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SUMMARY

When evaluating anti-cancer drugs, two different measurements are used: relative viability, which 

scores an amalgam of proliferative arrest and cell death, and fractional viability, which specifically 

scores the degree of cell killing. We quantify relationships between drug-induced growth 

inhibition and cell death by counting live and dead cells using quantitative microscopy. We find 

that most drugs affect both proliferation and death, but in different proportions and with different 

relative timing. This causes a non-uniform relationship between relative and fractional response 

measurements. To unify these measurements, we created a data visualization and analysis platform 

called drug GRADE, which characterizes the degree to which death contributes to an observed 

drug response. GRADE captures drug- and genotype-specific responses, which are not captured 

using traditional pharmacometrics. This study highlights the idiosyncratic nature of drug-induced 

proliferative arrest and cell death. Furthermore, we provide a metric for quantitatively evaluating 

the relationship between these behaviors.

In Brief

Anti-cancer drugs affect both the growth and survival of cancer cells. Commonly used measures of 

drug sensitivity do not distinguish between these two different outcomes. Schwartz et al. 
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developed GRADE, a drug analysis method that reveals the proportional contributions of cell 

death versus growth inhibition for an observed drug response.

Graphical Abstract

INTRODUCTION

Precise evaluation of the response of a cell to a drug is a critical step in pre-clinical drug 

development. Failures in this process have contributed to issues with irreproducibility of 

phenotypes across experimental platforms, spurious associations in precision medicine, and 

misannotated mechanisms of drug action (Bruno et al., 2017; Chopra et al., 2020; Hafner et 

al., 2019; Haibe-Kains et al., 2013). Recent studies continue to reveal that we generally do 

not know how drugs function, even for drugs that are well studied and precisely engineered 

(Lin et al., 2019). Traditional methods to evaluate a drug response have relied on 

pharmacological measures of the dose-response relationship of a drug, such as the half-

maximal effective concentration (EC50) or the half-maximal inhibitory concentration (IC50). 

These features are important, but they reveal a biased and incomplete insight. Notably, 

measures of drug potency such as the EC50 or IC50 are poorly correlated with other 

important features, such as the maximum response to a drug (i.e., drug efficacy) (Fallahi-

Sichani et al., 2013). Furthermore, measures of drug potency provide minimal insight into 

the mechanisms of drug action. In recent years, several drug-scoring algorithms have been 

developed to improve the evaluation of pharmacological dose responses, including 

Schwartz et al. Page 2

Cell Rep. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approaches that facilitate an integrated evaluation of drug potency and efficacy (Fallahi-

Sichani et al., 2013; Meyer et al., 2019). In addition, it has now been well demonstrated that 

differences in the proliferation rate between cell types were a confounding factor in most 

prior measurements of drug sensitivity (Hafner et al., 2016). Correcting for these artifactual 

differences in apparent drug sensitivity generates a more rational evaluation and has 

identified drug sensitivity-genotype relationships that are missed using traditional methods 

(Hafner et al., 2016; Harris et al., 2016).

One issue that has not been explored in detail is the underlying data itself. In nearly all 

cases, drug sensitivity is scored by comparing the relative number of live cells in the context 

of drug treatment to the number of live cells in a vehicle control condition. This metric is 

variably referred to as “relative viability,” “percent survival,” “percent viability,” “drug 

sensitivity,” “normalized cytotoxicity,” and so forth (hereafter referred to as relative viability 

[RV]). RV is a convenient measure of drug response, and can be quantified using most 

commonly used population-based assays (e.g., MTT, CellTiter-Glo, Alamar blue, colony 

formation). Changes to RV can result from partial or complete arrest of cell proliferation, 

increased cell death, or both of these behaviors (Hafner et al., 2016). Because RV is 

determined entirely from live cells, this measure provides no insight into the number of dead 

cells, or more important, the relationship between proliferative arrest and cell death 

following the application of a drug. When using RV, it is generally unclear to what extent a 

cell population is undergoing proliferative arrest versus cell death at a given drug 

concentration (Figure 1A).

An alternative measure of drug sensitivity exists in which a drug response is quantified as 

the fractional proportion of live and dead cells in the drug-treated population (Figure 1A). 

This metric is variably called “lethal fraction” (or its inverse, “viable fraction”), “percent of 

cells,” or “percent cell death” (hereafter referred to as fractional viability [FV]). In contrast 

to RV, FV provides direct insight into the degree of cell death within a population. In 

addition, FV calculations do not require comparison between treated and untreated groups, 

which minimizes issues associated with plating bias, a common issue in multi-well assays 

(Lachmann et al., 2016). In spite of these benefits, FV is less commonly used because this 

measure generally requires either extra measurements or the use of an experimental platform 

that provides single-cell data, such as in flow cytometry-evaluated evaluation of apoptosis or 

quantitative microscopy (Albeck et al., 2008; Forcina et al., 2017).

Relative and fractional measures of drug response are often used interchangeably, in spite of 

the fact that these are clearly different metrics (Méry et al., 2017; Riss et al., 2019). In this 

study, we explored the relationship between these two common measures of drug sensitivity. 

We find that RV and FV score unique and largely unrelated properties of a drug response. 

RV accurately reports the cell population size, but not the degree of cell killing. 

Alternatively, FV exclusively reports drug-induced cell death, but does not provide any 

insight into the size of the surviving population. By directly comparing relative and 

fractional drug responses, we find that at any given dose, most drugs induce a coincident 

decrease in the cell proliferation rate and an increase in the cell death rate. Furthermore, 

when evaluating across a large panel of drugs, we find a non-uniform relationship between 

the inhibition of cell proliferation and the activation of cell death, spanning the entire 
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continuum of possible behaviors. We find that the relative proportion of drug-induced 

proliferative inhibition versus cell death varies by drug, by dose, and by genotype. 

Furthermore, these features are not captured by traditional pharmacometrics such as the 

EC50 or IC50. We developed a quantitative analysis platform called drug GRADE (growth 

rate-adjusted death) that captures the timing and relative magnitude of proliferative 

inhibition versus cell death. Evaluation of drug GRADE improves the ability to resolve 

cancer subtype-drug-response relationships. This study highlights the complex and non-

uniform relationship between cell proliferation and cell death and provides an analytical 

framework for understanding these relationships.

RESULTS

RV and FV Produce Largely Unrelated Insights about Drug Response

In an effort to gain deeper insights into the mechanisms of action for common anti-cancer 

drugs, we began by exploring the relationship between two common measures of drug 

response: RV and FV (Figure 1A). A critical difference between these two measures is that 

RV is focused entirely on the live cell population across two conditions (drug treated and 

untreated), whereas FV includes both live and dead cells, but only in the drug-treated 

condition. In addition, because RV uses an untreated control as a reference point, this 

measure generally cannot distinguish between responses that are due to inhibiting 

proliferation versus those that are due to activating cell death (Hafner et al., 2016). Likewise, 

while decreased FV must require some degree of cell death, it is generally unclear whether 

death occurs in a proliferating, inhibited, or arrested population. Thus, while RV and FV 

should be correlated, if not identical, at extremely strong or weak response levels, the 

theoretical relationship between these numbers is unclear, particularly at intermediate levels 

of response (Figure 1B). We reasoned that exploring the relationship between RV and FV in 

detail could reveal hidden principles of drug sensitivity that are not captured using 

traditional measure. We evaluated drug responses in U2OS cells using the scalable time-

lapse analysis of cell death kinetics (STACK) assay, a quantitative live-cell microscopy assay 

that measures both live and dead cells and has equal sensitivity in quantifying RV and FV 

(Forcina et al., 2017). We began by investigating RV and FV responses to two drugs: 

camptothecin, a topoisomerase I inhibitor and potent apoptotic agent, and palbociclib, a 

CDK4/6 inhibitor that primarily induces proliferative arrest without inducing any cell death 

(Hafner et al., 2019). As expected, camptothecin induced high levels of cell death, whereas 

palbociclib strongly inhibited the growth of the population without causing any cell death 

(Figures 1C–1E, S1A, and S1B).

To characterize the relationship between RV and FV responses, we profiled each drug using 

an eight-point half-log dose titration. From these data, we calculated both RV and FV 

metrics at the assay endpoint (Figures 1F–1I). A direct comparison of RV and FV for 

camptothecin revealed a discontinuous relationship featuring two clearly distinct dose-

dependent behaviors (Figure 1J). In the first phase (low doses, which accounts for the 

majority of the RV scale), RV is strongly decreased in a dose-dependent manner while only 

modestly affecting FV. In the second phase (higher doses), FV decreases sharply while RV is 

only modestly affected (Figure 1J). These two phases reflect a decrease in proliferation rate 
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with minimal cell killing at low doses, followed by an increase in death rate, which occurs at 

high doses and only in growth-arrested cells (Figure S1C). Alternatively, for palbociclib, 

which does not kill any cells, only the first of these two phases was observed (Figures 1K 

and S1C).

To determine whether biphasic response is a common behavior of many drugs or drug 

classes, we tested full dose-response profiles for a panel of 85 drugs, which target a variety 

of different proteins controlling cell proliferation and/or cell death (Table S1). For these 

drugs, the correlation between RV and FV responses varied by drug, but they were generally 

not well correlated (Figures 1L and S1D). For some compounds, we observed a biphasic 

dose response similar to that of camptothecin, characterized by two linear but discontinuous 

phases, with death occurring only following full proliferative arrest. For most drugs, 

however, these two phases were more mixed, and doses were found in which the RV and FV 

values reported intermediate levels of proliferative inhibition and cell death. To supplement 

these data, we also reanalyzed a large publicly available dataset of 1,833 bioactive 

compounds that were previously tested using the STACK assay (Forcina et al., 2017). The 

overall profile of responses across these diverse compounds also highlights a spectrum of 

behaviors, rather than exclusively biphasic responses (Figure 1M). Thus, these data 

demonstrate that relative and fractional measures of drug response are not interchangeable 

and highlight the lack of a uniform relationship between FV and RV across drugs.

Relationships between RV and FV Vary Due to Idiosyncrasies in the Strength and Relative 
Timing of Drug-Induced Proliferative Inhibition versus Drug-Induced Cell Death

Overall, the IC50 doses computed using RV or FV (hereafter, RV50 and FV50, respectively) 

were not well correlated, often differing by several orders of magnitude (Figures 1F–1I and 

2A). The RV50 reports the dose at which the number of live cells following drug treatment is 

half as large as the untreated population, whereas the FV50 reports the dose at which a 

population is half alive and half dead (Figures S2A–S2C). Thus, these two values should be 

the same only in situations in which death occurs in the absence of any modulation to the 

proliferation rate of surviving cells (i.e., death in a population of cells that is otherwise 

proliferating at the normal rate). In theory, this could be achieved in several ways. For 

instance, drugs that induce death with a very fast onset time may kill cells before any 

observable changes in population size. The FV50 and RV50 values were very similar for 

particularly fast drugs, such as SGI-1027, a DNA methyltransferase 1 (DNMT1) inhibitor, 

and ABT-737, a BH3 mimetic (Figures 2B and 2C). To determine whether this was a general 

trend, we calculated the correlation between death onset time and the FV50/RV50 ratio. We 

found a weak trend in which the FV50 and RV50 were more similar for drugs that had earlier 

onset times, but the overall correlation was modest, suggesting that death onset time alone 

was not a particularly good predictor of the FV/RV relationship (r2 = 0.3957; Figure 2C).

In theory, other mechanisms exist, in addition to death onset time, that likely contribute to 

variations between FV and RV metrics. For instance, regardless of death onset time, FV and 

RV values would differ if a drug potently inhibited cell proliferation at low, non-killing 

doses, as we observed for drugs that induce biphasic responses such as camptothecin (Figure 

1J). Likewise, even for drugs with very late death onset times, FV and RV values should still 
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be similar if the onset time of proliferative inhibition was equally late. To identify such 

scenarios, we focused on drugs for which the death onset time was a poor predictor of the 

relationship between FV and RV, such as abemaciclib and entinostat.

FV50 and RV50 values for the CDK4/6 inhibitor abemaciclib were unusually varied, even for 

a drug with slow death onset time (Figures 2B and 2C). Consistent with our expectations, 

abemaciclib produced a distinctly biphasic dose response, characterized by strong growth 

inhibition at low non-lethal doses, and death only at high doses. (Figures 2D–2F). 

Furthermore, our comparisons of RV and FV values over time, rather than across doses, 

revealed that abemaciclib induces death only following a prolonged period of proliferative 

arrest (Figures S2D and S2E).

Alternatively, the histone deacetylase (HDAC) inhibitor entinostat induced death with a 

delayed onset time of ∼30 h after drug exposure, but nonetheless, FV and RV values were 

well correlated (Figures 2B and 2C). For this drug, kinetic analysis revealed that entinostat-

treated cells proliferate at precisely the untreated rate for ∼30 h, such that the onset time of 

growth inhibition is equally delayed and similar to the onset time of cell death (Figures 2G–

2I). Thus, these data highlight the lack of a singular “rule” describing the relationship 

between FV and RV values. The relationship between FV and RV depends on a combination 

of features, including the death onset time and whether cell death is occurring in a 

proliferating or an arrested population. These data also underscore the fact that common 

pharmacometrics derived from FV or RV fail to capture the relationship between drug-

induced changes in proliferation versus cell death.

Integrative Analysis of Relative and Fractional Drug Responses Reveals a Continuum of 
Distinct Relationships between Growth Inhibition and Cell Death

RV measures different aspects of a drug response than FV. Because a simple rule could not 

be identified for predicting one from the other, we next asked what may be learned by 

quantitatively exploring the relationship between these metrics. We began by simulating RV 

and FV values for theoretical drug responses, using all possible combinations of fractional 

growth inhibition and fractional cell death in different proportions (Figures 3A and 3B). 

These simulations revealed an area of possible responses, with boundaries representing three 

distinct response scenarios: proliferative inhibition or arrest without any cell death (green 

line, top, Figure 3C), cell death within a population of normally proliferating cells (red line, 

right, Figure 3C), and a discontinuous biphasic response characterized by proliferative arrest 

at low doses, followed by cell death only within growth-arrested cells (blue line, top and left, 

Figure 3C).

The size and shape of this region varies dramatically, depending on the length of the assay 

and the proliferation rate assumed in the simulation. Thus, to stabilize these relationships, 

we also simulated drug responses using the normalized growth rate (GR) inhibition value. 

GR values are similar to RV in that both are derived from measurements of live cells in 

drug-treated and untreated conditions. A critical difference, however, is that the GR value 

scores a drug response based on a comparison of population GRs in the presence and 

absence of the drug, rather than scoring changes in population size as in RV (Hafner et al., 

2016). Thus, GR corrects for artifactual differences in drug sensitivity that may be caused by 
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differences in assay length between experiments or differences in proliferation rate between 

cell types. A comparison of simulated FV and GR values revealed a region of possible 

relationships defined by the same boundaries seen for FV versus RV comparisons (Figure 

3D).

For both FV versus GR and FV versus RV comparisons, the area between the observed 

limits represents drug responses that feature both some growth inhibition and some cell 

death at varied proportions. From the simulated data, any data point within this bounded 

space can be attributed to a specific degree of fractional growth inhibition and cell death 

(region “b,” Figures 3C and 3D; Table S2). The regions outside the bounded area represent 

responses that, while conceptually possible, are not observed in our simulated responses. 

Region “a” to the left of the bounded area would include drug responses in which the 

population size is decreased in excess of the measured number of dead cells (Figures 3C and 

3D). This may be observed for some types of cell death, such as entosis (Overholtzer et al., 

2007), and for technical reasons related to assay precision and/or the relative sensitivity of 

live cell and dead cell measurements. Region “c,” to the right of the bounded area, includes 

responses in which the degree of cell death is compensated for by a drug-induced increase in 

the proliferation rate (Figures 3C and 3D).

Although responses in regions “a” and “c” are possible in theory, these are never observed in 

our experimental data. For all 85 drugs profiled, the response data fell entirely within the 

bounds represented by region “b” (Table S2). Some drugs inhibited proliferation but were 

non-lethal at all tested doses (Figure 3E). Most drug responses, however, were characterized 

by GR and FV values that reveal partial growth suppression that occurs coincidentally with 

partial cell death, at different proportions for each drug (Figure 3F; Table S2). The responses 

of several drugs fell precisely at the top- and left-most boundaries, represented by biphasic 

dose-response profiles, including abemaciclib and most DNA-damaging chemotherapeutics 

(Figure 3G; Table S2).

These abrupt non-linear transitions likely capture critical changes in the drug mechanism of 

action that occur in a dose-dependent manner. For instance, it has been recently reported that 

abemaciclib-induced cell death occurs due to its off-target activity against CDK2, which is 

inhibited by abemaciclib exclusively at high doses (Hafner et al., 2019). Likewise, for DNA-

damaging drugs, low levels of DNA damage are sufficient to induce cell-cycle arrest, but 

apoptotic cell death is only activated following higher levels of DNA damage (Figure S3). 

These dose-dependent transition points between proliferative inhibition and cell death are 

clearly visible using a combined analysis of GR and FV (Figure 3G). This is notable, 

considering that these transition points are not generally observable in traditional analyses of 

dose-response data.

Drug GRADE Captures Distinct Drug Class-Specific Relationships between Drug-Induced 
Proliferative Arrest and Cell Death

By comparing the experimentally observed drug responses to our theoretical simulations, we 

calculated average proliferation rates and cell death rates for each drug, at each tested dose 

(Figures S4A–S4E; Table S2). These data further highlight that the degree to which a drug 

inhibits proliferation or activates cell death depends on the drug, but also strongly depends 
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on the dose(s) of the drug tested (Figures S4D and S4E). Thus, we sought to create a 

summary metric, akin to the IC50/EC50, that captures the dose-dependent relationship 

between drug-induced cell death and proliferative arrest. As with the IC50 or EC50, such a 

metric could be used to compare how responses difer by drug, by cancer subtype, or across 

different genotypes within a subtype.

Using the observed relationship between GR and FV values, we developed a metric that we 

call the drug GRADE (Figure 4A). The drug GRADE reports the proportion of an observed 

drug response that is due to cell death. We calculated the drug GRADE using the angle 

formed between a linear fit of the observed GR and FV data and a non-lethal drug response 

(Figures 4A and S4A, θ). This angle was calculated using a range of doses for which GR >0, 

as the relationship between FV and GR was approximately linear within this range. These 

data were further rescaled relative to the maximum angle possible within our simulated data, 

such that drug GRADE scales from 0 to 100, with 100 reporting that the observed response 

was entirely due to cell death and a GRADE of 0 reporting that the observed response was 

entirely due to inhibiting proliferation. Analysis of our kinetic data reveal that drug GRADE 

is reasonably stable for most drugs if measurements are taken between 48 and 72 h after 

drug addition (Figures S4F and S4G).

To explore the robustness of drug GRADE, we first evaluated whether targeted perturbations 

to cell death mechanisms would alter drug GRADE in a predictable manner. For instance, 

the inhibition of apoptosis using genetic knockout of BAX and BAK should inhibit cell 

death without compromising the drug-induced inhibition of cell proliferation. Furthermore, 

these changes should be specific to drugs that predominantly function by activating 

apoptotic cell death. To explore these predictions, we calculated drug GRADE for drugs that 

we recently characterized as inducing apoptotic death, non-apoptotic death, or non-lethal 

anti-proliferative responses (Richards et al., 2020). Consistent with expectations, ABT737, a 

BH3 mimetic and potent activator of apoptosis, had a very high drug GRADE, which was 

strongly diminished in the BAX-BAK double-knockout background (Figure S4H). In wild-

type versus BAX-BAK double-knockout cells, drug GRADE was not significantly changed 

for JQ1, a Brd4 inhibitor that induces non-apoptotic death in U2OS cells; nor was drug 

GRADE altered for chlorambucil, a nitrogen mustard and DNA-alkylating agent that 

inhibited proliferation without activating cell death (Figures 4I and 4J). Thus, drug GRADE 

accurately captures the degree to which cell death contributes to an observed drug response.

Inspecting drug GRADE for the 85 drugs that we profiled revealed a continuous distribution 

of values, further demonstrating the unique drug-specific relationship between population 

growth inhibition and cell death (Figure 4B). Nonetheless, similarities were observed 

between drugs within a given class. For instance, DNA-damaging chemotherapeutics were 

enriched for very small drug GRADEs, indicating that for these drugs, the population 

reduction at IC50 doses is generally due to growth inhibition, rather than cell death (Figure 

4C). Alternatively, microtubule toxins tended to have large drug GRADEs, indicating potent 

killing at IC50 doses (Figure 4C). Drug GRADE was not correlated with traditional 

pharmacometrics, such as the IC50, EC50, or Emax (Table S1). Thus, while traditional 

pharmacometrics report insights into drug affinity, potency, or efficacy, drug GRADE 

provides a unique insight into the mechanism of population reduction.
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Drug GRADE Captures Subtype-Dependent Differences in Drug Sensitivity That Are Not 
Captured Using Traditional Pharmacometrics

Drug potency and drug efficacy are known to vary in a genotypeand cancer subtype-

dependent manner. It was unclear whether drug GRADEs are stable features of a given drug 

or whether these would also vary for a given drug across cancer subtypes. To explore this 

question, we analyzed a publicly available dataset collected by the Library of Integrated 

Network-Based Cellular Signatures (LINCS) consortium, which contained 34 drugs tested 

across 35 breast cancer cell lines, with the data collected in a manner that would allow both 

GR and FV calculations (Hafner et al., 2019). For essentially all drugs, we found striking 

differences in drug GRADE across the cell lines (Figure S5). For instance, doxorubicin, a 

topoisomerase II inhibitor that is commonly used in the treatment of breast cancer, produced 

a biphasic dose response in U2OS cells, characterized by cell death only at high doses and 

only following full growth arrest (GRADE = 3.8; Figure 3G). In the LINCS breast cancer 

cell lines, however, doxorubicin GRADEs ranged from 1 to 73, revealing substantial 

variation in the degree of cell killing at IC50 doses (Figure 5A). Variation in drug GRADE 

was observed for all drugs, including targeted agents such as Torin 2 (Figures 4B, S5A, and 

S5B). Cell-cycle- and growth factor-targeted therapies were skewed toward smaller 

GRADEs, which is consistent with the notion that these drugs primarily induce growth 

inhibition, rather than cell death (Figure 5C). Cytotoxic chemotherapies, which can induce 

both growth inhibition and cell death, had a nearly random distribution of drug GRADEs 

across the cell lines studied (Figure 5C).

For cytotoxic chemotherapies, the observed variance in drug GRADE across cell lines may 

suggest that GRADE can capture genotype- or subtype-specific differences in drug response. 

An alternative explanation could be that the relationship between drug-induced growth arrest 

and drug-induced cell death is not determined by the drug, but instead is either stochastic or 

subject to strong environmental and/or context-dependent regulation. To distinguish between 

these possibilities, we investigated, for each cell line, the variation within GRADEs for 

drugs that share a common mechanism of action. The LINCS dataset includes 6 different 

drugs that act by causing DNA damage, and 10 drugs annotated as phosphatidylinositol 3-

kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitors (Table S1). For any one of 

these drugs, significant variation was observed in drug GRADE across the LINCS cell lines 

(Figures 5A, 5B, and S5B). In contrast, within any given cell line, drugs of a shared class 

produced strikingly similar drug GRADEs (Figures 5D and S5B). Similar drug GRADEs 

were observed even for the DNA-damaging drug class, which included drugs that induce 

DNA damage using a variety of different molecular mechanisms, and through unrelated 

drug-binding targets. These data suggest that the variation observed for drug GRADE is 

related to the specific ways in which a given cell or cell type responds to a class of drugs.

The variations that are uncovered by drug GRADE reveal important differences in the 

underlying drug response. For instance, DNA-damaging agents resulted in biphasic dose 

responses and low drug GRADEs in T47D, a luminal estrogen receptor-positive (ER+) 

breast cancer cell line (GRADE = 5.5; Figure 5D). In contrast, these drugs consistently 

resulted in coincident proliferative inhibition and cell death with high drug GRADEs in 

MDA-MB-468, a basal triple-negative breast cancer (TNBC) cell line (GRADE = 54.9; 
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Figure 5D). This distinction reveals that the traditional IC50 (IC50 calculated from RV, RV50) 

captures a partially growth-suppressing dose in T47D, but the same pharmacological value 

captures a potent killing dose in MDA-MB-468 (Figures 5E and 5F). Furthermore, while the 

IC50 values are similar and not statistically distinguishable for most DNA-damaging drugs in 

these two cell lines, they are generally lower in T47D when compared to MDA-MB-468, 

and generally lower in luminal cells when compared to TNBCs (Figures 5G and 5H). Thus, 

from the IC50 data alone, one may predict either equal chemosensitivity among breast cancer 

subclasses or that luminal breast cancer cells are more chemosensitive than TNBCs. These 

conclusions would be inconsistent with established clinical data, as TNBCs are well 

validated to be more chemosensitive than other breast cancer subtypes (Carey et al., 2007). 

While the IC50 fails to capture subtype-specific differences in chemosensitivity, drug 

GRADE identifies significant differences between breast cancer subtypes. DNA-damaging 

drugs in TNBCs have significantly higher drug GRADEs than in other breast cancer 

subtypes, revealing that DNA-damaging chemotherapies induce greater levels of cell death 

in TNBCs than in other breast cancer subtypes (Figures 5I and 5J). These data highlight that 

drug GRADE captures critical differences in drug response that are not captured by 

traditional pharmacometrics.

DISCUSSION

Recent studies have revealed that differences in the population GR are a confounding factor 

in the measurement of the effectiveness of anti-cancer therapies (Hafner et al., 2016; Harris 

et al., 2016). These studies were a major step forward in analysis methods and have provided 

much needed clarity about mechanisms nisms driving drug-induced changes in population 

size. The strategy we use here builds upon these prior works, and in fact, uses the GR value 

as one of the two key analysis features. A clear distinction, however, is that our approach 

integrates an independent measurement of dead cells and drug-induced FV. We find that the 

integrated analysis of population growth (through GR) and fractional killing (through FV) 

reveals drug-and cancer subtype-specific features of a drug response that are not captured 

using either of these values alone or when using any traditional pharmacometrics.

The most common measures of drug response are derived exclusively from measurements of 

live cells. Using these measurements to infer the degree of death requires some assumption 

to be made about the relationship between drug-induced proliferative inhibition and cell 

death. For instance, a common assumption is that cell death occurs only in growth-arrested 

cells. A central finding from our study is that the relationship between drug-induced 

proliferative inhibition and cell death varies substantially across drugs, and in a continuous 

manner. Also, for a given drug or drug class, drug GRADE varied substantially across 

cancer subtypes. Thus, in the absence of direct measurements of both FV- and RV-type 

responses, any assumption made regarding the relationship between the inhibition of 

proliferation and cell death is certain to be wrong in most situations.

Of note, the sign of the GR scale is generally interpreted as revealing the response 

phenotype, with positive GR values interpreted as partial inhibition of proliferation, whereas 

negative values are interpreted as cell death (more formally interpreted as a negative 

proliferation rate). Although it must be true that negative GR values report drug-induced cell 
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death, notably, positive GR values do not necessarily report the lack of cell death. This was 

clearly demonstrated in theory in the original description tion of the GR value (Hafner et al., 

2016), and our analysis reveals that for most drugs, significant levels of death are observed 

in the positive portion of the GR scale. These phenotypes generally resulted from 

intermediate levels of cell death occurring within a population of cells that continue to 

proliferate. Thus, while the GR value unambiguously reports the net population GR in a 

manner that distinguishes between an increasing and a decreasing population size, whether a 

drug induces significant killing requires additional measurements. The strategy we describe 

in this study clarifies this issue, and our data show that GR and FV values provide 

complementary insights into the nature of a drug response.

Using the complementary insights generated by GR and FV measures, we found that 

TNBCs respond to low doses of DNA-damaging chemotherapies by activating cell death, 

whereas luminal breast cancers respond by halting cell proliferation. TNBCs are known to 

have higher levels of chemosensitivty than other breast cancer subtypes. In some cases, these 

differences are related to deficiencies in DNA repair, but in most cases, it remains unclear 

which factors account for the varied levels of sensitivity to DNA-damaging chemotherapies 

(Heijink et al., 2019). Drug GRADE analysis may be a valuable tool in identifying 

molecular or genomic features that contribute to chemosensitivity, particularly since 

differences in chemosensitivity between TNBC and other breast cancer subtypes were not 

observed in traditional measurements of drug response.

One limitation of the analysis method we propose is that it cannot be used in conjunction 

with many common drug-response assays that exclusively measure live cells (e.g., Cell-

Titer-Glo, MTT, Alamar Blue, colony formation). Our approach should be amenable to any 

assay that develops single-cell data for live and dead cells, such as flow cytometry, histology, 

or the microscopy-based STACK analysis used in this study. In addition, we recently 

developed a high-throughput fluorescent plate reader-based strategy for inferring live cell 

counts using only a direct measurement of dead cells (Richards et al., 2020). When 

combined with the drug GRADE analysis from this study, these high-throughput methods, 

which also rely on SYTOX fluorescence, are particularly useful for comparing across 

various types of apoptotic and/or non-apoptotic death. SYTOX fluorescence is specific to 

cell death but largely agnostic to the mechanism by which cells die. Thus, if only live or 

dead cells can be counted, our data suggest that the measurement of dead cells would be 

preferable, as live cells can be accurately inferred using modest experimental and 

computational adjustments (Richards et al., 2020).

Drug-response assays are common to many sectors of biomedical research, and a common 

practice is to summarize drug responses using measures such as the IC50, EC50, or Emax. 

These metrics are used to compare across drugs or to compare drug responses across 

biological scenarios. In many situations, such as oncology, a critical question generally 

remains unanswered by these metrics: does the drug actively kill cells or just inhibit cell 

proliferation? This is an important distinction. Inhibiting proliferation is not likely to result 

in a durable response in the absence of other interventions, such as surgery or additional 

therapies, particularly when considering the rapid clearance of most chemotherapeutics due 

to drug metabolism and excretion. In current approaches, a common strategy to determine if 
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an observed response is due to cell death or growth inhibition is to use RV to characterize 

drug potency and/or efficacy. These measures are then complemented with a more specific 

measure of cell death to determine whether the observed response was caused by growth 

arrest or cell death. Our study reveals a flaw in this line of thinking, that the response was 

necessarily “either/or” and not “both.” We find that most drugs achieve their effects through 

some combination of population growth inhibition and cell death, but the relative 

proportions of these effects vary by drug, by dose, and across different cancer subtypes. 

Clarifying these relationships should improve our ability to accurately evaluate drug 

responses and how these responses vary across drugs or across biological contexts.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Michael Lee 

(michael.lee@umassmed.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—Source data collected for a panel of 85 drugs at varied 

doses in U2OS cells are included in Tables S1 and S2. Images and raw cell counts from 

images have not been deposited in a public repository due to file size but will be made 

available upon request. Custom MATLAB code for computing drug GRADE and generating 

FV/GR plots are included in Data S1 and on GitHub (https://github.com/MJLee-Lab/

GRADE). Custom MATLAB scripts for image analysis or curve fitting will be made 

available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and culture conditions—This study uses U2OS cells, which were generated 

from a female with osteosarcoma. U2OS cells were obtained from ATCC, and authenticated 

by STR profiling. Additional analysis was also performed on the LINCS breast cancer cell 

lines, a panel of 35 cell lines derived from female donors with various subtypes of breast 

cancer (Hafner et al., 2019). mKate2 expressing U2OS cells were generated as previously 

described (Richards et al., 2020). Cells were grown in Dulbecco’s modified eagles medium 

(DMEM) (Cat# MT10017CV, Fisher Scientific) supplemented with 10% fetal bovine serum 

(Cat# SH30910.03, Lot# AYC161519, ThermoFisher Scientific), 2 mM L-glutamine (Cat# 

02500cl, Fisher Scientific), and penicillin/streptomycin (Cat# 30–002-Cl, Corning). Cell 

lines were cultured in incubators at 37C with 5% CO2. For passaging, cells were rinsed with 

PBS, dissociated with 0.25% trypsin (Cat# 15090046, Life Technologies), quenched with 

complete DMEM, and counted using a hemocytometer. Cells were seeded for experiments 

as described in the Method Details section.

Chemicals and reagents—Sytox Green Nucleic Acid Stain (Cat#: S7020) was 

purchases from ThermoFisher Scientific (Waltham, MA). A23187 (Cat# B6646), ABT-263 

(Navitoclax) (Cat# A3007), ABT-737 (Cat# A8193), Artesunate (Cat# B3662), Axitinib 
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(AG 013736) (Cat# A8370), AZD2461 (Cat# A4164), Belinostat (PXD101) (Cat# A4096), 

BI 2536 (Cat# A3965), Bleomycin Sulfate (Cat# A8331), Bortezomib (PS-341) (Cat# 

A2614), Bromodomain Inhibitor, (+)-JQ1 (Cat# A1910), BX795 (Cat# A8222), Cediranib 

(AZD217) (Cat# A1882), Chlorambucil (Cat# B3716), Dacarbazine (Cat# A2197), 

Docetaxel (Cat# A4394), Entinostat (MS-275,SNDX-275) (Cat# A8171), Everolimus 

(RAD001) (Cat# A8169), Flubendazole (Cat# B1759), Flumequine (Cat# B2292), Foretinib 

(Cat# A2974), GSK J1 (Cat# A4191), Honokiol (Cat# N1672), JNJ-26854165 (Serdemetan) 

(Cat# A4204), MG-132 (Cat# A2585), MK1775 (Cat# A5755), Niclosamide (Cat# B2283), 

Nigericin sodium salt (Cat# B7644), Nilotinib (Cat# A8232), Oubain (Cat# B2270), 

Paclitaxel (Taxol) (Cat# A4393), Panobinostat (LBH589) (Cat# A8178), Pazopanib 

Hydrochloride (Cat# A8347), PD 0332991 (Palbociclib) HCl (Cat# A8316), RITA (NSC 

652287) (Cat# A4202), RSL3 (Cat# B6095), Sabutoclax (Cat# A4199), Salinomycin (Cat# 

A3785), SB743921 HCl (Cat# B1590), SGI-1027 (Cat# B1622), TAE684 (NVP-TAE684) 

(Cat# A8251), Temozolomide (Cat# B1399), TH287 (Cat# B5849), Tivozanib (AV-951) 

(Cat# A2251), Topotecan HCl (Cat# B2296), Torin 1 (Cat# A8312), Torin 2 (Cat# B1640), 

Triptolide (Cat# A3891), TW-37 (Cat# A4234), Vinblastine sulfate (Cat# A3920), 

Vincristine (Cat# A1765), Vorinostat (Cat# A4084), and YM-155 HCl (Cat# A3947) were 

purchased from ApexBio Technology (Houston, TX). Erastin2 (Cat# 27087) was purchased 

from Cayman Chemicals (Ann Arbor, MI). Erlotinib (Cat# E-4007) was purchased from LC 

Laboratories (Woburn, MA). Valinomycin (Cat# V0627) was purchased from 

MilliporeSigma (Burlington, MA). A-1210477 (Cat# S7790), Abemaciclib (Cat# S5716), 

Alpelisib (Cat# S2814), AZD7762 (Cat# S1532), Bibf-1120 (Nintedanib) (Cat# S1010), 

Buparlisib (BKM120, NVP-BKM120) (Cat# S2247), Cabozantinib (XL184, BMS-907351) 

(Cat# S1119), Camptothecin (Cat# S1288), Ceritinib (LDK378) (Cat# S7083), Cisplatin 

(Cat# S1166), Dasatinib (Cat# S1021), Dinaciclib (SCH727965) (Cat# S2768), Erastin 

(Cat# S7242), Etoposide (Cat# S1225), INK-128 (Sapanisertib, MLN0128,TAK-228) (Cat# 

S2811), Ipatasertib (GDC-0068) (Cat# S2808), Luminespib (AUY-922, NVP-AUY922) 

(Cat# S1069), Neratinib (Cat# S2150), Olaparib (AZD2281, Ku-0059436) (Cat# S1060), 

PF-4708671 (Cat# S2163), Pictilisib (GDC-0941) (Cat# S1065), Saracatinib (AZD0530) 

(Cat# S1006), SMER 28 (Cat# S8240), Taselisib (GDC 0032) (Cat# S7103), TGX221 (Cat# 

S1169), Tivantinib (Cat# S2753), Trametinib (GSK1120212) (Cat# S2673), and Volasertib 

(Cat# S2235) was purchased from Selleck Chemicals (Houston, TX). Doxorubicin HCl 

(Cat# D1515–10MG) was purchased from Sigma-Aldrich (St. Louis, MO).

METHOD DETAILS

Cell Seeding and Drug Addition—U2OS::mkate2+ cells were grown in 10cm dishes 

(Cat # FB012924, Fisher Scientific). Prior to drug treatment (“ Day —1”), cells were 

trypsinized, counted using a hemocytometer. Experiments were performed in 96-well black-

sided optical bottom plates (Cat # 3904, Corning), with cells seeded at a concentration of 

2500 cells per 90 mL of media. Following overnight incubation at 37°C with 5% CO2, drugs 

were added in growth media containing 500 nM SYTOX Green (10 μL volume; final 

concentration of 50 nM SYTOX in the well). Eight- or ten-point half log or full log dilutions 

for each compound were prepared in 96-well U-bottom storage plates (Cat #: 07–200-95, 

Corning) at 10x of their final concentration. Images was collected using the STACK assay 

(Forcina et al., 2017). Briefly, images were acquired using the IncuCyte S3 (Essen 

Schwartz et al. Page 13

Cell Rep. Author manuscript; available in PMC 2020 July 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Biosciences) with settings for the green channel: ex: 460 ± 20; em: 524 ± 20; acquisition 

time: 300ms; and red channel: ex:585 ± 20; em: 635 ± 70; acquisition time: 400ms. Data 

were acquired either every 6–8 hours for 72 hours, or only at 72 hours when kinetic analysis 

was not needed.

Throughout the study, experiments were performed in biological triplicate. All data were 

used without omission of any replicates. Sample size was based on effect sizes and error 

observed in our prior study using similar methods (Richards et al., 2020). When multi-well 

plates (e.g., 96-well plates) were used, conditions were not randomized, but analysis did 

evaluate biases associated with plating location, which were found to be minimal. Edge 

wells were not used due to compromised proliferation rates.

Live Cell Image Acquistion—Images was collected using the STACK assay detailed in 

Forcina et al. (2017). Images were acquired using the IncuCyte S3 microscope (Essen 

Biosciences; 1408×1040 pixels, at 1.24 μm/pixel). Acquisition settings for the green channel 

were ex: 460 ± 20, em: 524 ± 20, acquisition time: 300ms; and red channel were ex:585 ± 

20, em: 635 ± 70, acquisition time: 400ms. Imaging was performed using a 10x objective. 

For all experiments, on Day 0 just prior to drug addition, images were taken of a control 

plate treated with growth media containing 500 nM SYTOX Green as detailed above. For 

kinetic analysis, images were acquired every 6–8 hours for every well of each plate for 72 

hours. For experiments where kinetic analysis was not used images were collected only at 

the 72 hour end point.

For some experiments that did not require kinetic analysis, images were acquired using an 

EVOS FL Auto 2 automated microscope (ThermoFisher Scientific). Images were acquired 

using a 10x objective (EVOS 10x objective, Cat #: AMEP4681). Sytox images were 

acquired using a GFP filter cube (EVOS LED Cube, GFP, Cat #: AMEP4651, ex: 470/22, 

em: 525/50, acquisition time: 13.5ms) Mkate2+ images were acquired using a TexasRed 

filter cube (EVOS LED Cube TxRed, Cat #: AMEP4655, ex: 585/29, em: 628/ 32, 

acquisition time: 642.0ms).

Flow Cytometry Analysis of Drug Response—Cells were seeded in 6-well dishes at 

200,000 cells per well and allowed to attach overnight prior to drug treatment. At selected 

time points cells were washed in PBS, trypsinized, and fixed in 70% ethanol overnight at 

−20 C, permeabilized with 0.25% Triton X-100 for 20 minutes at 4 C and blocked with 1% 

BSA. For analysis of drug-induced apoptosis, cells were stained with antibodies against 

cleaved caspase-3 for 8 hours (1:250 dilution; CAT# 559565, BD Biosciences). For analysis 

of drug-induced DNA double stranded breaks, cells were stained with antibodies against 

phospho-histone H2A.X for 8 hours (1:200 dilution, CAT# 9718, Cell Signaling 

Technologies). Following washing with PBS, cells were incubated with a goat-anti-rabbit 

secondary antibody conjugated to Alexa488 (1:250 dilution; CAT# A-11008, ThermoFisher 

Scientific). Flow cytometry data were collected on a LSR II flow cytometer running FACS 

DIVA software.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and statistics—Statistical details can be found in the figure legends, 

including statistical tests used, exact value and definition of n, definition of center, and 

dispersion and precision measures. Death kinetic rates (DO and DR) were determined using 

MATLAB, as described previously (Richards et al., 2020). Statistical enrichments were 

determined in MATLAB using built-in functions ‘kstest2' or ‘fishertest’ as indicated in the 

figure legends.

Quantitative Image Analysis—All images collected using the IncuCyte S3 system were 

analyzed using the IncuCyte Software (Essen Biosciences). Cell counting parameters were 

empirically determined using untreated cells and a subset of cytotoxic compounds. Analysis 

settings for SYTOX Green+ objects were: Top-Hat segmentation; Radius (μm) between 50 

and 100; Threshold(GCU) between 5 and 10; Edge split on; Edge sensitivity between 25 and 

45; Filter area min between 20 and 55; Filter area max between 2600 and 3000; Max 

eccentricity between 0.90 and 0.95. Analysis settings for mkate2+ objects were: Top-hat 

segmentation, Radius(μm) between 100 and 110; Threshold(GCU) between 0.8 and 1; Edge 

split on; Edge sensitivity between −45 and −35; Filter area(μm2) max between 100 and 110; 

Filter area(μm2) max between 2600 and 3000. The counts per well for the Sytox+ and 

mkate2+ objects were exported to excel and loaded into MATLAB for further analysis. For 

some experiments that did not require kinetic analysis, images were acquired using an 

EVOS FL Auto automated microscope. For images obtained using the EVOS microscope, 

the images were analyzed using custom MATLAB scripts, available upon request.

Flow Cytometry Analysis—Flow cytometry data were analyzed using FlowJo (v. 

10.5.3). For gating cells of interest, FSC/SSC were used to identify cells, and FL2-A versus 

FL2-H was used to identify single cells. Cell cycle stage was quantified from the PI intensity 

using the FlowJo Cell Cycle analysis built-in function, using the Dean-Jett-Fox algorithm. 

To quantify apoptotic cells and/or cells with DNA damage for each cell cycle stage, area 

gates were used based on the negative control untreated samples.

Calculation of Drug GRADE—See also Figures 4A and S4 for a step-by-step guide for 

calculation of drug GRADE. Live cell and dead cell data generated from microscopy were 

used to calculate “fractional viability” (live cells divided by total cells; FV). In this study, 

FV data were not normalized (i.e., raw data were used), as the baseline cell death observed 

in U2OS cells in the absence of any drug was very low. In cell lines which have high basal 

levels of death, FV values will be much lower than 1 even without any drug exposure. In 

these cases, GRADE could be calculated from FV values normalized relative to the basal 

death rate. Growth rate inhibition metrics (GR) were calculated as described (Hafner et al., 

2016). To calculate drug GRADE, we focused on all doses of a given drug that are less than 

or equal to the GR50 dose. Our experimental and simulated data show that the relationship 

between FV and GR is roughly linear for GR values between 0 – 1. Thus, for these doses the 

relationship between GR and FV were fit to a linear function. For most studies, the majority 

of the RV scale is captured within the GR 0 −1 range, including the IC50 dose. The GR50 is 

highly correlated with the traditional IC50 (i.e., IC50 from an RV dose response curve), so 

focusing on the positive portion of the GR scale means that drug GRADE will capture the 
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degree to which cell death contributes to responses observed at the IC50 dose. Drug GRADE 

was determined using the following equation:

GRADE =
tan−1(mdrug)
tan−1(mmax)

where tan−1 is the inverse tangent (‘atan’ function in MATLAB), mdrug is the slope of the 

linear fit relationship between FV and GR for doses of GR where GR is greater than or equal 

to zero, and mmax is the maximum slope observed over the same range of GR values, given 

the assumption that the observed response was entirely due to cell death, without any drug-

induced slowing of cell proliferation. The maximum possible slope was determined from 

simulated experiments as described in Figure 3. Thus, drug GRADE reports as a percentage 

the contribution of cell death to the observed response at IC50 dose. A custom function for 

computing drug GRADE is available on GitHub (https://github.com/MJLee-Lab/GRADE) 

and included as Data S1.

Use and interpretation of drug GRADE—Drug GRADE can be calculated using data 

derived from any experimental platform that provides independent single cell measurements 

of live and dead cells, including flow cytometry, microscopy, or a SYTOX based plate reader 

assay (Richards et al., 2020). If the measurement of cell death is agnostic to the mechanism 

of killing, GRADE can be used to compare drugs that kill by any mechanism. GRADE 

values vary from 0 – 100 and report the degree to which cell death contributes to a drug 

response. For instance, a GRADE of 50 means that 50% of the observed response was due to 

cell death, with the remainder caused by proliferative arrest. Drug GRADE can be calculated 

from the relationship between FV and RV, or FV and GR. If making comparisons between 

cell types, we recommend using FV and GR, as the GR measurement corrects for artifactual 

differences in drug response related to differences in assay length or proliferation rate 

between cell types. For calculation of drug GRADE key considerations include the doses of 

drug tested and the time point(s) analyzed. Regarding doses, stable GRADEs require 

multiple data points for which GR is between 0 – 1. Ideally, the majority of this range should 

also be captured within the doses tested. GRADE can be calculated from essentially any 

dose series (2-fold, half-log, log dilution, etc.), given that multiple doses produce responses 

within the GR 0 – 1 range. For drugs that are essentially non-functional (GR and FV values 

> 0.9 at all doses), drug GRADEs are noisy and should not be calculated. These limitations/

considerations are similar for drug GRADE and for more traditional pharmaco-metrics such 

as the EC50. Regarding time of analysis, because FV measures drug-induced cell death, it is 

critical that measurements be made after the onset time of cell death. Death onset times vary 

by drug, and by dose. For drugs in this study, GRADEs change over time but are stable by 

approximately 48 hours after drug addition.

For some particularly efficacious or toxic drugs, GR values shift at consecutive doses from 

GR 1 (no response) to GR < 0 (strong killing resulting in a negative population size). In 

these situations, only 1 or 0 data points would fall within the desired window for calculation 

of GRADE. Drug GRADE should not be calculated from single doses; however, single dose 

measurements of FV and GR can be used to compute average death rates and average 
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proliferation rates. At any given dose, the average proliferation rate and death rate of the 

population can be determined based on the location of the data in the FV/GR plot. An 

example is shown in Figures S4D and S4E. Similar to drug GRADE, these values report the 

relative contribution of cell death and inhibition of proliferation to the observed response at a 

given dose. For these data, the death rate and proliferation rate are reported relative to the 

proliferation rate of untreated cells (i.e., 0.05 means 5% of the untreated proliferation rate).

Modeling Growth Curves—The experimental growth curves in this paper were fit using 

MATLAB’s fit function with the equation: y = aΔ2bx, where x is time of analysis, y was the 

number of live cells at time x, b is the proliferation rate in population doublings per hour, 

and a is a free coefficient. The a and b parameters were fit using nonlinear least-squares. 

Upper and lower bounds of a parameter were constrained using the min and max of y, 

respectively. Upper and lower bounds of the b parameter were constrained as 1/100 and 

1/10, respectively.

Drug Dose Response Analysis—All dose response functions for relative viability and 

fractional viability were modeled using a 4-parameter logistic regression model:

y = a + d − a
1 + 10 x − b c

where x is the log10 transformed drug dose, y is the observed response in RV or FV, a is the 

Einf, b the log10 transformed EC50, c the Hill coefficient, and d the maximum y value. 

Fitting error was minimized using the nonlinear least-squares method. The lower limits for 

a, b, c, and d were 0, min(x)−2, 0.1, and 0; upper limits for a, b, c, and d were 1, max(x)+2, 

5, and 1; start points for fitting a, b, c, and d were 0.5, (median(x)), 1, and 1. GR values were 

generated as described (Hafner et al., 2016). The GR dose response data was modeled using 

a 4-parameter logistic regression model as detailed above, with the exception that the lower 

limit of a was −1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Relative viability and fractional viability score different aspects of drug action

• Drugs affect growth and cell death to different levels and with different timing

• GRADE measures the degree to which cell death contributes to a drug 

response

• GRADE captures subtype-dependent sensitivities that are missed using other 

methods
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Figure 1. RV and FV Produce Largely Unrelated Insights into Drug Response
(A) Schematic defining common ways to quantify drug responses: fractional viability (FV) 

and relative viability (RV).

(B) Simulated data of drug response over time for (i) untreated, (ii and iii) partially 

cytostatic/cytotoxic, and (iv) fully cytotoxic conditions. RV and FV are values on a scale of 

0–1 (RV = 1 means the population is 100% as large as the untreated; FV = 1 means the 

population is 100% alive).
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(C–K) STACK assay to measure RV and FV. U2OS-Nuc::mKate2+ cells treated with drug in 

the presence of SYTOX Green.

(C) Representative images from cells treated with either DMSO, 3.16 μM camptothecin, or 1 

μM palbociclib. Scale bars in images represent 100 μm in length.

(D and E) Quantified live and dead cell counts over time for cells treated with camptothecin 

(D) or palbociclib (E), as in (C).

(F and G) RV dose-response functions for camptothecin (F) or palbociclib (G).

(H and I) FV dose-response functions for camptothecin (H) or palbociclib (I).

(J and K) RV versus FV at all doses for camptothecin (J) or palbociclib (K).

(L) RV versus FV at all doses for 85 cell death or growth-targeting drugs. Dots for a given 

drug represent the mean response at each tested dose. The dose titration for each drug is 

connected by a colored line.

(M) RV versus FV for 1,833 bioactive compounds, each tested at 5 μM.

For (D)–(K), data are means ± SDs of 4 replicates. Data in (M) are from Forcina et al. 

(2017)

See also Figure S1 and Table S1.
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Figure 2. RV and FV Differ Due to Idiosyncrasies in the Strength and Relative Timing of Drug-
Induced Proliferative Inhibition versus Cell Death
(A) Correlation between IC50 computed using RV (RV50) or FV (FV50). Pearson correlation 

coefficient shown.

(B) Death kinetics computed for 85 cell death and growth-inhibiting drugs. SGI-1027 (red), 

abemaciclib (purple), ABT-737 (blue), and entinostat (green) are highlighted.

(C) Correlation between death onset time (Do) and the FV50/RV50 ratio. Pearson correlation 

coefficient shown.

(D and E) Cell numbers over time for 10 μM abemaciclib. (D) Live cells. (E) Dead cells.

(F) Relationship between FV and RV for a dose range of abemaciclib (0–10 μM) at 72 h.

(G and H) Cell numbers over time for 3.16 μM entinostat. (G) Live cells. (H) Dead cells.

(I) Relationship between FV and RV for a dose range of entinostat (0–31.6 μM) at 72 h.

For (D)–(I), data are means ± SDs from 3 biological replicates.

See also Figure S2.
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Figure 3. Integrative Analysis of Relative and Fractional Drug Responses Reveals a Continuum 
of Distinct Relationships between Drug-Induced Growth Arrest and Cell Death
(A–D) Simulations of all possible variations in drug-induced proliferation and cell death.

(A) Equations for live cells in control untreated condition (Cctrl), live cells in drug-treated 

condition (Clive), dead cells in drug-treated condition (Cdead),FV,RV,and growth rate (GR) 

inhibition values. C0, initial cell number; DR, average death rate of drug-treated cells t, assay 

duration; tc, GR of control (untreated cells); and td, GR of drug-treated cells. For this 

simulation, the death rate of control cells is presumed to be zero.

(B) Color map of parameter values. Red increases as death rate increases. Blue increases as 

GR decreases. The scale for death rate and GR are relative to the untreated GR.

(C) FV and RV calculated for full parameter space in (B).

(D) FV and GR calculated for full parameter space in (B).

(E–G) Examples of drug responses visualized through the integrated analysis of GR-FV. For 

each, the GR-FV plot is flanked by the FV dose-response profile (left) and the GR dose-

response profile (bottom).

(E) GR-FV plot for everolimus, a drug that induces GR inhibition without cell death.

(F) GR-FV plot for belinostat, a drug that induces coincident GR inhibition with cell death.

(G) GR-FV plot for an example biphasic drug, doxorubicin.

Data in (E)–(G) are means ± SDs of 3 biological replicates.

See also Figure S3 and Table S2.
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Figure 4. Drug GRADE Captures Distinct Drug Class-Specific Relationships between Drug-
Induced Proliferative Arrest and Cell Death
(A) Step-by-step calculation of drug GRADE. See Experimental Model and Subject Details 

for a detailed description.

(B) Waterfall plot of GRADEs for 85 drugs tested.

(C) Cumulative distribution functions of drug GRADE for all 85 drugs (blue) or drugs in the 

listed class (orange). p values calculated using a 2-tailed Kolmogorov-Smirnov (KS) test.

See also Figure S4 and Table S1.
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Figure 5. Drug GRADE Captures Subtype-Dependent Differences in Drug Sensitivity That Are 
Not Captured Using Traditional Pharmacometrics
(A and B) GR-FV plots for doxorubicin (A) or Torin 2 (B) for 35 cell lines from the LINCS 

dataset. U2OS data are shown in black for comparison. The range of GRADEs (θ) across all 

cell lines shown. GR and FV dose-response curves are for the mean responses across all cell 

lines.

(C) Cumulative distribution function of GRADEs for cytotoxic chemotherapies or growth 

factor-targeted therapies. The p value from the KS test is shown for deviation from random 

scores.
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(D) GR-FV plots for 6 DNA-damaging drugs across 15 breast cancer cell lines from LINCS.

(E and F) RV and FV dose responses shown for doxorubicin in T47D (E) or MDA-MB-468 

(F). Traditional IC50 (i.e., RV50) highlighted with gray bar.

(G and H) Traditional IC50s for doxorubicin (G) or all DNA-damaging drugs (H) across 36 

cell lines. Data are separated by breast cancer subtype: luminal (LUM), HER2 

overexpressing (HER2), or triple-negative (TNBC).

(I and J) Drug GRADE for doxorubicin (I) or all DNA-damaging drugs (J) across 36 cell 

lines. Data are separated as in (G) and (H).

For (G)–(J), t test p values are shown for a comparison of TNBC to LUM. All other 

comparisons are not significant. ***p < 0.05; n.s. = not significant.

See also Figure S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Purified Rabbit Anti-Active Caspase-3 BD Biosciences 559565; RRID: AB_397274

Phospho-Histone H2A.X (Ser139) (20E3) Rabbit mAb Cell Signaling Technology 9718; RRID: AB_2118009

Goat anti-Rabbit IgG(H+L) Cross-Absorbed Secondary ThermoFisher Scientific A-11008; RRID: ABJ43165

Antibody, Alexa Fluor 488

Chemicals, Peptides, and Recombinant Proteins

A23187 ApexBio Technology Cat#B6646

ABT-263 (Navitoclax) ApexBio Technology Cat#A3007

ABT-737 ApexBio Technology Cat#A8193

Artesunate ApexBio Technology Cat#B3662

Axitinib (AG 013736) ApexBio Technology Cat#A8370

AZD2461 ApexBio Technology Cat#A4164

Belinostat (PXD101) ApexBio Technology Cat#A4Q96

BI 2536 ApexBio Technology Cat#A3965

Bleomycin Sulfate ApexBio Technology Cat#A8331

Bortezomib (PS-341) ApexBio Technology Cat#A2614

Bromodomain Inhibitor, (+)-JQ1 ApexBio Technology Cat#A1910

BX795 ApexBio Technology Cat#A8222

Cediranib (AZD217) ApexBio Technology Cat#A1882

Chlorambucil ApexBio Technology Cat#B3716

Dacarbazine ApexBio Technology Cat#A2197

Docetaxel ApexBio Technology Cat#A4394

Entinostat (MS-275,SNDX-275) ApexBio Technology Cat#A8171

Everolimus (RAD001) ApexBio Technology Cat#A8169

Flubendazole ApexBio Technology Cat#B1759

Flumequine ApexBio Technology Cat#B2292

Foretinib ApexBio Technology Cat#A2974

GSK J1 ApexBio Technology Cat#A4191

Honokiol ApexBio Technology Cat#N1672

JNJ-26854165 (Serdemetan) ApexBio Technology Cat#A4204

MG-132 ApexBio Technology Cat#A2585

MK1775 ApexBio Technology Cat#A5755

Niclosamide ApexBio Technology Cat#B2283

Nigericin sodium salt ApexBio Technology Cat#B7644

Nilotinib ApexBio Technology Cat#A8232

Oubain ApexBio Technology Cat#B2270

Paclitaxel (Taxol) ApexBio Technology Cat#A4393

Panobinostat (LBH589) ApexBio Technology Cat#A8178
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REAGENT or RESOURCE SOURCE IDENTIFIER

Pazopanib Hydrochloride ApexBio Technology Cat#A8347

PD 0332991 (Palbociclib) HCI ApexBio Technology Cat#A8316

RITA (NSC 652287) ApexBio Technology Cat#A4202

RSL3 ApexBio Technology Cat#B6095

Sabutoclax ApexBio Technology Cat#A4199

Salinomycin ApexBio Technology Cat#A3785

SB743921 HCI ApexBio Technology Cat#B1590

SGI-1027 ApexBio Technology Cat#B1622

TAE684 (NVP-TAE684) ApexBio Technology Cat#A8251

Temozolomide ApexBio Technology Cat#B1399

TH287 ApexBio Technology Cat#B5849

Tivozanib (AV-951) ApexBio Technology Cat#A2251

Topotecan HCl ApexBio Technology Cat#B2296

Torin 1 ApexBio Technology Cat#A8312

Torin 2 ApexBio Technology Cat#B1640

Trlptollde ApexBio Technology Cat#A3891

TW-37 ApexBio Technology Cat#A4234

Vinblastine sulfate ApexBio Technology Cat#A3920

Vincristine ApexBio Technology Cat#A1765

Vorinostat ApexBio Technology Cat#A4084

YM-155 HCl ApexBio Technology Cat#A3947

Erastin2 Cayman Chemical Cat#27087

Erlotinib LC Laboratories Cat#E-4007

Valinomycin Millipore-sigma Cat#V0627

A-1210477 Selleck Chemicals Cat#S7790

Abemaciclib Selleck Chemicals Cat#S5716

Alpelisib Selleck Chemicals Cat#S2814

AZD7762 Selleck Chemicals Cat#S1532

Bibf-1120 (Nintedanib) Selleck Chemicals Cat#S1010

Buparlisib (BKM120, NVP-BKM120) Selleck Chemicals Cat#S2247

Cabozantinib (XL184, BMS-907351) Selleck Chemicals Cat#S1119

Camptothecin Selleck Chemicals Cat#S1288

Ceritinib (LDK378) Selleck Chemicals Cat#S7083

Cisplatin Selleck Chemicals Cat#S1166

Dasatinib Selleck Chemicals Cat#S1021

Dinaciclib (SCH727965) Selleck Chemicals Cat#S2768

Erastin Selleck Chemicals Cat#S7242

Etoposide Selleck Chemicals Cat#S1225

INK-128 (Sapanisertib, MLN0128.TAK-228) Selleck Chemicals Cat#S2811
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REAGENT or RESOURCE SOURCE IDENTIFIER

Ipatasertib (GDC-0G68) Selleck Chemicals Cat#S2808

Luminespib (AUY-922, NVP-AUY922) Selleck Chemicals Cat#S1069

Neratlnib Selleck Chemicals Cat#S2150

Olaparib (AZD2281, Ku-0059436) Selleck Chemicals Cat#S1060

PF-4708671 Selleck Chemicals Cat#S2163

Pictilisib (GDC-0941) Selleck Chemicals Cat#S1065

Saracatinib (AZD0530) Selleck Chemicals Cat#S1006

SMER 28 Selleck Chemicals Cat#S8240

Taselisib (GDC 0032) Selleck Chemicals Cat#S7103

TGX221 Selleck Chemicals Cat#S1169

Tivantinib Selleck Chemicals Cat#S2753

Trametinib (GSK1120212) Selleck Chemicals Cat#S2673

Volasertib Selleck Chemicals Cat#S2235

Doxorubicin hydrochloride Sigma Aldrich Cat#D1515–10MG

Sytox Green Nucleic Acid Stain ThermoFisher Scientific Cat#S7020

Deposited Data

GRADE plot function This paper https://github.com/MJLee-Lab/GRADE

Pharmacological response data for 85 drugs studied This paper Table S1

Proliferation and death rates for 85 drugs at each dose This paper Table S2

Experimental Models: Cell Lines

U-2-OS::Nuc Richards et al., 2020 https://pubmed.ncbi.nlm.nih.gov/32251407

Software and Algorithms

Incucyte S3 Essen Biologies 2019B

MATLAB MathWorks R2019a

Prism GraphPad 8.3.1
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