time-point of MRD determination, material analyzed, and method applied. How this probably
very valuable MRD information in individual patients may be adapted in the daily clinical routine,
e.g., to separate patients who need more aggressive therapies from those who may be spared
additional—potentially toxic—therapies is still a work-in-progress. With the exception of MRD
assessment in acute promyelocytic leukemia (APL), the lack of randomized, prospective trials renders
MRD-based decisions and clinical implications in AML a difficult task. As of today, we still do
not have proof that early intervention in MRD-positive AML patients would improve outcomes,
although this is very likely. In this article, we review the current knowledge on non-APL AML MRD
assessment and possible clinical consequences.

Keywords: AML; measurable residual disease; therapeutic decision-making; risk stratification;
pre-emptive therapy

1. Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous and aggressive neoplasia that is
characterized by clonal expansion of myeloid precursors. Over the past few decades, a growing
understanding of the molecular landscape and the associated AML biology allowed improved
risk stratification at diagnosis. These findings are also reflected in the current World Health
Organization (WHO) and European LeukemiaNet (ELN) classifications for AML patients [1,2].
Unfortunately, this progress has not yet led to a substantial improvement of outcome in AML
patients. While the majority of AML patients treated with intensive chemotherapy may achieve a
morphologic remission, a significant proportion subsequently relapses and dies of their disease [3].
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AML relapse is thought to originate from residual cells that survived therapy and that are not detected
by conventional morphologic assessments. Novel and more sensitive methods allow for detecting
these cell populations, which are referred to as measurable residual disease (MRD) [3]. A perfect
MRD test would detect the smallest amount of leukemic blasts that are capable of causing relapse but
should be able to discriminate them from healthy (stem) cells or leukemic cells not capable of initiating
relapse. A variety of patient or disease related, as well as sampling or test related factors, can lead to
reduced sensitivities and specificities and are given in Table 1. Already more than a decade ago, it was
demonstrated that the persistence of diagnostic cytogenetic abnormalities in complete remission (CR)
associates with adverse outcomes, allowing risk stratification in AML remission [4–6]. These days,
much effort has been put into the development of new assays, to improve sensitivities and specificities,
to optimize standardization between laboratories and to provide applicable techniques for the majority
of patients [7,8]. However, the biological heterogeneity, clonal evolution, and the lack of a universal
immunophenotype in AML increase the difficulties of establishing standardized MRD assays in AML
so far. Recognizing a growing clinical relevance of the MRD status in remission, the ELN defined a
“complete remission without minimal residual disease (CRMRD-)” as the optimal response category
for AML patients [2]. However, today, MRD evaluation in AML is still only routinely used in clinical
practice for treatment of acute promyelocytic leukemia (APL) for which standardized guidelines have
been published [9,10]. While we still lack data from prospective, randomized clinical trials testing
strategies on how to modulate treatment to alter outcomes based on the MRD status in non-APL
AML, there is clear evidence that MRD assessment allows outcome prediction [11–16]. Subsequently,
the most common MRD targets have been increasingly adapted for molecular and flow cytometric
MRD assessment in clinical practice. These include the detection of aberrant immunophenotypes by
multiparameter flow cytometric (MFC) analyses and the detection of fusion transcripts by quantitative
polymerase chain reaction (qRT-PCR) in core-binding factor AML (CBF), as well as NPM1 mutations
in NPM1-mutated AML. Here, we review commonly available MRD detection methods in non-APL
AML together with their clinical applicability and current practical consequences in daily routines.

Table 1. Reasons for inadequate measurable residual disease test results.

Confounding Factors False Negative Results False Positive Results

patient or disease related
factors

- MRD target not consistently
present in all AML cells

- heterogeneous distribution of
leukemic cells in bone marrow

- relapse in tissue not assessed,
e.g., chloroma or central
nervous system

- follow-up time too short or
treatment related death

- GvL effect after
allogeneic HSCT

- tested MRD target present on
healthy or pre-leukemic cells

sampling related factors

- sample size too small
- inadequate storing/shipping

conditions, too much time from
sampling to analysis

- PB as used specimen or diluted
BM samples

- sample contamination

assay related factors - low assay sensitivity
- external contamination
- analysis of dead cells

Abbreviations: BM, bone marrow; GvL, graft-versus-leukemia; HSCT, hematopoietic stem cell transplantation;
MRD, measurable residual disease; PB, peripheral blood.
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2. Methods for MRD Detection

After achieving first lasting remissions in AML in the 1960s, for many decades, cytomorphologic
assessment with a sensitivity of around 1:20 and high interobserver variability remained the only
method to evaluate treatment responses. Later, fluorescence in situ hybridization (FISH) allowed
detection of leukemic cells with a sensitivity of up to 1:102 in patients with aberrant cytogenetics.
Already this approach allowed risk stratification in remission samples and paved the way for today’s
MRD assessments [4–6]. Currently, the two most commonly used methods for MRD detection in AML
remain MFC and qRT-PCR. Newer technologies represent next generation sequencing (NGS) and
digital droplet PCR (ddPCR), which, due to their advantages, will also find broader application in
the clinical practice for MRD assessment in the near future. Further comparisons with respect to the
commonly available MRD methods and their advantages and disadvantages are given in Table 2.

Table 2. Comparison of different approaches to analyze measurable residual disease (MRD).

Method Sensitivity Advantage Disadvantage

Conventional
Morphology: blast
count

1 in 20 cells - -

FISH: numeric and
structural cytogenetic
aberrations

1 in 100–500 cells
- standardized
- widely available

- insensitive
- limited patients with

aberrant karyotype
(appr. 50%)

MFC: LAIP, DfN 1 in 1000–100,000

- applicable to nearly all
AML cases (90%)

- can distinguish viable
from death cells

- short turn around time

- operator-dependent,
high experience needed

- lower sensitivity and
specificity than PCR

- difficult to standardize
- leukemic phenotype can

change over time

qRT-PCR: molecular
aberrations

1 in
100,000–1,000,000
cells

- high sensitivity
- high specificity
- existing

standardization efforts
- operator-independent
- short turn around time
- widely available

- restricted applicability to
patients harboring the
specific target (30–50%)

NGS: molecular
aberrations

1 in
100,000–1,000,000
cells

- high sensitivity
- allows to analyze a

large number of
mutations in a
single experiment

- easy to perform

- new methodology
- currently not

widely available
- CHIP mutations can be

detected in healthy
people or may persist in
AML remission

- limited standardization
- intrinsic error rate may

limit sensitivity

Abbreviations: CHIP, clonal hematopoiesis of indetermined potential; DfN, different from normal; FISH,
fluorescence in situ hybridization; LAIP, leukemia-associated immunophenotype; MFC, multicolor flow cytometry;
NGS, next generation sequencing; qRT-PCR, quantitative real-time polymerase chain reaction.
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2.1. Multiparameter Flow Cytometry

MFC uses fluorescence labeled antibodies to mark antigens on leukemic (and healthy) cells. It has
been integrated in the standard diagnostic work up at AML diagnosis where it allows the differentiation
of AML from other diseases, e.g., lymphatic leukemia, but also to define a leukemia-associated
immunophenotype (LAIP). This LAIP consists of distinct antigen expression patterns, is unique
for the individual AML at diagnosis, and can be tracked as MRD in follow-up samples. A second
strategy that is used for MFC-based MRD detection is the “different from normal” (DfN) approach.
Here, aberrant immunophenotypic maturation patterns are searched for in AML remission samples.
The latter approach does not have an obligatory need for diagnostic material and is also useful to
identify new or changed immunophenotypic aberrancies, e.g., due to clonal evolution. Today, the ELN
recommends a combination of both approaches; however, as the LAIP also—in most cases—represents
a DfN approach, the differences between both methods will most likely diminish over time when
larger antigen panels (minimum of eight colors) are used [10]. A clear advantage of MFC-MRD is the
applicability in the majority of AML patients (up to 90%). However, MFC-MRD sensitivity is lower
than that of most other methods, and it is highly dependent on the degree of difference of the leukemic
phenotype to normal antigen expression patterns [17]. Additionally, clonal evolution during the disease
course remains a technical challenge as up to 30% of AML patients relapse with an immunophenotype
different from the initial clone [18]. Thus, MFC analyses require a high level of experience and the
assay quality remains operator-dependent to some degree, hampering inter-laboratory harmonization
and standardization. Subsequently, the recent ELN guidelines recommend MFC-MRD analysis to
be carried out only in experienced laboratories until techniques have been further standardized [2].
However, the feasibility of MFC-MRD for relapse risk and survival prediction has been extensively
published in retrospective analyses for younger and older AML patients. A variety of studies showed
an association with higher relapse rates, as well as shorter relapse-free survival and overall survival
(OS) for MFC-MRD-positive patients in first morphologic CR after induction chemotherapy [19–25],
after consolidation chemotherapy [20,21,26], after completion of chemotherapy [21], as well as prior
to [22,27–30] or after an allogeneic hematopoietic stem cell transplantation (HSCT) [28].

2.2. Quantitative PCR

qRT-PCR represents an established MRD evaluation method that also provides a high
sensitivity, relative user-independence, and has—at least to some extent—undergone standardization
processes [8,31]. Here, the biggest limitation remains in its restriction to patients harboring specific
aberrations, i.e., the core-binding factor (CBF)-AML fusions genes (CBFB-MYH11 in inv(16)(p13q22) or
t(16;16)(p13;q22) and RUNX1-RUNX1T1 in t(8;21)(q22;q22)), as well as recurrent mutations, such as
NPM1 mutations. While there is only one known transcript in RUNX1-RUNX1T1, the three most
common breakpoints in CBFB-MYH11 AML [8] and three most common mutations in NPM1-mutated
AML [32] cover about 90–95% of affected individuals, respectively, and result in assays feasible in clinical
practice. Due to this, the ELN recommendations request that patients with one of these alterations should
be tested for MRD based on qRT-PCR. However, as the frequency of these aberrations decrease with
age, they are applicable in less than 30% of patients over 60 years of age—a population that represents
the majority of AML patients [33]. For more infrequent aberrations, patient-specific primer/probe pairs
can be designed, but come at a higher cost and lack of data on assay specificity and sensitivity [34].
The sensitivity obtained using qRT-PCR also depends on the target gene and can range from 10−3 for
MLLT3-KMT2A [35] up to 10−6 for NPM1 mutated AML [15]. Additionally, inter-individual differences
have also been reported [2,33]. For patients lacking leukemia-specific aberrations, the applicability
of targeting overexpressed AML-associated genes has been published. Wilm’s tumor gene (WT1) is
overexpressed in a large proportion of AML patients and WT1 expression levels have been repeatedly
published as potential MRD markers at various time points [36–38]. As WT1 is also expressed in
peripheral blood (PB) and bone marrow (BM) of healthy individuals, this physiological background
limits the assay’s sensitivity. Thus, the ELN recommends using this marker only in combination or if
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no other specific marker is available [10]. Expression levels of the leukemia-associated genes brain
and acute leukemia, cytoplasmic (BAALC) [39,40], and meningioma-1 (MN1) [41,42] have also been
shown to allow risk stratification in CR, but seem to harbor similar restrictions as WT1 expression.
Another limitation of qRT-PCR remains the need of control-target serial dilutions, which can be
overcome by modern methods such as ddPCR assays that also allow a more sensitive MRD detection
than qRT-PCR without the need of reference standard urves [40,42–44]. As they have also proven
robust to variations in PCR efficiency, ddPCR assays represent a promising methodology for MRD
monitoring in the future [45].

2.2.1. Core-Binding Factor Leukemia

Due to their excellent response rate to intensive chemotherapy of around 90% and high salvage
rate of around 60% in relapsing patients, chemotherapy is usually the chosen consolidation option in
CBF-AML. Despite lower assay sensitivity, already 20 years ago, it has been known that assessment
of CBFB-MYH11 and RUNX1-RUNX1T1 allows risk stratification in CBF-AML patients achieving a
CR [46,47]. Since then, a variety of large and/or prospective trials confirmed this knowledge, despite a
remaining uncertainty regarding optimal time-points, specimen, and cut-offs that should be used.

Normalized to 105 ABL1 copies, after only one cycle of intensive chemotherapy, MRD copy
numbers of <100 in BM or <10 in PB for CBFB-MYH11 AML [16] and <500 in BM or <1000 in PB,
as well as a >3 log [16] or >2.5 log [48] BM MRD reduction from diagnosis for RUNX1-RUNX1T1
AML have been shown to associate with lower relapse risk and longer OS. However, there are
also studies not finding a prognostic significance at this early time-point [11,49,50]. After two
cycles of chemotherapy, either absolute MRD of <0.1% (normalized to ABL1) [50] or a >3 log MRD
reduction from diagnosis [48,49,51] associated with a lower relapse risk in both CBF-AML subtypes
while MRD-negativity was no prognostic factor in RUNX1-RUNX1T1 AML at this time-point [11].
Normalized to 105 ABL1 copies, after three cycles of chemotherapy, MRD copy numbers of <10 in PB
for CBFB-MYH11 [16] and <500 in BM, as well as a >4 log BM MRD reduction for RUNX1-RUNX1T1
AML [16] were prognostic. Finally, in AML with RUNX1-RUNX1T1, BM MRD-negativity at the end of
treatment was found to associate with OS and disease-free survival (DFS) or relapse probability in some
studies [11,48] while another analysis only described a prognostic impact of MRD analyzed in PB [52].
In an analysis by Yin et al. [16], the median time from molecular to morphologic relapse was three
months in CBFB-MYH11 AML and 4.9 and 4.5 months for BM and PB, respectively, in RUNX1-RUNX1T1
AML [16,52]. The authors suggested that high risk patients with an insufficient decrease of MRD
levels might be potential candidates for early allogeneic HSCT in first CR [16,51]. However, there is
still no proof from randomized studies that survival can be improved by allogeneic HSCT in these
situations [10]. Noteworthy and further complicating reliable recommendations, for both CBF-AML
subtypes, some patients with low and stable detection of MRD transcripts had long-term remissions
lasting over several years of follow-up—a finding that should be considered when interpreting MRD
results in the phase after treatment [16,52,53]. However, MRD monitoring after end of treatment is
recommended in CBF-AML patients to detect impeding relapse early [10,16,49–53].

2.2.2. NPM1 Mutations

NPM1 mutations are present in approximately 30% of AML patients and are probably among
the most evaluated MRD markers in AML, despite a limited comparability due to heterogeneity in
the applied assays, tissue used, and time-point of assessment [13,54]. The observation that NPM1
mutations are present at relapse in nearly all initially NPM1-positive patients makes this mutation a
reliable MRD marker [13,54]. While NPM1 MRD analysis in aplasia after induction therapy seems to
provide only limited prognostic information [55], for all other time-points, a clinically relevant risk
stratification could be shown. After induction and/or consolidation chemotherapy, a <4 log [14] or
<3 log [55,56] reduction of NPM1 transcript levels, as well as still detectable [15] NPM1 transcripts or
levels >0.01% (normalized to ABL1) [55] or >0.1 (normalized to NPM1 wild type copies) [57] were
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predictive for higher relapse rates, as well as shorter OS and DFS. Additionally, a large analysis by
Ivey et al. not only showed PB NPM1 transcript levels after the second induction therapy to be
highly informative for outcome, but also that MRD analysis was superior to diagnostic molecular
genetic markers assessed by NGS [13]. Krönke et al. also observed an association between NPM1
transcript levels and remission duration. Using an arbitrary cut-off of 200 mutated NPM1/104 ABL1,
all patients exceeding this cut relapsed with a median time to relapse of 2.6 months (range 0.4–23.6
months) [15]. As some analyses showed higher values of MRD reduction to baseline and others of
absolute thresholds, the optimal cut-off definition remains to be determined but may also be tissue
and assay dependent. Analyzing NPM1 MRD prior to an allogeneic HSCT was also shown to provide
prognostic information independently of the used conditioning regimen in a variety of retrospective
studies [44,58,59]. Intriguingly, Balsat et al. suggested that NPM1mutatedFLT3-ITDpositive patients with
a >4 log reduction of NPM1 MRD—but not those with a <4 log reduction—did not benefit from
allogeneic HSCT in first CR [14]. Thus, NPM1 MRD assessment may have the potential to identify
patients who benefit from more intensive treatment strategies, which will be further discussed below.
Finally, Shayegi et al. observed that, during follow-up, the applied treatment may influence the
optimal NPM1 MRD threshold, as patients whose MRD increased above 1% BM NPM1/ABL1 after
chemotherapy, but 10% after allogeneic HSCT had shorter OS and DFS [60].

2.3. Next Generation Sequencing

A growing understanding of the genomic landscape in AML led to considerable interest in
developing MRD tests using NGS to quantify somatic mutations during disease course. The sensitivity
of NGS assays depends on the DNA quality and quantity, as well as the coverage of the sequenced
genes. Other limitations arise from clonal heterogeneity with potential outgrowth of small subclones
at AML relapse, the intrinsic error rates of NGS platforms, and that detection of mutations is highly
dependent on a sufficient depth of sequencing and bioinformative algorithms for mutation calling [61].
Addressing this point, error corrected NGS MRD approaches and exclusion of variants at higher
frequencies (e.g., >5%), as they may represent pre-leukemic clones or germline mutations, have been
suggested [62]. It remains unclear how to interpret divergent kinetics when assessing numerous
mutations together and to discriminate between refractory disease and pre-leukemic clones for some
persisting mutations [63]. Additionally, not all mutations in AML associate with equal biologic or
clinical consequences if detected in CR. Especially, the clonal hematopoiesis of indetermined potential
(CHIP)-associated, so-called DTA mutations (i.e. mutations in the genes DNMT3A, TET2 and ASXL1)
can reflect pre-leukemic clones rather than residual AML [64–66]. Subsequently, the detection of
these mutations may provide only limited MRD information, and thus are often excluded from MRD
analyses [62,67]. Nevertheless, there is evidence that DTA-mutations might provide MRD information
in some situations, e.g., when used in a post-allogeneic-HSCT setting [68]. Despite the still to overcome
limitations regarding data sequencing and interpretation, analyzing molecular MRD using NGS already
allows identification of patients with a higher relapse risk and shorter OS in the clinical setting of
intensive chemotherapy [67,69,70] as well as allogeneic HSCT [62,68,71].

3. Practical Challenges

3.1. Peripheral Blood or Bone Marrow?

One major question relates to the optimal specimen for MRD analyses, since the specimen may
have great influence on MRD sensitivity irrespective of the applied methodology. In general, 20 mL PB
(or more with white blood counts below 1 Gpt/l) or 5–10 mL BM (preferentially the first pull, as PB
dilution should be as low as possible) are needed for reliable MRD evaluation [10]. In paired sample
analyses, BM repeatedly showed to have higher MRD levels and subsequent higher sensitivity than
PB [33]. On the other hand, PB allows a higher convenience for the patient as it spares painful BM
aspirations and enables repetitive analyses in shorter intervals which may then provide earlier evidence
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of MRD recurrence than BM. In general, data on the utility of PB compared to BM remains inconclusive.
Numerous studies suggested a somewhat lower MRD burden in PB, but a good correlation between
PB and BM MRD, e.g., in MFC [72,73] or qRT-PCR assays for CBF-AML [16,74,75] and NPM1-mutated
AML [14,15,59] or similar percentages of MRD-positive patients in NGS [61]. This indicates a potential
usability of PB in the MRD setting. However, other data showed insufficient correlation disfavoring
PB [76], especially in the context of low MRD levels [52]. As a result, especially for MFC-based MRD
analyses, PB is not recommended at the moment [10]. An exception remains WT1 based MRD, where
PB seems to be superior to BM analyses due to a higher physiologic WT1 expression in the latter [31].

3.2. Choosing the Optimal Target for MRD Detection

With the introduction of NGS technology, in nearly all individuals, molecular markers may be
identified and potentially used for MRD assessment [33,77]. However, the applicability of distinct
mutations for MRD analysis is highly variable as some mutations indicate leukemic cells that can
initiate relapse while others represent pre-leukemic clones or germline mutations. DTA mutations
were shown to be very early events associated with CHIP and can be found in healthy individuals,
especially with increasing age (10% of healthy individuals older than 65 years and 18.4% of individuals
older than 90 years, but only 1% of those younger than 50 years) [33,78]. In AML patients, these
mutations often persist in CR after chemotherapy [13,67,79], and their persistence does not associate
with adverse outcomes [67]. In fact, persistence of CHIP-associated mutations might even lead to an
enhanced graft-versus-leukemia (GvL) effect and confer a better prognosis in patients undergoing
allogeneic HSCT [66,80]. On the other hand, persisting mutations in the genes NRAS, KRAS, PTPN11,
and KIT associated with worse outcomes, but most likely are later, subclonal events which might lack
the high sensitivity wanted for a robust MRD marker [67]. Additionally, germline mutations that
confer a higher risk of AML development have been recognized, e.g., in the genes CEBPA, RUNX1 or
GATA2 [81]. As the germline mutational burden will not correlate with the residual leukemic burden,
germline origin has to be excluded in cases where these genes are considered for MRD evaluation.
The feasibility of MRD targets also depends on the applied therapy, as some MRD analyses are feasible
after an allogeneic HSCT. This includes monitoring of donor chimerism in sorted or unsorted PB or
BM cells with varying sensitivity [37,82]. Furthermore, monitoring of CHIP-associated mutations
e.g., in DNMT3A, TET2, ASXL1 [68], or JAK2 [83] may also provide prognostic information after
allogeneic HSCT. The monitoring of the expression levels of AML-associated genes such as WT1,
BAALC or MN1 may be of help to assess an MRD status in individuals lacking targetable specific
aberrations [37,39–42]. As with MCF-based MRD assessment, expression levels of AML-associated
genes are less dependent on certain genetic changes and, thus, have a broader applicability, but are
also in general less sensitive. First studies already suggested that combining several MRD targets, e.g.,
flow cytometry with leukemic stem cell frequency [84] or multiple gene mutations [67] may allow
complementary risk stratification. Thus, it is most likely that in the future a combination of MRD
targets and assays will be monitored in individual patients, providing a greater certainty to detect
residual AML clones capable of initiating relapse.

3.3. Timepoint of MRD Evaluation

In general, MRD can be assessed at either “early timepoints“ during therapy cycles to
assess kinetics of treatment responses or at “later timepoints“ e.g., after completion of therapy to
detect impending morphologic relapse [2]. There are only very limited data on the prognostic
significance of MRD assessment at the time-point during aplasia after induction therapy available [85].
For all following time-points during AML therapy—i.e., after induction [19–25,67,69,70] and
consolidation [11,12,20,21,26,52] chemotherapies, prior to [22,27–30,40,42,45,62,71,86] and after [28,37,68]
allogeneic HSCT and during follow up [21]—the predictive value of MRD assessment was extensively
published within the last years. However, the optimal timepoints and intervals are yet to be defined
and most probably will depend on the underlying AML biology [75]. This is underlined by the
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fact that heterogeneous kinetics from hematologic to molecular responses, as well as molecular to
hematologic relapse have been shown in different AML subtypes [13,15,51,75]. For example, kinetics
of RUNX1-RUNX1T1 and especially CBFB-MYH1 have been reported to be slower than most other
AML subtypes. Here, a molecular relapse can precede hematologic relapse for up to one year [75,87].
In contrast, kinetics for NPM1 mutated AML seem to be highly variable and dependent on the molecular
context, as faster relapses were linked to the presence of a FLT3-ITD with a median time to relapse of 3.5
and 6.5 months for FLT3-ITD-positive and FLT3-ITD-negative patients, respectively [75]. The recently
published recommendations from the ELN MRD working party suggest assessing MRD at least at
diagnosis, after two cycles of chemotherapy and at the end of treatment in BM and PB, as both specimens
have their advantages and disadvantages [10]. Additionally, in patients undergoing allogeneic HSCT,
MRD should be evaluated within 28 days prior to the start of the conditioning regimen [10]. During the
follow-up phase, MRD should be analyzed every three months in PB and BM for at least two years and
according to individual risk thereafter [10].

3.4. MRD Thresholds

Similar to the variety of assessable MRD time-points, there is a large heterogeneity regarding
the optimal thresholds to define MRD-positive and -negative patients. Different studies made it clear
that repetitive detection of high MRD levels, as well as rising MRD levels after molecular remission
can reliably predict frank relapse [33,48]. Currently, no MRD test can accurately predict the risk of
relapse and defining a threshold for initiation of pre-emptive therapies in MRD-positive individuals
remains highly challenging. MRD thresholds probably depend on the applied method and specimen,
the analyzed target, and the time-point and context of sampling [88]. Regarding MFC-MRD, most
published studies used a cut-off of 0.1% [89]. Consequently, the ELN recommended this cut but also
recognized that lower MRD levels still have the potential to cause relapse [10]. For qRT-PCR based
MRD analyses, both absolute thresholds (e.g., “negativity”, 0.01% or 0.1%) and log reduction to baseline
levels at diagnosis have been identified as clinically relevant. Also for NGS assays, distinct variant
allele frequency levels (as negativity, <0.2%, or <2.5%) have been proposed as MRD thresholds [68–71].
However, in the clinical routine, the sensitivity and threshold applied is most likely of less relevance
than the frequency of sampling, the amount, and type of sampled tissue, as well as the clinical
interpretation and integration of MRD results into clinical care of patients.

4. Clinical Implications of MRD Detection

The repeatedly reported close association between MRD test results and clinical outcome has led
to considerable interest in using MRD information for clinical decision-making in everyday therapies.
Until today, no randomized studies have been conducted to validate the common suggestion that
initiation or intensification of therapies in MRD-positive patients will reduce the risk of hematologic
relapse and improve OS in AML patients. The question remains as to whether survival will be truly
improved if an individual receives pre-emptive treatment with “only“ a positive MRD test result
compared to subjects with frank morphologic relapse [90]. Additionally, the risks of the chosen
therapies have to be weighed against the risk of relapse, especially in approaches with higher mortality
and morbidity administered to “morphologically cured” AML patients. In AML, the beneficial effect of
early treatment intervention has only been convincingly reported for APL patients [9,91,92]. In general,
the ELN recommends confirmation of any positive MRD result after 2–4 weeks before judging the
relapse probability or starting pre-emptive treatment [10,48,90]. Some prospective non-randomized
studies suggested a clinical benefit for MRD-directed therapies in non-APL AML, which are discussed
in the following paragraph [14,49,93]. However, as there are no control groups, it remains to be
demonstrated that MRD-directed preemptive treatments can actually result in longer survival because
also a proportion of patients suffering morphologic relapse can be rescued by chemotherapy and/or
allogeneic HSCT [94].
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4.1. Decision towards Allogeneic Transplant

Allogeneic HSCT is considered to reduce relapse risk at the cost of higher non-relapse mortality
and, thus, recommended for patients with higher disease risk in first CR or after relapse. In general,
an improvement of DFS of >10% has been adopted to justify the decision towards an allogeneic
HSCT [95]. As previously discussed, many studies reported higher relapse incidences and shorter
survival for patients being MRD-positive prior to allogeneic HSCT—irrespective of the used MRD
marker or intensity of conditioning regimens [22,27–30,40,42,44,62,71,96]. One study even showed
that MFC-MRD-positive patients had outcomes comparable to patients transplanted with active
AML [27]. However, despite lacking data from randomized prospective clinical trials, some studies
suggested that allogeneic HSCT in MRD-positive patients might improve outcomes. In a cohort
of t(8;21) patients, Zhu et al. [49] defined high-risk as failure to achieve a >3 log MRD reduction
after the second cycle of consolidation therapy. High-risk patients were recommended to undergo
allogeneic HSCT and low-risk patients to undergo consolidation chemotherapy or autologous HSCT.
Comparing patients treated according to protocol to patients not treated according to protocol
(i.e., low risk patients receiving allogeneic HSCT and high risk patients receiving chemotherapy),
this study indicated that allogeneic HSCT significantly reduces relapse rates and improve survival
compared to chemotherapy. On the other hand, chemotherapy or autologous HSCT consolidation led
to lower relapse rates and longer OS and DFS in low-risk patients. Despite a potential bias introduced
through the not-randomized treatment assignment, the study suggested a survival advantage through
the risk-adapted treatment approach if comparing the results to data of previous not-risk adapted trials
in t(8;21) AML patients [97–100]. Balsat et al. [14] analyzed mutated NPM1-based MRD in PB and
defined MRD-negativity as a >4 log reduction. While patients with positive MRD had higher relapse
risk and shorter OS, a subanalysis in ELN intermediate risk patients also suggested a favorable impact
of allogeneic HSCT on OS in MRD-positive individuals. DFS and OS were similar for MRD-negative
patients irrespective of the form of consolidation (allogeneic HSCT or chemotherapy), as well as
for MRD-positive patients undergoing allogeneic HSCT. On the other hand, MRD-positive patients
consolidated with chemotherapy had significantly shorter DFS and OS [14]. Venditti et al. [101]
published a prospective clinical trial where the consolidation therapy (autologous vs. allogeneic HSCT)
of younger patients with intermediate genetic risk was dependent on the post-consolidation MRD
levels. Despite the non-randomized treatment approach, the authors were able to show that allogeneic
HSCT in MRD-positive intermediate risk patients was able to prolong DFS and OS to rates comparable
to favorable risk patients. Finally, two other retrospective studies described a favorable impact of
allogeneic HSCT compared to chemotherapy alone on relapse rates and OS in patients with positive but
not negative MRD in first CR [69,71]. A potential positive impact of allogeneic HSCT in MRD-positive
patients is underlined by the observation that GvL effects after HSCT seem to result in similar relative
reduction of relapse risk compared to chemotherapy in MRD-positive and MRD-negative patients [102].
The GvL effect might be augmented even further after cord blood compared to BM or PB-derived stem
cell transplantation [103,104]. Taken together, these data suggest that, for good- or intermediate-risk
AML patients undergoing intensive chemotherapy, MRD evaluation after induction chemotherapy
may have the potential to guide decision towards treatment intensification with allogeneic HSCT.
Despite the adverse prognostic effect shown for pre-HSCT MRD-positive patients, allogeneic HSCT
seems to have the potential to improve outcomes as compared to chemotherapy alone.

4.2. Pre-Emptive Treatment of Impeding Relapse

The data on AML patients with molecular relapse or persisting MRD receiving therapeutic
intervention are still limited, but experiences from ALL therapy—where MRD triggered treatment
with blinatumumab improves outcomes—showed promising results [105]. Also in AML, recent
evidence points to an effect of therapeutics, such as azacitidine, to prevent or delay relapse in
MRD-positive situations [93]. Within the RELAZA2 trial, AML and high-risk MDS patients in CR
prospectively received pre-emptive azacitidine after developing MRD-positive disease defined as
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either decline of CD34-chimerism <80% or >1% burden of RUNX1/RUNX1T1 or NPM1 mutation levels.
With an acceptable safety profile, azacitidine prevented hematological relapse in 51% of patients. In the
remaining patients, relapse could be delayed to a median time of 422 days [93], which was significantly
longer than the median 30–120 days reported for historical cohorts [15,75,82]. Additionally, the lower
rates of hematologic relapse after allogeneic HSCT compared to relapses after chemotherapy within the
study pointed to the immunomodulatory properties of azacitidine [106]. Despite lacking randomized
data, this study currently provides the strongest evidence that MRD-guided therapies are able to prevent
or substantially delay relapse and—most likely—will prolong survival in MRD-positive AML patients.
Within the last years, a lot of new therapeutics targeting AML-associated molecular aberrations such
as mutated IDH1 [107], IDH2 [108], FLT3-ITD [109] and/or FLT3-TKD [110], surface antigens [111],
or drugs that lead to immunological activation [112] have been evaluated in clinical trials and are
currently or will soon be receiving approval. These substances may provide a potential to pre-emptively
treat MRD-positive patients at the end of treatment or a possibility to eradicate MRD-positive disease
prior to an allogeneic HSCT. Thus, a variety of clinical studies evaluating pre-emptive treatment in
patients remaining MRD-positive or suffering molecular relapse are currently enrolling.

5. Conclusions

A lot of progress has been made in introducing MRD analyses in the clinical routine, and MRD
assessment is already recommended by the ELN for some AML subgroups [10]. Results of MRD
testing will probably supplement if not replace the currently used cytomorphology for evaluation
of remission after treatment [2] as a variety of studies demonstrated an improved prognostic value
of MRD compared to morphological evaluation [19,27]. Regardless of the time-point or MRD target,
there is reliable data strengthening the high prognostic significance of MRD assessment. Especially
in patients with low or intermediate risk at diagnosis, a repeatedly positive MRD test will probably
help to identify patients who benefit from treatment intensification such as an allogeneic HSCT.
Additionally, emerging new treatment strategies as targeted therapies may contribute to successful
MRD convergence. Despite a growing usage of MRD assessment in the clinical practice, a lot of open
questions remain. In the future, protocols should include MRD assessments (including PCR-based and
MFC-based approaches) at various meaningful time-points to help with addressing these questions.
The most important question to be answered is when and how pre-emptive therapies might improve
prognosis in MRD-positive AML patients, which can only be answered by prospective randomized
clinical trials.
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