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Abstract

Motivation: As the most abundant mammalian mRNA methylation, N6-methyladenosine (m6A)

exists in >25% of human mRNAs and is involved in regulating many different aspects of mRNA

metabolism, stem cell differentiation and diseases like cancer. However, our current knowledge

about dynamic changes of m6A levels and how the change of m6A levels for a specific gene can

play a role in certain biological processes like stem cell differentiation and diseases like cancer is

largely elusive.

Results: To address this, we propose in this paper FunDMDeep-m6A a novel pipeline for identifying

context-specific (e.g. disease versus normal, differentiated cells versus stem cells or gene knock-

down cells versus wild-type cells) m6A-mediated functional genes. FunDMDeep-m6A includes, at

the first step, DMDeep-m6A a novel method based on a deep learning model and a statistical test

for identifying differential m6A methylation (DmM) sites from MeRIP-Seq data at a single-base

resolution. FunDMDeep-m6A then identifies and prioritizes functional DmM genes (FDmMGenes)

by combing the DmM genes (DmMGenes) with differential expression analysis using a network-

based method. This proposed network method includes a novel m6A-signaling bridge (MSB) score

to quantify the functional significance of DmMGenes by assessing functional interaction of

DmMGenes with their signaling pathways using a heat diffusion process in protein-protein inter-

action (PPI) networks. The test results on 4 context-specific MeRIP-Seq datasets showed that

FunDMDeep-m6A can identify more context-specific and functionally significant FDmMGenes than

m6A-Driver. The functional enrichment analysis of these genes revealed that m6A targets key genes

of many important context-related biological processes including embryonic development, stem

cell differentiation, transcription, translation, cell death, cell proliferation and cancer-related path-

ways. These results demonstrate the power of FunDMDeep-m6A for elucidating m6A regulatory

functions and its roles in biological processes and diseases.

Availability and implementation: The R-package for DMDeep-m6A is freely available from https://

github.com/NWPU-903PR/DMDeepm6A1.0.
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1 Introduction

N6-methyl-adenosine (m6A) methylation, as the most abundant

methylation in mRNA, exists in >25% of mRNAs in mammalian

cells (Dominissini et al., 2012; Meyer et al., 2012) and participates

in controlling many aspects of RNA metabolism including mRNA

degradation and translational efficiency (Ping et al., 2014; Slobodin

et al., 2017; Wang et al., 2014, 2015; Zheng et al., 2013; Zhou

et al., 2015). m6A is also reported to regulate stem cell differenti-

ation (Batista et al., 2014; Bertero et al., 2018; Geula et al., 2015),

viral life cycle (Lichinchi et al., 2016; Tan et al., 2018; Tirumuru

et al., 2016), cancer and other diseases (Bansal et al., 2014;

Kaklamani et al., 2011; Li et al., 2017; Lin et al., 2016; Loeb et al.,

2001; Oka et al., 2002; Zhang et al., 2016a,b). Yet, our current

knowledge about how m6A levels are regulated and whether and

how the regulation of m6A levels of specific genes can play a role in

these biological processes and other diseases is largely elusive.

The purpose of this study is to develop a pipeline to help reveal

the dynamics of m6A level in specific context (e.g. disease versus

normal, differentiated cells versus stem cells or gene knockdown

cells versus wild-type cells) and identify functional genes and path-

ways mediated by the dynamic m6A levels using data from the

methylated RNA immunoprecipitation sequencing (MeRIP-seq)

(Dominissini et al., 2012; Meyer et al., 2012). The very first step of

this pipeline is to discover the dynamic changes of m6A level, i.e. to

identify differential m6A methylation (DmM) sites by comparing

MeRIP-seq samples under the treated (e.g. disease, differentiated

cells or gene knockdown cells) versus untreated (e.g. normal, stem

cells or wild-type cells) conditions. The existing DmM-site-

identification algorithms like exomePeak (Meng et al., 2013),

MeTDiff (Cui et al., 2018) and QNB (Liu et al., 2017) all suffer

from a limited detection resolution of �100 bp and the large bio-

logical and technical variation associated with the low resolution

often result in a high false positive rate in the predicted peaks. To

overcome this limitation, we previously developed Deep-m6A to effi-

ciently and accurately identify single-base m6A sites from MeRIP-

Seq data using a deep learning method (Zhang et al., 2019).

However, Deep-m6A cannot identify single-based DmM sites and

there is no existing algorithm and tool that can identify single base

resolution DmM sites from MeRIP-Seq data. Moreover, the compu-

tational prediction of functional m6A genes is still inadequately

addressed. In our previous work (Zhang et al., 2016a,b), we devel-

oped m6A-Driver, a network-based approach to identify m6A driven

genes with significant functions under a specific context. However,

m6A-Driver has several limitations. First, the DmM sites in

m6A-Driver are determined based on exomePeak and have �100 bp

resolution. Second, m6A-Driver only considers the functional inter-

actions between DmM genes but ignores the functional interaction

of DmM genes with known signaling pathways and their up-

and down-stream genes in pathways. Third, only BioGRID

(Chatr-Aryamontri et al., 2015) PPI network was used as a reference

network in m6A-Driver, whose functional information could be in-

complete and noisy.

To address these issues of m6A-Driver, we developed a novel

FunDMDeep-m6A algorithm (Fig. 1) to detect DmM sites at a

single-base resolution and identify and prioritize context-specific

functional differential m6A methylation genes (FDmMGenes) by a

network-based method that also integrates the differential methyla-

tion and expression levels under two different conditions. As the

first step of FunDMDeep-m6A, we proposed DMDeep-m6A to iden-

tify single-base DmM sites. DMDeep-m6A first applies Deep-m6A to

identify single-base resolution m6A sites under each condition

separately and then employs a statistical test to select significant

single-base DmM sites. Gene which harbors at least one DmM site

is identified as DmMGene. Second, as one of the key regulatory

functions of m6A is to degrade its methylated mRNAs, differential

expression (DE) analysis is applied to assess the potential regulatory

effect of differential m6A on the DmMGenes. Third, to quantify the

functional significance of DmMGenes and motivated by cancer sig-

naling bridge (CSB) (Jin et al., 2012; Zhao et al., 2013), we pro-

posed a novel m6A-signaling bridge (MSB) score to model the

functional interactions of DmMGenes with their connecting signal-

ing pathways in protein-protein interaction (PPI) networks. Finally,

a heat diffusion algorithm is applied to measure the influence of a

DmMGene on the expression of its neighboring genes in PPI net-

works. To address the incomplete and noisy knowledge of a single

PPI network, we used 4 PPI networks including BioGRID (release

3.4.128) (Chatr-Aryamontri et al., 2015), HINTþHI2012 (Das and

Yu, 2012; Yu et al., 2011), MultiNet (Khurana et al., 2013) and

iRefIndex (Razick et al., 2008) as reference network. The functional

DmMGenes are selected and prioritized based on the final MSB

scores. FunDMDeep-m6A was tested in 4 context-specific MeRIP-

Seq datasets and the results demonstrated the power of

FunDMDeep-m6A to prioritize the context-specific genes mediated

by m6A and to reveal the underlying functions of m6A.

2 Materials and methods

2.1 Dataset
Four MeRIP-Seq datasets under different conditions and in different

cells are used in this work. MeRIP-Seq includes two sets of samples,

the input and the IP samples. The input samples are essentially

RNA-seq and measure the number of sequence reads of the back-

ground mRNA copy numbers or gene expression. The IP samples

measure the number of reads pulled-down by the anti-m6A anti-

body. The relative degree of m6A methylation can be assessed as the

enrichment of IP reads over input reads. The input samples can be

used to measure the gene expression level. The hESCs dataset con-

tains two MeRIP-Seq IP/Input replicates in undifferentiated human

embryonic stem cells and two in endodermal differentiation cells

(Batista et al., 2014). The MOLM13 dataset contains two MeRIP-

Seq IP/Input replicates in wild-type MOLM13 cell lines and four in

METTL13 knockdown MOLM13 cells (Barbieri et al., 2017). The

Hela dataset contains two MeRIP-Seq IP/Input replicates in wild-

type Hela cell line and two in METTL13 knockdown Hela cell lines

(Niu et al., 2013). The A549 dataset contains four MeRIP-Seq IP/

Input replicates in wild-type A549 cell lines and three in METTL13

knockdown A549 cell lines (Schwartz et al., 2014).

The reference PPI networks were built based on BioGRID (re-

lease 3.4.128) (Chatr-Aryamontri et al., 2015), HINTþHI2012

(Das and Yu, 2012; Yu et al., 2011), MultiNet (Khurana et al.,

2013) and iRefIndex (Razick et al., 2008). After removing the iso-

lated proteins and self-interaction proteins, we established a PPI net-

work with a total of 16 062 proteins and 152 676 interactions in

BioGRID network. The last three PPI networks were downloaded

from http://compbio.cs.brown.edu/pancancer/hotnet2/ (Leiserson

et al., 2015). The HINTþHI2012 network contains 9858 genes and

40 704 edges; the iRefIndex network contains 12 128 genes and 91

808 edges; and the Multinet network contains 14 398 genes and 109

569 edges. Genes that involved in REACTOME, MSigDB C2

BIOCARTA (v6.0) or Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways annotated using ToppGene (Chen et al., 2009)

were denoted as the signaling genes.
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2.2 Single-base differential methylation site

identification
DMDeep-m6A was proposed as the first step of FunDMDeep-m6A

to identify the single-base resolution m6A sites using Deep-m6A

(Zhang et al., 2019) and a statistical test. For samples in each condi-

tion, exomePeak was applied to detect the peak regions from all rep-

licates and DRACH (where D¼A, G or U; R¼A or G; H¼A, C or

U) motifs were searched in the peak regions. DRACH is the consen-

sus motif of m6A (Dominissini et al., 2012; Linder et al., 2015;

Meyer et al., 2012) and it is used in this study to reduce the false

positive predictions. The ‘A’ in a motif was treated as a candidate

single-base m6A site. Then for each replicate under this condition,

Deep-m6A was employed to predict the probability of these candi-

date sites to be real m6A sites. The Deep-m6A model, trained in our

previous work, takes the mRNA nucleotide sequence and reads

count feature of 101 nt centered at the ‘A’ of a DRACH motif as in-

put and outputs the probability of this ‘A’ to be a real m6A site. The

reads count feature is normalized by the total number of reads for

each candidate m6A site in each replicate. Candidate sites with

probability more than 0.8 was identified in this work as the single-

base m6A sites in the corresponding replicate. We used 0.8 to trade

off low detection sensitivity and high false positive. Single-base m6A

sites that appear in every replicate under one condition and but not

in any replicate under the other condition were defined as condition-

specific m6A sites; m6A sites that exist in both conditions are defined

as candidate DmM sites.

To detect the DmM status of candidate DmM sites, we com-

pared the methylation level of these sites under different conditions

using rhtest as is used in exomePeak (Meng et al., 2013). For each

candidate DmM site, reads that mapped to the 201 nt region cen-

tered at it in IP and Input samples under both conditions were

counted. We extended the single-base candidate DmM m6A sites to

account for the high reads variance at the single-base DmM sites

across replicates. We examined the peak length detected by

exomePeak in all 4 datasets and found that most peaks were around

200 nt long (Supplementary Fig. S1). As a result, we chose 201 nts

to better capture the site-related reads information around a single-

base m6A site. Next, an rhtest was applied to the reads count

mapped to the 201 nt region centered at the candidate DmM site to

detect their DmM status (see Supplementary Note 1 for the details

of the test). The final collection of the DmM sites included candidate

DmM sites with FDR � 0.01 calculated using rhtest and the

condition-specific m6A sites. Genes that contain at least one DmM

sites were identified as DmMGenes.

We also developed a DMDeep-m6A R-package. The package

takes the bam files of MeRIP-Seq data as input and can perform

single-base m6A sites and differential m6A sites identification for

human and other species. The output includes the bed files with

annotated genome positions of identified sites and the excel files

with the annotated the transcript positions of the sites, its corre-

sponding transcription region 5’UTR, CDS or 3’UTR), methylation

or differential methylation degree (log2 fold change), the prediction

probability, the P-value and FDR. DMDeep-m6A is freely available

from https://github.com/NWPU-903PR/DMDeepm6A1.0.

2.3 Gene differential expression analysis
DESeq2 (Love et al., 2014) was applied to detect differential expres-

sion (DE) genes. Reads mapped on genes in the input samples of the

MeRIP-Seq data under different conditions were counted using

summarizeOverlaps in the GenomicAlignments R package

(Lawrence et al., 2013) and were then used to calculate the differen-

tial expression P-value by compared samples under the treated con-

dition with the samples under the wild-type condition. The –log10

P-value of a gene was defined as its DE score to denote its DE degree

to be used in the following analysis.

2.4 Functional DmM gene identification and

prioritization
m6A is reported to mediate mRNA turn-over or translational effi-

ciency of genes such as MYC (Huang et al., 2018), TGFb

(Panneerdoss et al., 2018) and FOXM1 (Zhang et al., 2017) to regu-

late the expression of important pathways such as cell apoptosis,

proliferation, migration, self-renewal and circadian rhythm in both

normal and disease conditions (Fitzsimmons and Batista, 2019).

Therefore, a functional DmMGene (FDmMGene) in this study is

defined as a context-specific DmMGene that interacts with known

pathway genes and may influence the expression of their up- and

down-stream genes. To model the functional interaction of

DmMGens with known pathway genes and their up- and down-

stream genes, we proposed the m6A-signaling bridge (MSB) scores.

A

C

B

Fig. 1. Flowchart of FunDMDeep-m6A. (A) Single-base differential m6A methy-

lation (DmM) site identification (DMDeep-m6A). (B) Differential expression

analysis. A deeper grey color means the gene has a greater degree of DE. (C)

Functional DmMGene identification and prioritization by integrating the DE

and DmM using a network-based method. DmMGenes are mapped to 4 PPI

networks. For each PPI network, MSB score for each DmMGene is calculated

by integrating the weighted DE scores of its MSB neighbors and itself. An

MSB is a fully connected triangle or square motif in the network, which is

denoted using bold black edges. Orange nodes denote DmM genes, green

nodes denote signaling genes, and grey nodes denote genes that are neither

DmM and nor signaling genes. The ranks of DmMGenes in the 4 networks are

integrated using the a-RRA method. The deeper the color of DmMGenes or

FDmMGenes, the bigger the MSB scores and hence the more significant

functions
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MSBs are functional motifs in a PPI network, e.g. fully connected

triangles and squares, which contain at least one DmMGene, one

signaling gene involved in certain signaling pathways, and one gene

that is neither DmM nor a signaling gene so that up- and down-

stream interactions between the DmMGenes and signaling genes in

pathways can be account for (see Supplementary Note 2 for more

details). To calculate MSB scores, all DmMGenes are mapped to

four PPI networks and for each DmMGene in each network, an

MSB score is then calculated by summing the DE scores of itself and

its MSB neighbors weighted by a heat diffusion probability from

this DmMGene. Notice that the MSB analysis was performed in the

four PPI networks separately instead of in a combined PPI network.

The reason is that different PPI networks have different network

characteristics, which would be destroyed if they are combined

(Leiserson et al., 2015). For each PPI network with N nodes, the

heat diffusion probability from a DmMGene to its neighbors is cal-

culated using an insulated heat process that can be described in

terms of a random walk with restart (RWR) (Leiserson et al., 2015).

The RWR algorithm is formulated as:

pt
i ¼ ð1� bÞpt�1

i W þ bp0
i (1)

where i denotes the ith DmMGene which served as seed node in the

random walk, pt
i is an N�1 vector whose jth element represents the

heat of the start diffused to gene j at step t, p0
i is the initial probabil-

ity vector in which the DmMGene i has a probability of 1 and the

probability of other genes are 0, the transition matrix W is the

column-normalized adjacency matrix of the PPI network, and b is a

fixed parameter, which denotes the restarting probability at a given

time step. Then, pt
i is updated according to (1) iteratively until the

difference between pt
i and pt�1

i is below a predefined threshold

(10�6 in this work). For DmMGene i, the heat diffusion probability

from it to its neighbors is calculated as:

hi ¼
XT

t¼1

pt
i (2)

where T is the total number of random walks. Representing the heat

diffusion probability of DmMGene in this way can capture high-

order proximities of network nodes (Gligorijevic et al., 2018).

Finally, the MSB score of DmMGene i is calculated as:

MSBscorei ¼
XN
j¼1

hijDjIMSBðijÞ (3)

IMSBðijÞ¼
1 if gene j 2 MSBi

0 if gene j 62MSBi

�
(4)

where N is the number of genes in the network, hij is the heat diffu-

sion probability from DmMGene i to gene j, Dj is the DE score of

gene j and MSBi denotes the MSBs containing DmMGene i. hi can

represent the impact of a DmMGene on its neighbors’ expression

via the PPI network and the MSB can model the functional interac-

tions of DmMGenes with genes in the signaling pathways. As a re-

sult, the MSB score can represent the functional significance of a

DmMGene; the bigger the MSB score, the more functional signifi-

cant the DmMGene is.

After calculating the MSB score of DmMGenes in each of the 4

PPI networks, a size factor sn is calculated for each network n using

the ‘geometric’ approach (Anders and Huber, 2010; Robinson and

Oshlack, 2010) to normalize the scores across the networks.

Afterward, the DmMGenes mapped to each PPI network are ranked

based on their normalized MSB scores and the ranks of a

DmMGene in the four networks were integrated using a-RRA (Li

et al., 2014). Let R ¼ (r1, r2, r3, r4) denote the vector of the ranks of

a DmMGene in the 4 networks. We first converted the ranks into

the percentiles U ¼ (u1, u2, u3, u4), where un ¼ rn/Nn (n¼1, 2, 3, 4),

Nn is the total number of genes in network n. Under the null hypoth-

esis that the percentiles follow the uniform distribution between 0

and 1, the kth smallest value among u1, u2, u3, u4 is an order-

statistic, which follows the beta distribution B(k, nþ1� k), based

on which the P-value qk for the kth smallest value can be calculated.

The q value, which is the significance score of the gene, is then

defined as q ¼ min (q1, q2, q3, q4). However, this approach could

also pick DmMGenes ranked in the middle of all networks. To ad-

dress this issue, we used a-RRA (Li et al., 2014) to calculated the

q value. Specifically, we first selected the top a% ranked

DmMGenes in each network if their MSB scores are bigger than a

threshold (-log10(0.05) in this work). If a DmMGene is selected

from the kth networks, then the modified q value is defined as q ¼
min (q1, . . ., qk), where k�4.

To compute a P-value based on the q values, we performed a

permutation test, where the normalized MSB scores in all networks

were pooled together and then randomly assigned to DmMGenes in

each network. By default, 100�ng permutations were performed,

where ng is the number of DmMGenes. The FDR from the empirical

permutation P-values were computed using the Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995). The mean of the nor-

malized MSB scores in all networks of a DmMGene was used to pri-

oritize the functional DmMGenes.

3 Results

3.1 Characteristics of single base DmM sites and

FDmMGenes
We first investigated the characteristics of single-base DmM sites in

the 4 datasets. For the hESCs dataset, all DmM sites were consid-

ered for the analysis, whereas for the MOLM13, Hela and A549

dataset, only condition-specific sites in the wild-type cells and the

hypo-DmM sites in the METTL3 KD cells were selected as the

METTL3-dependent m6A sites and genes that harbor them were

selected as DmMGenes; this is because METTL3 is an m6A methyl-

transferase and knocking down METTL3 likely induces a decrease

in m6A. The DmM site distributions on mRNA in four datasets

were plotted using the Guitar R/Bioconductor package (Fig. 2A).

Overall, DmM sites are mostly enriched around the stop codon and

are distributed more in the 3’UTR and CDS than in the 5’UTR for

all datasets and the DmM sites for MOLM13 dataset are even more

enriched in the 3’UTR; this result is consistent with the report in

(Barbieri et al., 2017) that 65.4% METTL3-dependent m6A peaks

were enriched in the 3’UTR and only 1.0% were enriched in the

5’UTR.

There are in total 3700, 2161, 2944 and 2894 DmMGenes iden-

tified in the hESCs, MOLM13, Hela and A549 datasets, respectively

(Fig. 2B). Each DmMGene harbors on average about one DmM site

in the 3’UTR region and one DmM site in the CDS region for all

datasets. We next examined the hyper and hypo methylation status

of these sites. For the A549, Hela and MOLM13 datasets, all the

identified DmM sites are hypo methylated; this is consistent with the

fact that m6A levels should decrease because of METTL3 knock-

down. For the hESCs dataset, �59% (2181/3700) DmMGenes harbor

only hypo DmM sites in undifferentiated hESCs versus differenti-

ated endoderm cells, �26% (966/3700) DmMGenes harbor only

hyper DmM sites, and �15% (553/3700) DmMGenes harbor
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multiple DmM sites that are either hypo or hyper methylated. For

most (�85%) of the DmMGenes, their DmM sites share the same

status of differential methylation. Out of the DmMGenes, 595, 269,

412 and 301 were identified as FDmMGenes in hESCs, MOLM13,

Hela and A549 datasets, respectively (Fig. 2B) and on average, one

FDmMGene contains about 1.2 DmM sits in the 3’UTR, which is

more than DmMGenes, about 1.5, 0.7, 1.7 and 1 DmM sites in

CDS, and 0.3, 0.04, 0.2 and 0.1 DmM sites in the 5’UTR in hESCs,

MOLM13, Hela and A549 datasets, respectively. Because the

3’UTR contains binding sites of miRNA and many RNA binding

proteins such as HuR that are known to regulate gene expression

post-transcriptionally, these result may indicate that these DmM

sites could potentially be involved in regulating gene expression.

The FDmMGenes are functional DmMGenes that have consist-

ent relatively high MSB scores in four networks. The MSB score is a

measure of the functional significance of a DmMGene, a bigger

MSB score implies higher functional significance. The MSB score for

a DmMGene in a network is calculated by the sum of the weighted

DE scores of its MSB neighbors and itself and the DE score is the

negative log10 P-value calculated by DESeq2 (see Section 2 for

details). Therefore, the more functionally significant a DmMGene

is, the bigger increase the MSB score has over the DE score. We then

compared the DE scores and MSB scores between FDmMGenes and

DmMGenes (Fig. 2C) and verified that the MSB scores of

FDmMGenes have bigger increase over DE scores than those of

DmMGenes do. Most of the DE and MSB scores in DmMGenes are

near 0 (Supplementary Fig. S2). However, the MSB scores of

FDmMGenes become significantly greater than 0 (t-test P-value <

2.2�10�16 in all datasets). Notice that some DE scores of

FDmMGenes are still near 0; they would be predicted functionally

insignificant in a differential expression analysis because they are

not differentially expressed. We further investigated whether the

top-ranked FDmMGenes are prioritized because they have higher

DE scores. To evaluate this, we extracted the top 100 DmMGenes

ranked based on their DE scores and the top 100 DmMGenes

ranked based on their MSB scores (top FDmMGenes) and then com-

pared the difference of DE scores between these two groups of genes

in hESCs and MOLM13 datasets. As is shown in Supplementary

Figure S3, the DE score of the top FDmMGenes are not always

large, especially for the MOLM13 dataset, where about half (45/

100) of the top-ranked FDmMGenes have relatively smaller DE

scores than the top-ranked DmMGenes based on DE scores. These

results demonstrate the power of FunDMDeep-m6A in identifying

functional DmMGenes even with insignificant DE scores. This ad-

vantage will be further illustrated by the functional analysis of the

FDmMGenes in following sections.

3.2 FunDMDeep-m6A identified more functional

enriched and significant FDmMGenes
We then compared the results of FunDMDeep-m6A with m6A-Driver

as they are both proposed to identify context specific functional

DmMGenes. We first compared the number of genes identified by

these two methods (Fig. 3A). The number of m6A-Driven genes

(mDrGenes) identified by m6A-Driver are much larger than that of

FDmMGenes identified by FunDMDeep-m6A in all 4 datasets.

We then compared the degree of functional enrichment for

FDmMGenes and mDrGenes. As the number of them is very differ-

ent, to make the comparison fair, we selected top 100 ranked

FDmMGenes based on their MSB score and top 100 ranked

mDrGenes based on DE FDR calculated by DESeq2. We employed

DAVID to assess the enrichment of GO Biological Processes (BP) for

these 2 group of genes and compared the degree of enrichment of

top 5 enriched BP terms (Fig. 3B). The functionally enriched degrees

of top 100 FDmMGenes in hESCs, MOLM13 and Hela datasets are

consistently larger than those of mDrGenes. In the A549 dataset, al-

though the top enriched degrees are smaller than those of mDrGenes

but the enriched biological processes are more significant in cancer-

associated processes including 11 FDmMGenes enriched in apop-

tosis, 3 FDmMGenes enriched in SMAD protein import into the

nucleus and 9 FDmMGenes enriched in negative regulation of cell

proliferation. Enrichment of cancer-related functions is more bio-

logically meaningful as oncogenic roles of METTL3 have been

reported for lung and breast cancer (Lin et al., 2016; Panneerdoss

et al., 2018). In contrast, the top BPs enriched in top mDrGenes are

all related to transcription, which are general functions not specific

in cancer (Supplementary Fig. S4). Taken together, these results

show that FDmMGenes should have higher prediction specificity

and precision in terms of functional significance than mDrGenes.

A B

C

Fig. 2. Characteristics of DmM sites and FDmMGenes. (A) DmM site distribu-

tion on mRNA. (B) The number of DmMGenes, FDmMGenes and their har-

bored DmM sites in the 3’UTR, CDS and 5’UTR. For the MOLM13, Hela and

A549 dataset, only METTL3-dependent genes and m6A sites are calculated.

(C) Comparison of MSB scores with DE scores of DmMGenes and

FDmMGenes. The MSB score of a gene is the mean of normalized MSB

scores of 4 PPI networks

A B

Fig. 3. Comparison of FDmMGenes with mDrGenes. (A) The number of m6A-

Driven genes (mDrGenes) and FDmMGenes. (B) Enrichment of top 5 function-

al enriched GO biological processes for top 100 FDmMGenes and mDrGenes.

The FDmMGenes are ranked based on their MSB scores and the mDrGenes

are ranked based on their DE degree. The enrichment analysis was done

using DAVID
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3.3 FunDMDeep-m6A prioritized more context-specific

and functional significant FDmMGenes
To further demonstrate the advantages of FunDMDeep-m6A in pri-

oritizing the context specific functional DmMGenes, we compared

the enriched functions of FDmMGenes and mDrGenes in hESCs

dataset, which is the only dataset with a clear context, i.e. stem cell

differentiation from hESCs to endoderm cells. We performed GO

BP enrichment analysis and KEGG pathway enrichment analysis for

these genes using ToppGene (Chen et al., 2009) and DAVID

(Dennis et al., 2003). The functional enrichment analysis illustrated

that FDmMGenes are more context-specific than mDrGenes

(Supplementary Figs S5–S6). Among the top 20 enriched biological

processes enriched in FDmMGenes using ToppGene, 19 are directly

related to cell differentiation, embryo development and morphogen-

esis (Supplementary Fig. S5), including embryonic morphogenesis,

embryo development, regulation of cell differentiation and cell mor-

phogenesis involved in differentiation. There are also 25

FDmMGenes significantly enriched in endoderm development

(pBenjamini ¼ 3.4�10�14) BP and 40 FDmMGenes significantly

enriched in stem cell differentiation (pBenjamini ¼ 6.2�10�12).

Although there are also 19 mDrGenes enriched in endoderm devel-

opment (pBenjamini ¼ 8.8�10�4) and 48 mDrGenes enriched in stem

cell differentiation (pBenjamini ¼ 7.8�10�5), the enrichment degrees

are much lower than that of FDmMGenes and therefore m6A-Driver

failed to prioritize these pathways.

Among the top 20 enriched KEGG pathways (Supplementary

Fig. S6) in FDmMGenes using DAVID are signaling pathways regu-

lating pluripotency of stem cells and pathways regulating cell differ-

entiation including the TGF-beta signaling pathway, the MAPK

signaling pathway and the Wnt signaling pathway. In contrast, the

top enriched functions of mDrGenes are more general cell processes

such as cell cycle, regulation of gene expression, regulation of

transcription.

Next, we investigated the power of FunDMDeep-m6A in priori-

tizing functionally significant DmMGenes. m6A has been reported

to play essential roles in stem cell differentiation (Batista et al.,

2014; Bertero et al., 2018; Geula et al., 2015) and leukemia (Bansal

et al., 2014; Barbieri et al., 2017; Ianniello and Fatica, 2018; Li

et al., 2017; Vu et al., 2017; Weng et al., 2018). Therefore, we first

examined whether FunDMDeep-m6A can identify known functional

genes regulated by m6A in the hESCs and MOLM13 datasets. The

known functional genes are DmMGenes and involved in mainten-

ance of the stem cell state and key regulators of endodermal differ-

entiation that are shown to be mediated by m6A in hESCs (Batista

et al., 2014) (red genes in Fig. 4A), and m6A regulated genes relevant

to AML proliferation reported in (Ianniello and Fatica, 2018) (red

genes in Fig. 4B) in MOLM13 dataset.

Most known DmM genes in the hESCs dataset were identified as

FDmMGenes (Fig. 4A; red dots; 7 out 9 DmM genes). Among these

FDmMGenes, NANOG and SOX2 are in the very upstream of the

pathway for maintenance of stem cell state (Young, 2011) and

EOMES, FOXA2 and SOX17 are key regulators of endodermal dif-

ferentiation. In particular, stem cell maintenance gene TCF3 and

SMAD3 are also identified as FDmMGenes, which may be missed

by traditional DE-based methods due to their low DE score. This

again demonstrates the power of FunDMDeep-m6A in identifying

functionally significant DmMGenes with low DE scores. However,

among the known functional DmMGenes in the MOLM13 dataset,

only MYC was identified as FDmMGene. This is reasonable because

SP1, RUNX1 and MYB are reported to be regulated by m6A via pro-

moting translation of their mRNAs (Barbieri et al., 2017; Vu et al.,

2017; Weng et al., 2018); they may be prioritized if there were pro-

tein level scores available to calculate an MSB score. What is inter-

esting is that among the prioritized FDmMGenes in MOLM13

dataset, RPL11, RPL12, RPL15, RPL19, RPL37A, RPL8 and

RPS4X are involved in translational initiation and translation,

which may help regulate the translation of m6A target mRNAs and

this may provide another clue of m6A regulation mechanism in

leukemia.

The key aim of this study is to prioritize functional differential

m6A methylation genes (FDmMGenes), which may be candidates of

critical genes regulated by m6A under specific condition. To show

that top-ranked FDmMGenes are context-specific and functionally

significant, we performed the functional analysis on the

FDmMGenes whose MSB scores are significantly higher than their

DE scores identified in the hESCs and MOLM13 datasets (Fig. 4).

The prioritized FDmMGenes along with their MSB scores and dif-

ferential expression scores for these 2 datasets are included in

Supplementary File 2. We focused on the FDmMGenes whose MSB

scores are larger than their DE scores, whose MSB scores larger than

90% quantile of all MSB scores, and whose DE score larger than

80% quantile of all DE scores and we defined them as prioritized

FDmMGenes. Besides the known functional DmMGenes, the priori-

tized FDmMGenes in the hESCs and MOLM13 datasets are also

functional significant and context-specific. In the hESCs dataset,

PRDM14 plays an important role in embryonic stem cell population

maintenance (Chan et al., 2013; Chia et al., 2010; Tsuneyoshi et al.,

2008); JUND is involved in cell differentiation, cell proliferation

and cell death; DACT2 plays a role in cell differentiation and cancer

for it is involved in biological process like epithelial cell morphogen-

esis, hematopoietic progenitor cell differentiation and regulation of

Wnt signaling pathway annotated by GO; LMX1B is also involved

in cell differentiation and embryonic development GO BP terms like

multicellular organism development, neuron differentiation and in

utero embryonic development; ROR2 is involved in embryonic geni-

talia morphogenesis, embryonic digit morphogenesis and negative

regulation of cell proliferation GO BP terms; GPR37 plays a nega-

tive role in cell death and positive cell proliferation (Huang et al.,

2014; Liu et al., 2014); SLC17A9 regulates cell viability (Cao et al.,

2014); LRP10 is reported as a negative regulator of the canonical

Wnt/beta-catenin signaling pathway, which plays fundamental roles

in the differentiation, proliferation and growth in cells and animals

(Jeong et al., 2010). In MOLM13, DDIT3 is a significant gene in

A B

Fig. 4. DmMgenes’ MSB score along with DE score. Each dot in the plot

denotes a DmMGene and the shape of the dot denotes if the gene is either

DmM (circle) or FDmM (triangle). The color is used to emphasize the function-

al DmMGenes. The red dots are known context-specific functional genes

from (Batista et al., 2014) and (Ianniello and Fatica, 2018), which are genes

involved in the maintenance of stem cell state and key regulators of endoder-

mal differentiation for (A) hESCs dataset and m6A regulated genes relevant

for AML proliferation for (B) MOLM13 dataset. The blue dots are prioritized

FDmMGenes with relatively high MSB scores compared to its DE scores
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Wnt pathway and an oncogene in liposarcoma annotated by

COSMIC (Forbes et al., 2011); BRD8 is reported to be associated

with tumor progression toward advanced stages (Yamada and Rao,

2009); BATF3 is involved in myeloid dendritic cell differentiation

GO BP term; KAT2A is a repressor of NF-kappa-B, which is a critic-

al regulator of inflammatory and cell survival signals, by promoting

ubiquitination of the NF-kappa-B subunit RELA in a HAT-

independent manner (Mao et al., 2009); MAFG is involved in blood

coagulation and regulation of cell proliferation GO BPs. All these

prioritized functional genes may be marker genes regulated by m6A

and provide new hypotheses of m6A regulatory mechanisms in influ-

encing stem cell differentiation and leukemia development.

3.4 METTL3 regulates some common and context-

specific genes and functions in different cell types
We next investigated the functional roles that METTL3-dependent

m6A sites play in different cell types. We analyzed 3 METTL3 KD

datasets and identified 269, 412 and 301 METTL3-dependent

FDmMGenes in MOLM13, Hela and A549 cell lines, respectively.

We counted the overlaps of the 3 sets of FDmMGenes

(Supplementary Fig. S7). There is only 1 common FDmMGene

(CBX4 gene) and more than 80% of the METTL3-dependent

FDmMGenes are cell line specific, which indicates that METTL3

may influence different functions in different cell type. We then per-

formed the functional enrichment analysis using ToppGene and

DAVID for the 3 sets of FDmMGenes (Supplementary Figs S8–S10).

Again, there is no common function among the three cell lines.

However, there are common functions between Hela and A549 cell

lines, which include cell cycle, gene expression, transcription and

chromosome organization.

We next examined the cell-line specific functions, for the

MOLM13 cell line, they are mainly about translation and ribosome

biogenesis including translation, translational initiation, ribonucleo-

protein complex biogenesis, ribosome biogenesis and Ribosome

KEGG pathway. It is reported that m6A promotes translation of

mRNAs relevant for AML proliferation (Barbieri et al., 2017; Vu

et al., 2017; Weng et al., 2018) and our results show that METTL3-

dependent m6A may not only influence the translation of key genes

via directly modifying them but also via influence the expression of

genes involved in regulation of transcription. This result is also con-

sistent with the fact that METTL3 is associated with translating

ribosomes in AML (Sorci et al., 2018). Therefore, FDmMGenes

identified in MOLM13 may provide new clues to study roles of m6A

in AML. For the A549 cell line, the specific functions are mainly

about cell death, apoptotic process and DNA replication like regula-

tion of apoptotic process, regulation of cell death and DNA replica-

tion. The Hela cell line specific functions are mainly about cancer,

chromatin organization and histone modification including path-

ways in cancer, cell-cell adhesion, leukocyte transendothelial migra-

tion, focal adhesion, chromatin organization, chromatin

remodeling, histone modification and histone deacetylation. All

these results demonstrate the power of FunDMDeep-m6A in identi-

fying context-specific functional genes mediated by m6A and give

new hypothesis to study the function and mechanism of m6A.

4 Discussion and conclusion

We proposed FunDMDeep-m6A, a novel pipeline for identifying

and prioritizing context-specific functional DmM genes from

MeRIP-seq data using deep learning and network-based method.

The first step of FunDMDeep-m6A is DMDeep-m6A, which is

developed to identify single-base DmM sites from MeRIP-seq sam-

ples from treated and untreated conditions. To our knowledge,

DMDeep-m6A is the first method and tool to identify single-base

DmM sites from MeRIP-Seq data. Second, to elucidate the function-

al interaction of DmMGene with signaling pathways, we proposed a

novel m6A-signaling bridge (MSB) to model the functional inter-

action of DmMGenes with signaling pathway genes and its up- and

down-stream genes and used a heat diffusion process to assess the

influence of DmMGenes on its MSB neighbors’ expression. Then,

an MSB score for a DmMGene is calculated by summing the DE

score of itself and its MSB neighbors weighted by the heat diffusion

probability from it. In this way, the MSB score can be used to repre-

sent the functional significance of a DmMGene and prioritize them.

Third, we used 4 PPI networks as reference network in this work to

avoid the incomplete and noisy information in a single PPI network

and integrated the ranks of DmMGenes based on MSB scores in all

networks using the a-RRA method. The results on 4 context-specific

MeRIP-Seq datasets demonstrated the power of FunDMDeep-m6A

in identifying and prioritizing more context-specific and functionally

significant DmMGenes. In the hESCs dataset, the prioritized

FDmMGenes like PRDM14 and JUND play substantial roles in

stem cell differentiation and 15 FMmMGenes including TGFB1,

SMAD3, SMAD6, SMAD7, NODAL and MYC are significantly

enriched in TGF-beta signaling pathway, which has essential roles in

embryonic development. These significant FDmMGenes may be

new markers mediated by m6A in regulating stem cell differenti-

ation. In the MOLM13 dataset, RPL11, RPL12, RPL15, RPL19,

RPL37A, RPL8 and RPS4X are involved in translational initiation,

which may help regulate the translation of m6A targeted mRNAs

and this may provide another clue for m6A involvement in

leukemia.

In summary, FunDMDeep-m6A can efficiently identify single-

base DmM sites and identify and prioritize context specific function-

al significant FDmMGenes by capturing the functional interactions

of DmMGene with signaling pathways based on the novel idea of

MSB. However, there are still several issues that need to be further

addressed in the future. First, the requirement to have the DRACH

motif in DmD site identification helps reduce the false positive pre-

dictions but also sacrifices the prediction sensitivity. Therefore,

developing FunDMDeep-m6A without the motif limitation in the fu-

ture will provide additional value. Second, we only used the DE ana-

lysis to denote the functional significance of DmMGene and its MSB

neighbors. Being able to integrate the protein translation data into

the analysis of the functional significance of DmMGenes in the fu-

ture work will help elucidate the translational function of m6A.
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