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ABSTRACT: One of the most promising properties of lead halide perovskite nanocrystals (NCs) is their defect tolerance. It is often
argued that, due to the electronic structure of the conduction and valence bands, undercoordinated ions can only form localized
levels inside or close to the band edges (i.e., shallow traps). However, multiple studies have shown that dangling bonds on surface
Br− can still create deep trap states. Here, we argue that the traditional picture of defect tolerance is incomplete and that deep Br−

traps can be explained by considering the local environment of the trap states. Using density functional theory calculations, we show
that surface Br− sites experience a destabilizing local electrostatic potential that pushes their dangling orbitals into the bandgap.
These deep trap states can be electrostatically passivated through the addition of ions that stabilize the dangling orbitals via ionic
interactions without covalently binding to the NC surface. These results shed light on the formation of deep traps in perovskite NCs
and provide strategies to remove them from the bandgap.

As a result of their high photoluminescence quantum yield,
facile synthesis, narrow emission width, and tunable

bandgap across the visible spectrum depending on the halide
composition,1,2 lead halide perovskite nanocrystals (NCs) are
of great interest for application in devices.3−5 For instance,
they can be used as a color-converting phosphor,1,6 lasing
material,7−9 absorber layer in solar cells,10−13 and emitter in
light-emitting diodes.1,6,14 The high performance of lead halide
perovskite-based materials is often linked to their defect
tolerance, which is attributed to a combination of the high
formation energy of defects15,16 and the electronic structure of
the conduction (CB) and valence bands (VB).1,2,17 The latter
point is illustrated in Figure 1, where the electronic structure of
perovskites is compared with that of common “defect-
intolerant” semiconductors, which include II−VI (e.g., CdSe)
and III−V (e.g., InP) materials. Taking CdSe as an example, as
shown in Figure 1, the bandgap is formed between bonding
states (the VB) and antibonding states (the CB). As a result,
nonbonding orbitals from undercoordinated atoms are likely to
lie in the bandgap. This has indeed been shown to be the case
for two-coordinated chalcogenides.18−20 However, the spher-
ical symmetry of the s orbital of the metal ensures it is split out
of the bandgap, even if the metal is undercoordinated.18 In lead
halide perovskites (see the example of CsPbBr3 in Figure 1),
the top of the VB consists of the antibonding interaction
between the Br 4p and the Pb 6s orbitals, while the
antibonding interaction between Br 4p and Pb 6p orbitals
forms the CB edge. As both band edges consist of antibonding
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Figure 1. Electronic structure of (left) defect-intolerant materials,
such as CdSe, and (right) defect-tolerant materials, like CsPbBr3. In
defect-intolerant materials, the VB and CB are respectively composed
of bonding and antibonding orbitals, causing nonbonding atomic
orbitals (AOs, black) to form deep trap states (red). In defect-tolerant
materials, both the VB and CB are formed by antibonding orbitals, so
that nonbonding AOs are expected to lie close to or in the bands.
However, differences in the local environment of each atom can lead
to shifts of the energy of the AOs (gray-shaded areas), thus pushing
trap states into the bandgap even in defect-tolerant materials, as
illustrated by the gray arrow.
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orbitals, nonbonding orbitals are expected to either lie within
the bands or form shallow traps.1,2,17

However, computational studies on perovskite NCs show
that excess surface halide ions16,21 or stripping of the
perovskite surface22 can still create deep trap states in the
form of undercoordinated surface Br−, suggesting that the
above description of defect tolerance is incomplete. In the
current work, we use density functional theory (DFT)
calculations on CsPbBr3 NCs to show that this apparent
discrepancy can be understood by taking the local environment
of the undercoordinated halide ions into account. Although the
energy of the Br 4p orbitals lies within the VB in the perovskite
bulk, a Br− ion at the surface experiences a different local
electrostatic potential. If the electrostatic potential is
destabilizing, it can push the nonbonding Br− orbitals into
the bandgap; if it is stabilizing, for instance due to the presence
of ionic species, dangling orbitals can be pushed further into
the VB. The resulting spread in the energy of atomic orbitals
(AOs) is schematically illustrated in Figure 1 by the gray-
shaded areas.
From TEM images and X-ray diffraction, it is known that as-

synthesized CsPbBr3 NCs present a cubic shape and an
orthorhombic crystal structure.23,24 They are typically capped
by oleylammonium and oleate ligands25,26 and have excess Br−

and Cs+ (some of which may be replaced by oleylammonium
cations) at the surface.21,22,27 These characteristics suggest a
CsBr-terminated NC, and, in line with previous computational
works,21,22 ,28,29 we decided to construct a cubic
Cs324Pb216Br756 NC model system (see Figure S1). After this
step, we followed the approach of Bodnarchuk et al. (see the
Supporting Information for computational details)22 to
simulate the variation of the NC surface by the stepwise
removal of the outer CsBr layer (models M1−M5, see Figure
S2), followed by the gradual removal of the underlying PbBr2
layer (models M6−M10, see Figure 2). The highest occupied
molecular orbital (HOMO) of each model is shown in Figure
2B. We further calculate the density of states (DOS), inverse
participation ratio (IPR), and crystal orbital overlap population
(COOP) for the Pb−Br interaction for all models, as shown in
Figure 2C (see the Supporting Information for more details on
these analyses).
As reported previously,22 Figure S2 shows that, although

removal of the CsBr layer leads to more localized levels (i.e.,
with a higher IPR) near the VB edge, no deep traps are created,
which is in line with the concept of defect tolerance. Upon
removal of the PbBr2 shell, Br

−-localized levels start to appear
in model M7 (with 25% of the PbBr2 removed). As predicted
by Figure 1, these Br− levels still largely lie at the VB edge (see

Figure 2. Formation of deep traps upon stripping of the PbBr2 layer. (A) Structure, (B) isosurface plot of the HOMO, and (C) density of states
(DOS), inverse participation ratio (IPR), and crystal orbital overlap population (COOP) of each model upon gradual stripping of the PbBr2 layer.
As shown in Figure S2 (models M1−M5), gradual stripping of the outer CsBr layer of our CsPbBr3 model system does not create any trap states in
the bandgap. However, upon removal of the underlying PbBr2 layer (models M6−M10, shown here), deeper states start to appear. From model M8
onward, multiple deep traps, localized on surface Br−, are present.
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Figure S3 for details). However, upon removal of 50% of the
PbBr2 shell in model M8, many highly localized trap states
(IPR ≈ 1) appear in the middle of the bandgap, as shown in
Figure 2C. Inspection of the shape of the trap states (Figure
2B, see Figure S4 for more details) and the COOP analysis
(COOP ≈ 0, see Figure 2C) reveals that these states are
formed by the nonbonding p orbitals of surface Br−. Model M8
contains five such Br− sites, each of which creates three trap
states with its orthogonal p orbitals, leading to a total of 15
deep traps in Figure 2C.
The models shown in Figures 2 and S2 are constructed by

removing CsBr or PbBr2 units first from corners and edges,
since they possess the lowest binding energy. In reality,
removal of PbBr2 can lead to a great number of surface
compositions. To test that the occurrence of deep traps
localized on Br− ions is not specific to the structure of model
M8 in Figure 2, we performed additional calculations where
PbBr2 moieties are either removed from the middle of the
facets (Figure S5, models M8-ii and M8-iii) or randomly
removed (Figure S5, models M8-iv and M8-v). The
observation from these additional calculations is that the
formation of deep Br− traps can be generalized to many
different PbBr2 configurations, as long as Br− ions with only
Cs+ neighbors are present. Changes in the surface config-
uration lead to changes in the total energy, but the creation of
a Br− trap does not necessarily lead to a significant increase of
the energy of the system. Due to the dynamic nature of NC
surfaces, many of these configurations will be sampled at room
temperature, including configurations that expose uncoordi-
nated surface Br− ions that form deep traps.

Clearly, these trap states are not consistent with the picture
of defect tolerance expounded in the first paragraph, which
would expect the nonbonding p orbitals to lie in or close to the
VB. This suggests that the traditional picture of defect
tolerance is incomplete. This picture assumes that the energy
of a molecular orbital (MO) only depends on the interaction
(be it bonding, antibonding, or nonbonding) between AOs.
However, the energy of an AO can also be significantly
influenced by its surroundings. For example, crystal field theory
describes how the electrostatic field created by the surrounding
ligands lifts the degeneracy of d orbitals in metal complexes.30

We therefore hypothesize that the appearance of deep trap
states can be explained by including the effects of the local
electrostatic potential in the description of defect tolerance.
To test this hypothesis, we now take a closer look at model

M8, as this is the first model with multiple deep traps. In
Figure 3A-ii, we plot the potential energy (in eV), as generated
by both the nuclei and electrons, of an electron at the surface
of model M8. A blue color in Figure 3A-ii corresponds to a low
potential energy, while a red color indicates a high potential
energy. Figure 3A-ii shows that the potential energy is
significantly higher at five points on the NC surface. These
points correspond to the location of the aforementioned five
surface Br− sites that are responsible for the 15 deep traps in
Figure 3A-iii. What sets these five Br− apart from the other Br−

ions in the NC is that they have no direct bonds to Pb2+.
Instead, their nearest neighbors solely comprise Cs+, with
which there is little interaction. Whereas all other Br− sites in
the bulk and on the surface are stabilized by Pb2+, these five
surface Br− sites in Figure 3A-ii can practically be seen as loose

Figure 3. Effect of local potential on the energy of trap states (A) without and (B) with the application of an external potential. (i) Structure of
model M8 and the location of the applied external potential around one of the five Br− sites that give a deep trap, indicated as Br1. (ii) Total
potential energy (i.e., the electrostatic potential generated by the nuclei and electrons plus the external potential, see the Supporting Information for
details) of an electron at the NC surface (in eV). Blue colors correspond to a low potential energy, while red indicates a high potential energy. The
location of Br1 is indicated by the red arrow. The turquoise arrows indicate the other four Br− sites that give rise to deep trap states. (iii) DOS,
showing the contribution of the surface Br− to the deep traps. Application of an external potential shifts the states from Br1 into the VB, leaving 12
instead of 15 traps in the bandgap.
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Br− in vacuum. The absence of Pb2+ neighbors means that they
experience a significantly higher local potential energy, which
pushes their AOs from the VB into the bandgap. The same
trends are observed for the models with different PbBr2
configurations in Figure S5. There, moving a Br− away from
its Pb2+ neighbors is also found to significantly raise the
potential energy around the Br− ion, thus creating deep traps.
This reasoning implies that it should also be possible to push

deep trap states back into the VB by changing the local
potential. In Figure 3B-i we apply an artificial external
stabilizing potential (see the Supporting Information for
computational details) around one specific Br− (indicated in
red as Br1 in Figure 3). As shown in Figure 3B-ii, this lowers
the potential energy around Br1 and consequently pushes the
states related to Br1 into the VB, leaving 12 instead of 15 deep
traps (see Figure 3B-iii). Figure S6 shows that by varying the
magnitude of the external potential, the energy of the trap
states can be shifted across the bandgap.
These results clearly show that the position of localized MOs

depends both on (the absence of) bonds formed with
neighboring atoms, as expressed by Figure 1, and on the
local electrostatic environment. This conclusion does not
depend on the exact surface configuration, but holds generally
for undercoordinated Br− ions on the surface, as similar results
are obtained on various other surface compositions (see Figure
S5). Therefore, one can distinguish two main pathways via
which traps may be passivated: (1) the covalent binding of
ligands to the surface to split nonbonding trap states and (2)
the electrostatic interaction between the NC surface and
electrolytes that do not covalently bind to the surface but
influence the energy of surface-localized MOs via ionic
interactions. In the Supporting Information we show in two
ways how traps can be removed through the electrostatic
interaction with charges that do not bind covalently to the
surface. In Figure S7, we created a core/shell structure, where a
CsPbBr3 core is surrounded by Cs+, Pb2+, and Br− like charges
to mimic the perovskite bulk potential at the surface of the
core. Although these charges do not bind covalently to the
surface, Figure S7 shows that the bandgap has become
completely trap free, with both the VB and CB edge
delocalized over the NC. In Figure S8, we show that states
localized on a Br− ion can be removed from the bandgap by
addition of a nearby proton (H+)-like charge.
In conclusion, we have used DFT calculations to show that

the general picture of defect tolerance in cesium lead halide
perovskite NCs is incomplete and that the local environment
of trap states should also be considered. Br− sites on the
surface can experience such a different local potential
compared to the bulk that their nonbonding orbitals are
pushed into the bandgap and form deep trap states. These
results not only give insight into the formation of traps in
perovskites but also provide novel approaches for removing
these states from the bandgap.
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