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trazodone Loaded Lipid core poly 
(ε-caprolactone) nanocapsules: 
Development, characterization 
and in Vivo Antidepressant Effect 
evaluation
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Trazodone hydrochloride (TRH) is a lipophilic drug which is used effectively as an antidepressant. 
Its poor solubility and short half-life represent an obstacle for its successful use. Nanocapsules with 
biodegradable polymeric shell are successful drug delivery systems for controlling the release of drugs. 
to enhance the entrapment of lipophilic drugs, oils can be added forming a lipophilic core in which the 
drug is more soluble. The aim of this study was to enhance the efficacy of TRH and prolong its action 
by formulating it into lipid core polymeric shell nanocapsules. Nanocapules were prepared using 
nanoprecipitation technique. All prepared formulations were in nano size range and negatively charged. 
The TRH entrapment efficiency (EE%) in lipid core nanocapsules was up to 74.8 ± 0.5% when using 
Labrafac lipophile as a lipid core compared to only 55.7 ± 0.9% in lipid free polymeric nanospheres. 
Controlled TRH release was achieved for all prepared formulations. Forced swim test results indicated 
the significant enhancement of antidepressant effect of the selected TRH loaded Labrafac lipophile core 
nanocapsules formulation compared to control and TRH dispersion in phosphate buffer. It is concluded 
that lipid core nanocapsules is a promising carrier for the enhancement of TRH efficacy.

Depression is one of the most common, chronic and debilitating psychological disorders that may lead eventually 
to patient suicide1. It is characterized by many symptoms like feeling hopelessness or inappropriate guilt, low 
energy, change in sleep, change in appetite and recurrent thoughts of suicide. Its consequences not only affect the 
patient, but also affect negatively the whole society. The financial consequences of this disease are tremendous and 
cause an overwhelming burden on the society. This burden is due to the dramatically decrease in productivity and 
absenteeism in the workplace. Depression mainly occurred due to the deficiency of both serotonin and norepi-
nephrine neurotransmitters in the brain2. Trazodone hydrochloride (TRH) is one of the most potent drugs used 
for the treatment of depression (Fig. 1). It is a triazolopyridine derivative with antidepressant effect3. It is thought 
that the mechanism of action of TRH is due to its activity at 5-HT1, 5-HT2 serotonergic receptors. It also acts 
on poorly blocking serotonin reuptake and selectively blocking presynaptic receptors. In addition, TRH blocks 
alpha-2 adrenoceptors4. TRH possesses unique properties compared to other antidepressants. TRH causes fewer 
anticholinergic side effects compared to the tricyclic antidepressant. It also has an activity against anxiety which 
is concomitant to depressed patients. Several studies showed that at therapeutic doses TRH is less likely to cause 
cardiotoxicity than imipramine. TRH also does not result in neurologic side effects and seems to be well tolerated 
by elderly5. Despite all of these unique properties of TRH, it suffers from some drawbacks that negatively affects 
its activity. It is a small molecule of molar mass 408.33 g/mol6 and it has high lipophilic nature7. TRH has a very 
short half-life about 4.1 h8. This leads to frequent administration of TRH which decreases depression patients’ 
compliance and their adherence to the treatment regimen. Also hydrophobic small molecule drugs suffer from 
low water solubility and wide tissue distribution profile which may lead to very serious side effects after admin-
istration of free drug9. Nanotechnology has become one of the main technologies of the 21st century as a result 
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of its revolution in multiple fields like medical, food and pharmaceutical one10. Polymeric nanoparticles have 
attracted attention recently as delivery vesicles for biomedical application. This is due to its unique advantages in 
targeting, enhancing drugs’ permeation and making controlled release action from the drugs11,12. Nanocapsules 
are nano-sized carrier with two main parts: the inner part is called “core” which is oily in nature while the outer 
part is a thin polymer shell13. Drugs which are encapsulated in nanocapsules not only protected from exterior 
environment, but also have a facilitated way for controlling their release14. One of the most special advantage of 
nanocapsules as drug delivery system is that it has the ability to successfully encapsulate both hydrophilic and 
lipophilic drugs according to the nature of its core15. Lipid core nanocapsules possess several advantages: they 
have an excellent ability in preventing the drugs from degradation, they also have high drug loading capacity and 
reduced burst release16. The most commonly used polymers for forming the shell are the biocompatible and bio-
degradable one like poly lactic acid, poly(lactide-co-glycolide and poly(Ɛ-caprolactone) (PCL)17. PCL has prom-
ising characteristics in addition to being biocompatible and biodegradable. Elasticity with tensile strength, safety, 
cytocompatibility and long term degradation are also unique advantages of PCL. Long term degradation property 
of PCL has been exploited intelligently in several formulations for controlled drug delivery18. There are many oils 
which can represent the lipid core for the lipid core nanocapsules. Long chain oils such as oleic acid are commonly 
used. While the most commonly used oils forming the core of nanocapsules are triglycerides19. Caprylic/capric 
triglyceride are the most frequent triglycerides used in the lipid core nanocapsules20–22. Different methods were 
used to prepare the nanocapsules, but the most common one is the nanoprecipitation method. Nanoprecipitation 
method is also called interfacial deposition or solvent displacement method. It is one of the earliest developed 
methods for encapsulating drugs and it is mainly used for encapsulating hydrophobic drugs23. Nanoprecipitation 
method has many advantages, for example: it is a simple method that can be scaled up easily, it does not need high 
energy input or large amounts of toxic solvents. The obtained particles from this method are in submicron sizes 
with narrow size distribution24. By using such a simple technique, the aim of this study was to evaluate the efficacy 
and sustain the effect of TRH by formulation of lipid core PCL shell TRH loaded nanocapsules. This was done by 
both in vitro tests and the assessment of its pharmacological action in vivo using forced swim test (FST). It also 
aims to compare and evaluate the use of different oils for improved entrapment of the drug inside the core of the 
nanocapsules. Two caprylic/capric (medium chain) triglyceride of widely different hydrophilic lipophilic balance 
values (HLB) were used, and oleic acid is an example of long chain fatty acids that was also used as lipid core. To 
our knowledge, except for the patent by Benita et al., TRH was not formulated into nanocapsules before25. The in 
vivo pharmacological action of TRH in the nanocapsules will be evaluated for the first time.

Results and Discussion
Determination of solubility of TRH in the core oil. Trazodone is a hydrophobic drug, which can be pro-
tonated; its aqueous solubility depends upon the pH. The log P of TRH is 3.13. The solubility of the free base TRH 
was experimentally determined to be 0.176 mg/ml at pH 11.526 and 0.081 mg/ml at pH 10 at 20 °C27, additionally 
its solubility was calculated to be 0.29 mg/ml28. The apparent solubility of the HCl salt of TRH was reported to be 
38.5 mg/ml29 and 22 mg/ml at a pH of 5.030. The n-octanol water partition coefficient of TRH was found to be 63.3 
at pH 7.431. It is clear that the inclusion of this drug to oil core nanocapsule will increase its loading and entrap-
ment into the nanocapsules. The solubility of TRH in labrafac lipophile, Miglyol 812 and oleic acid was 1.025 mg/
ml, 0.758 and 0.965 mg/ml respectively. This may be explained according to the HLB of the oil in which the TRH 
is dissolved. The HLB of Miglyol 812 is 15, which indicates higher hydrophilicity compared to the other oils which 
both have HLB value of 1. The lipophilicity of the latter oils allow higher amount of the drug to be dissolved in. 
The TRH solubility is higer in labrafac lipophile than in the oleic acid. Although both have the same HLB, the 
higher solubility in labrafac lipophile is attributed to the chain length of the oil. The shorter chain triglycerides 
have more polar groups per unit mass than longer chain molecules, so there is dipole–dipole interactions between 
polar groups on the oil and TRH molecules which may increase the solubilization of the drug32.

Charecteriation of the prepared TRH loaded nanospheres and nanocapsules. Particle size and 
zeta potential analysis. All prepared formulations were in the nanorange, the oil free nanospheres had parti-
cle size (PS) of 118.4 ± 1.8 nm. The lipid core nanocapsules size ranged from 133.5 ± 2.1to 172.4 ± 2.2 nm. As 
seen from these results shown in Table (1), the inclusion of the oil increases the nanocapsule size and from our 

Figure 1. Chemical structure of Trazodone HCl.
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preliminary studies results, the presence of the TRH had a major effect on the size as well. The smallest PS of 
lipid core nanocapsules was achieved in F2 where labrafac lipophile is the core oil, while the largest PS was in the 
Miglyol 812 containing nanocapsules. The small PS of the polymeric nanosphere without oil in the core was in 
agreement with Stella et al., who prepared gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres 
and nanocapsules with Miglyol 812 in the core. They found that the mean size of the nanospheres formulations 
is significantly smaller than that of the oil core nanocapsules33. Heurtault et al., and Huynh et al., found that 
increasing the concentration of oil in the nanocapsules core leads to increasing the particle size of the nanove-
sicles34,35. The polydispersity index (PDI) is a dimensionless value describing the size distribution in colloids, it 
is an important parameter to ensure size homogenity. Its value varies from 0.0 to 1.0, the smaller the PDI value 
– closer to zero – the more homogenous the vesicles will be. As shown in Table (1), F1, F2, and F3 had PDI values 
of 0.19 ± 0.03, 0.29 ± 0.01 and 0.28 ± 0.01 respectively. These formulations showed acceptable size distrbution as 
PDI is <0.3. The widest size distribution was found in F4 with PDI 0.33 ± 0.02. It is clear that TRH loaded nano-
spheres showed more homogenous size distribution compared to oil core nanocapsules. Stella and colleagues 
should also that the average PDI of the drug loaded nanospheres was much lower than that of the drug loaded oil 
core nanocapsules33.

Surface charge is a good indication of stability of colloidal systems, higher zeta potential (ZP) values ensures 
high stability of the colloidal dispersions. Ideally, the stability of nanoparticles is specified by the balance between 
the forces of attraction and repulsion. This is the main factor affecting the stability in the absence of steric effect. 
The strong repulsive forces help in the prevention of particle agglomeration. The most stable nanoparticle sus-
pension is achieved when the ZP is greater than ± 30 mV. While, if there is a combined steric and electrostatic 
stabilization, a minimum ZP of ± 20 mV is sufficient for long term stability36. As shown in Table (1), all prepared 
formulations showed relatively high ZP. They ranged between −19.4 ± 0.5 to −23.3 ± 0.2 mV. Because the stabi-
lizers used are non-ionic surfactants (span 60 and poloxamer 188), the negative value is expected not to be too 
high. Similar results were obtained by Lboutounne et al.37, who prepared poly(ε-caprolactone) without inclusion 
of lipid core and the ZP value was − 20.9 mV. Due to presence of oil in the core, a slight increase in the ZP was 
observed in F2,F3,F4 than in F1. Oleic acid has strong negative charge, but due to the inclusion of the oil into the 
core of the nanocapsules, the oleic acid resulted in slight increase in ZP. The nonionic surfactants can participate 
in the stability of the nanocapsules due to their steric effect. As mentioned by Lourenco et al., the polymeric nano-
capsule can be sterically stabilized by the use of poloxamers and polysorbates38.

Encapsulation efficiency. To investigate the influence of the lipid type on the EE% of the TRH in the nano-
capsules, different formulations with different lipids were prepared and compared to polymeric nanocapsules 
containing no oil in their core. The EE% of the prepared formulations are illustrated in Fig. (2). As seen from the 
figure, higher EE% results were achieved by the addition of the lipids to the core of the nanocapsule. As F1 had 
only 55.7 ± 0.9% of TRH entrapped in the nanospheres, the EE% of the lipid core nanocapsules were 74.8 ± 2.1%, 
66.4 ± 0.5% and 70.2 ± 1.2% for formulations F2, F3 and F4 respectively. Nanocapsules containing Labrafc lio-
phile in the core showed the highest EE%, followed by F4 containing oleic acid, then F3 with Miglyol 812 which 
showed the least EE% among the prepared lipid core nanapcasules. This was in complete agreement with the 
solubility study conducted in this work. TRH is a highly lipophilic drug which pass the blood brain barrier easily, 
so it was expected to have poor loading to the PCL nanospheres. The lipophilic drugs tend to concentrate away 

Form. PS (nm) PDI ZP (mV)

F1 118.4 ± 1.8 0.19 ± 0.03 −19.4 ± 0.5

F2 133.5 ± 2.1 0.29 ± 0.01 −21.9 ± 0.9

F3 172.4 ± 2.2 0.28 ± 0.01 −21.4 ± 0.3

F4 146.7 ± 2.1 0.33 ± 0.02 −23.3 ± 0.2

Table 1. Particle size (PS), polydispersity index (PDI), zeta potential (ZP) of the prepared TRH loaded 
nanocapsules.

Figure 2. EE% of TRH in the prepared formulations.
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from the polymeric shell and concentrate in the core39. So by adding the lipid to the core higher EE% is expected 
to be obtained. Different factors control the extent of TRH entrapment to the lipid core nanocapsule such as 
the solubility of TRH in the lipid forming the core of the nanocapsules and the partition coefficient of the drug 
between the lipid core and the aqueous medium. Dalencon and co-workers studied the solubility of Rifabutine 
and Atovaquone in different lipids. They found that the highest solubility of the drugs was in benzyl benzoate 
which achieved much higher EE% for both drugs compared to decreased EE% in the nanocapsules where the 
lipids showed poorer drug solubilities40. Stella and colleagues studied the effect of the difference in partition of 
different drugs between Miglyol 812 and water. They found that the stability of the entrapped drug within the 
inner core of the nanocapsules depends on the transfer rate by diffusion in the aqueous medium. This is crucially 
dependent on the partition coefficient of the drug between the nanoparticle core and the aqueous phase; it was 
found that the higher the partition coefficient, the slower was the transfer rate33.

Study of the in vitro release of TRH from the prepared nanospheres and nanocapsules. The in vitro release study 
was done using the dialysis membrane technique. TRH release from all formulations was studied and compared 
with the release of the pure drug from both TRH dispersion in phosphate buffer pH 7.4 and solubilized TRH in 
Tween 80 phosphate buffer pH 7.4 solution. The TRH release data is illustrated in Fig. (3). All prepared nano-
spheres and oil core nanocapsules showed controlled release compared to immediate complete release from TRH 
solubilized solution in tween 80 and poor incomplete release from TRH dispersion in phosphate buffer. After 
24 h, the release from formulations F1, F2, F3 and F4 was 73.4 ± 4.5%, 53.1 ± 5.3%, 56.6 ± 3.6, 62.5 ± 5.5 respec-
tively. This was compared to about 100% of TRH released from TRH solubilized solution after 30 min. showing 
complete burst release of the drug through the dialysis membrane. On the other hand, TRH dispersion released 
only 19.5 ± 0.8%; this might be due to the poor solubility of TRH which allowed only very small amount of the 
drug to be released which is determined by the saturation solubility of TRH in phosphate buffer. By comparing 
the oil free nanospheres with the three lipid core nanocapsule formulations, it is clear that the presence of TRH 
solubilized form in a lipophilic environment was reflected on the controlled manner of the release. Jäger et al., 
suggested that the presence of the oil in the core of the nanocapsules delayed the release of Indomethacin ester 
and its release was slow and time dependent. This group studied also the effect of the viscosity of the core oil and 
its effect on the release of the drug. They found that when the lipid core composed of caprylic/capric triglycer-
ide increased in concentration, it reflects a big reduction in the viscosity of the nanocapsule dispersion. This in 
turn caused an increase in the half-lives of the Indomethacin ester release which referred to delayed effect with 
decreasing viscosity41. The addition of lipid to the core of the nanocapsule allows the hydrophobic drugs to be 
more concentrated in the core so the burst release due to erosion of the nanocapsule shell is minimized39. The 
higher release rate of TRH from F1 might also be due to the smaller PS because of the absence of the lipid core. 
This led to increase in the surface area of the nanocapsules which increases the release rate of the TRH41.

Kinetic study of the in vitro TRH release. The release kinetics of the prepared formulations was evaluated by 
fitting the obtained in vitro TRH release to zero order, first order, Higuchi diffusion and Hixon Crowel models. 
The correlation coefficient (r) was calculated for each model as shown in Table (2). As seen from the table, oil 
free nanospheres and lipid core nanocapsules are best fitted to Higuchi diffusion model. In this model, the drug 
released from the nanocapsule after the degradation of the shell is controlled by the diffusion mechanism rather 
than matrix erosion mechanism. Similar results obtained by Derakhshandeh and co-workers who encapsulated 
9-nitrocamptothecin into PLGA nanoparticles. They found that the best fitted model for the in vitro release of the 
drug was Higuchi model and they concluded that the release of the drug was by diffusion mechanism42. The half 
life of TRH obtained by applying Higuchi model was 10.19 h for the PCL nanosphere where the drug is dispersed 
in the polymer. The half lives obtained in F2, F3 and F4 were 17.13, 17.11 and 14.32 h respectively. The half life 
values indicated that the most controlled release manner was obtained by F2 which contains Labrafac lipophile as 
the lipid core. The overall in vitro release data showed that nanoencapsulation of TRH into nanocapsules offered 
controlled time dependent release. It also indicated that the formulation of the lipid core nanocapsules offered 
more sustained release of TRH to the release medium.

Figure 3. In vitro TRH release from different prepared formulations compared to TRH dispersion in phosphate 
buffer pH 7.4 and TRH solution in phosphate buffer pH 7.4 solubilized with Tween 80.
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Morphological evaluation of the selected TRH nanocapsule formulation. According to the EE% and the 
release data, F2 was selected to be evaluated in vivo. The highest EE% and the most controlled prolonged TRH 
release pattern made F2 a promising system for enhancing the antidepressant activity of TRH. Before the in vivo 
experiment was done, F2 was morphologically studied using TEM. The morphology of F2 nanocapsules is shown 
in Fig. (4) with two different magnification powers. As seen from the figure, spherical capsules with homogenous 
size were formed, no agglomerations can be seen. The capsular shape and structure shows the polymer membrane 
as a line surrounding an oily core. The mean PS of the nanocapsule observed by TEM is comparable with the 
mean size obtained using the Malvern Zetasizer. Similar shapes were obtained in formulation of different core 
shell nanocapsules as mentioned by Jovanovic et al., and Li et al.43,44.

Assessment of the pharmacological action. Forced swim test. The FST is a well-established model for 
predicting the clinical efficacy of antidepressant drugs45,46. It has been described as making of a situation in which 
“behavioral despair” is induced; in such situation, the animal loses hope to escape the stressful environment47. In 
this test, the time spent by each mouse in mobility during a 4 min. period is measured. The total mobility time is 
then subtracted from the 240 sec. of test time and is then stated as the immobility time48. As seen from the results 
shown in Fig. (5), the mean immobility time for the control group was 158 ± 15 sec. (n = 8). The group injected 
with trazodone dispersion in phosphate buffer pH 7.4 had a mean immobility time of 128 ± 12 sec. (n = 8). The 
shortest immobility time was observed in the F2 nanocapsule group with a mean immobility time of 88 ± 8 sec. 
(n = 8). There was significant decrease in immobility time for the TRH dispersion and F2, compared to the con-
trol group which received the vehicle only (P < 0.05). The group treated with TRH dispersion showed a decrease 
in the immobility time by 18.98%. There was also a significant difference in the immobility time between the F2 
nanocapsules in which the core is labrafac lipophile and the TRH dispersion (P < 0.05). The third group injected 
with F2 showed a decrease in the immobility time by 44.06% compared to the control group, while the percentage 
decrease compared to the TRH was also significantly high and reached about 30.95%. As expected from the in 
vitro results, the dispersion of the drug into lipophilic core resulted in controlled release manner of TRH, this 
could increase the bioavailability of the drug compared to the drug solution. TRH encapsulation into nanocap-
sules enhance its absorption and prolongs TRH circulation time in the blood, this might explain the improve-
ment of the pharmacological effect of encapsulated TRH compared to the unencapsulated drug. Another cause 
of the improvement of the welling to escape behavior of the mice in the F2 TRH nanocapsule is that the drug is 
entrapped in a lipophilic environment formed by the labrafac lipophile in the core of the nanocapsules. This lipid 
core not only allows higher entrapment of TRH, but it also prevents its precipitation during the preparation and 
decrease the burst release of TRH49.

Formulation 
No.

Correlation coefficient (r)

Zero 
order

First 
order

Higuchi 
Diffusion

Hixon-
Crowel

F1 0.936 0.032 0.988 0.970

F2 0.896 0.155 0.976 0.919

F3 0.876 0.149 0.963 0.908

F4 0.933 0.113 0.991 0.959

Table 2. The calculated correlation coefficient (r) obtained from fitting the TRH in vitro release data to different 
kinetic models.

Figure 4. TEM photographs of the TRH loaded nanocapsules containing Labrafac Lipophile as a core lipid (F2) 
(a) Magnification power 15000X, (b) Magnification power 40000X.
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conclusion
In the present study, TRH nanospheres and TRH lipid-core nanocapsules were prepared successfully using nan-
oprecipitation method. Different formulations were prepared using different types of lipid forming the cores of 
the nanocapsule. All the prepared formulations were in nano range with negative ZP. The formation of lipid core 
in the nanocapsules showed marked increase in TRH EE%. The in vitro release results showed that controlled 
slow release was achieved from the nanocapsules and the nanospheres formulations in comparison with TRH 
dispersion in phosphate buffer. The highest entrapment efficiency was for F2 which contains labrafac lipophile 
lipid core. TEM showed that nanocapsules were spherical in shape and uniform in size. The in vivo FST supported 
the in vitro results as the immobility time for the swimming mice were decreased which indicated significantly 
enhanced antidepressant effect of the selected formulation F2 compared to control and TRH dispersion in phos-
phate buffer pH 7.4. Finally, it can be concluded that lipid core PCL shell nanocapsules are promising carrier for 
controlling the TRH release and enhancement of efficacy of TRH in vitro and in vivo.

Materials and Methods
Materials. Trazodone hydrochloride, miglyol 812 and Poloxamer 188 were kind gifts from the Egyptian 
International Pharmaceutical Industries Company (EPICO), Cairo, Egypt. Span 60 (Sorbitan Monostearate) was 
purchased from Oxford-Laboratory chemicals, Mumbai India. Labrafac Lipophile WL 1349 (Medium chain tri-
glyceride) was supplied by Gattefosse Saint-Priest, France. poly(ε-caprolactone) (Mwt. 14000) was purchased 
from Sigma-Aldrich, St.Louis, USA. Oleic acid was purchased from Chemajet, Cairo, Egypt. Acetone was pur-
chased from Al Ahram laboratory chemicals company Cairo, Egypt. Sodium hydroxide was purchased from 
Lobechem, Delhi, India, while potassium dihydrogen orthophosphate was purchased from El Nasr pharmaceu-
tical chemicals Company, Cairo, Egypt. All other solvents and chemicals are of pharmaceutical grade and were 
used with no further modifications.

Methods. Determination of solubility of TRH in the core oil. The solubility of TRH in the core oils were 
determined using the shaking method as described by Setthacheewakul et al., with modifications50. An excess 
amount of the TRH was dissolved in 1 ml of each oil in a cap vial. Then the sealed vials were sonicated in sonicat-
ing water bath (Elma Sonic, S. 30, Elma Schmidbauer GmbH, Germany) for 10 min. to insure proper mixing of 
the drug with each oil. The mixture was then shaken in a shaking water bath (Wise® bath – water bath, Wised B, 
Germany) for 48 hours at 100 rpm at room temperature. The mixture was centrifuged at 15000 rpm for 10 min. at 
4 °C in cooling centrifuge (Centurion Scientific Ltd., UK). The supernatant was then diluted to a suitable dilution 
using a mixture of acetone and methanol at 1:1 ratio (v/v)51. To zero the spectrophotometer for each oil, a cuvette 
containing each pure oil was used as a reference cell. The λmax used in the measurements was different for each oil 
and ranged from 246 to 253 nm. A calibration curve was constructed for each oil phase by measuring the absorb-
ance against TRH concentrations in µg/ml. The test was done in triplicate and the mean was reported.

Preparation of TRH loaded nanospheres and nanocapsules. Lipid core TRH nanocapsules in addition to oil free 
nanospheres were prepared using nanoprecipitation technique as described by Ünal et al., with slight modifica-
tions52. Briefly, The aqueous phase was prepared by dissolving poloxamer 188 (77 mg) in 30 ml water. The organic 
phase of F1 was prepared by dissolving TRH (50 mg), PCL (100 mg), in 15 ml acetone. For F2, F3, F4, span 60 
(39 mg), and 158 µl of the Labrafac lipophil, Miglyol 812 and oleic acid respectively were added to the preiviously 
described acetone solution. Under moderate magnetic stirring, the organic phase was injected into the aqueous 
phase using a syringe with a controlled adequate rate at room temperature till white bluish opalescent disper-
sion was formed. The obtained dispersion is then concentrated to a total volume of 10 ml by evaporation of the 
solvents under reduced pressure at 40 °C using rotary evaporator (BÜCHI Rotavapor R-114, BÜCHI, Lausanne, 
Switzerland). The compositions of all prepared formulations were listed in Table (3).

Charecterization of the prepared TRH loaded nanospheres and nanocapsules. Particle size 
and zeta potential analysis. The mean PS of TRH nanocapsules and PDI were determined using dynamic light 

Figure 5. Immobility time of forced swim test for TRH dose equivalent to 5 mg/kg (*P < 0.05). *Is significant 
difference in groups compared to control group. **Is significant difference in groups compared to TRH 
dispersion group.
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scattering technique. The measurements were done using Zetasizer Nano ZS (Malvern Instruments, Malvern, 
UK). Surface charge is indicated by the ZP on the TRH nanocapsule surface. It was also determined using the 
same device by observing the electrophoretic mobility of the nanoparticles in an electrical field. Prior to the 
particle size measurement, samples were diluted to a suitable dilution with double distilled water and vortexed 
for 5 sec. to separate any agglomerations. ZP measurements were done without dilution of the sample. The meas-
urements were done in triplicate and the average of PS, PDI and ZP was calculated. Standard deviation (SD) were 
also calculated.

Determination of encapsulation efficiency. Encapsulation Efficiency (EE %) of TRH nanocapsules was calculated 
using indirect method in which the amount of free non-encapsulated drug is measured as mentioned by Prego et al.53.  
Briefly, 500 µl of each prepared formulations was centrifuged using cooling centrifuge at speed of 15,000 rpm at 
temperature of 4 °C for 60 min. The supernatant was separated and diluted at suitable dilution, then its concentra-
tion was measured using UV spectrophotometer (Jenway 6305 spectrophotometer, China) at predetermined λmax 
253 nm. This experiment was done in triplicate and both average and SD were measured. The equation used for 
calculating amount of encapsulated TRH indirectly is:

EE % total weight of TRH weight of TRH in supernatent
total weight of TRH

100=
−

×

In vitro TRH release through dialysis bag. Dialysis bag technique was used for determining the amount of in vitro 
TRH release from both nanospheres and lipid core TRH nanocapsules54. Dialysis bags used were with molecular 
weight cut off (12000 to 14000) were soaked for 24 h before use in the release medium. One ml of each prepared 
formulation was added into a dialysis bag firmly sealed by double-folding on both sides. For the sake of compari-
son, TRH dispersion in phosphate buffer and solubilized TRH solution in Tween 80 were evaluated with the same 
method. The dialysis bags containing formulations were immersed in 50 ml of simulated blood release medium 
phosphate buffer (pH 7.4) in 100 ml beakers. Afterwards, the beakers were placed in shaking water bath for 24 h 
at 37 ± 0.5 °C and at 50 rpm. At selected time intervals, 1 ml sample was withdrawn from the dialysis medium and 
subjected to suitable dilution to analyze the concentration of released TRH spectrophotmetrically at λmax 253 nm. 
Continuous replacements of the withdrawn samples with fresh buffer were done to the dialysis medium, therefore 
its volume was kept constant during the whole experiment.

Kinetic study of the in vitro TRH release. The data obtained from in vitro TRH release from the prepared nano-
spheres and nanocapsules was subjected to study using different release kinetic models in order to determine 
the TRH release mechanism in the phosphate buffer pH 7.4. These models are useful in predicting the in vivo 
bioperformance of the prepared nanoparticles and predict their controlled release mechanism in vivo55. The mod-
els studied were zero order model, first order model, Higuchi diffusion model and Hixon-Crowell model. The 
half-life was calculated from each model and the best fitted model was selected based on the highest correlation 
coefficient (r) value.

Morphological evaluation of the selected TRH nanocapsule formulation. The morphology of the best formulation 
after characterization and in vitro release was studied using transmission electron microscope (TEM) (JTEM-
1010, JEOL®, Tokyo, Japan). The method used for TEM measurement was the negative staining method. In brief, 
one drop of the nanocapsule formulation dispersion was put on a carbon film-covered copper grid. Filter paper 
was used for the removal of any excess droplets. Then one drop of uranylacetate solution (2% w/v) was added 
in drops on the grid. The sample was dried by air at room temperature. TEM investigations were done at 74 kV.

Assessment of the pharmacological action. Forced swim test. FST is one of the best screening test 
models for the evaluation of antidepressant activity. It is a reliable and fast model for testing potential antidepres-
sant treatments with strong predictive validity56. In this study, FST test was done according to Can et al., and De 
Caro et al., with some modifications48,57. The procedures employed in this study were reviewed and approved by 
the ethics committee of the Faculty of Pharmacy, The British University in Egypt. Twenty four male albino mice 
weighing 40 ± 5 gm were divided into three groups (n = 8). All mice were freely accessed water and food during 
the whole experiment at room temperature with 12 h light/dark cycle. The mice of the three groups were injected 
with saline, TRH dispersion or the selected lipid core nanocapsule formulation with the best in vitro results with a 
dose equivalent to 5 mg/kg TRH through the intraperitoneal route (Fig. 6a). Injection period was for five consec-
utive days. To evaluate the sustained effect of TRH, the test was done after 8 hours of the fifth injection. The mice 

Polymer Lipid core Stabilizers

F1 PCL none Poloxamer 188

F2 PCL Labrafac lipophile Span 60 + Poloxamer 188

F3 PCL Miglyol 812 Span 60 + Poloxamer 188

F4 PCL Oleic acid Span 60 + Poloxamer 188

Table 3. Composition of the prepared TRH loaded nanospheres (F1) and oil core nanocapsules. *TRH conc. 
was adjusted to 5 mg/ml in all formulations.
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were individually placed in a glass beaker containing water at room temperature (25 ± 1 °C). The height of the 
glass beaker is 27 cm, with a diameter of 18 cm and water level was adjusted to 20 cm. This water level allows the 
prevention of false negative results; although the mice could touch the bottom of the beaker with their tails, but 
they could not support themselves with their hindlimbs. The movements of each mouse in water were recorded 
using fixed video camera (DSC-W530, Sony, Japan) for 6 min. and the time that each mice spent on movement 
was measured. After the test, the mice were removed from the water and dried under lamp before being returned 
to their cages. The experiment was illuminated by indirect light and all groups were tested on the same day. In 
the video analysis, the first two min. was excluded due to the fact that most mice are very active at the beginning 
of the FST and the mobility time was recorded. The total amount of mobility time is then subtracted from the 
240 sec. of test time and is then stated as the immobility time42. The mobility of the mice is defined according to 
Belozertseva et al., as swimming, rigorous movements with all four legs; paddling, floating with rhythmical simul-
taneous kicks and occasional pushes off the wall to give speed and direction to the drift. While the immobility is 
defined as the floating was scored when the animal remained in water with all four limbs motionless, except for 
occasional alternate movements of paws and tail necessary to prevent sinking and to keep head/nose above water 
(Fig. 6b)58. The time measurement of the mice mobility was done using on-screen stopwatch software (Xnote 
Stopwatch, dnSoft Research Group). The study was done in triplicate and the mean and SD were calculated.

Statistical analysis. Statistical analysis of data was done using IBM SPSS® statistics 19 software (SPSS, 
USA). The analysis was performed by applying one-way analysis of variance (ANOVA) followed by Tukey test. A 
value of 0.05 was considered statistically significant. All methods were performed in accordance with guidelines 
and regulations approved by the ethics committee of the Faculty of Pharmacy, The British University in Egypt.

Received: 4 July 2019; Accepted: 29 December 2019;
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References
 1. Hsu, P. C., Groer, M. & Beckie, T. New findings: Depression, suicide, and Toxoplasma gondii infection. J. Am. Acad. Nurse. Pract. 26, 

629–637 (2014).
 2. Koda-Kimble, M. A. Koda-Kimble and Young’s Applied Therapeutics: the Clinical use of Drugs. (ed. Alldredge, B. K. et al.) 1950–1951 

(Lippincott Williams & Wilkins, 2012).
 3. Kaynak, H., Kaynak, D., Gözükırmızı, E. & Guilleminault, C. The effects of trazodone on sleep in patients treated with stimulant 

antidepressants. Sleep Med. 5, 15–20 (2004).
 4. Yonar, D. & Sünnetçioğlu, M. M. Spectroscopic and calorimetric studies on trazodone hydrochloride–phosphatidylcholine liposome 

interactions in the presence and absence of cholesterol. Biochim. Biophys. Acta Biomembr. 1838, 2369–2379 (2014).
 5. Brogden, R., Heel, R., Speight, T. & Avery, G. Trazodone: a review of its pharmacological properties and therapeutic use in 

depression and anxiety. Drugs 21, 401–429 (1981).
 6. Yang, G. J. et al. Micellar-enhanced spectrofluorimetric determination of Trazodone hydrochloride in human urine and serum. 

Anal. Lett. 40, 151–162 (2007).
 7. Haria, M., Fitton, A. & McTavish, D. Trazodone. Drugs Aging 4, 331–355 (1994).
 8. Ankier, S., Martin, B., Rogers, M., Carpenter, P. & Graham, C. Trazodone−a new assay procedure and some pharmacokinetic 

parameters. Br. J. Clin. Pharmacol. 11, 505–509 (1981).
 9. Emeje, M. O., Obidike, I. C., Akpabio, E. I. & Ofoefule, S. I. Recent Advances in Novel Drug Carrier Systems.(ed. Sezer, A. D.) 69–106 

(Intech, 2012).
 10. Hoyt, V. W. & Mason, E. Nanotechnology: emerging health issues. J. Chem. Health Saf. 15, 10–15 (2008).

Figure 6. Forced swim test (a) intraperitoneal injection, (b) immobile mouse during the experiment.

https://doi.org/10.1038/s41598-020-58803-z


9Scientific RepoRtS |         (2020) 10:1964  | https://doi.org/10.1038/s41598-020-58803-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

 11. Bazylińska, U., Lewińska, A., Lamch, Ł. & Wilk, K. A. Polymeric nanocapsules and nanospheres for encapsulation and long 
sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf. A. 442, 42–49 (2014).

 12. Cortese, B., D’Amone, S. & Palamà, I. E. Wool-like hollow polymeric nanoparticles for CML chemo-combinatorial therapy. 
Pharmaceutics 10, 52 (2018).

 13. Mayer, C. Nanocapsules as drug delivery systems. Int. J. Artif. Organs 28, 1163–1171 (2005).
 14. Dowding, P. J., Atkin, R., Vincent, B. & Bouillot, P. Oil core/polymer shell microcapsules by internal phase separation from emulsion 

droplets. II: controlling the release profile of active molecules. Langmuir 21, 5278–5284 (2005).
 15. Mora-Huertas, C., Fessi, H. & Elaissari, A. Polymer-based nanocapsules for drug delivery. Int. J. Pharm. 385, 113–142 (2010).
 16. Santos, S. S. et al. Formulation and in vitro evaluation of coconut oil-core cationic nanocapsules intended for vaginal delivery of 

clotrimazole. Colloids Surf. B. 116, 270–276 (2014).
 17. Hans, M. & Lowman, A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid St. M. Sci. 6, 319–327 (2002).
 18. dos Santos, P. P., Flôres, S. H., de Oliveira Rios, A. & Chisté, R. C. Biodegradable polymers as wall materials to the synthesis of 

bioactive compound nanocapsules. Trends Food Sci. Technol. 53, 23–33 (2016).
 19. Pohlmann, A. R. et al. Poly (ϵ-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin. Drug Deliv. 10, 623–638 

(2013).
 20. Bender, E. A. et al. Hemocompatibility of poly (ɛ-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and 

uncoated or coated with chitosan. Int. J. Pharm. 426, 271–279 (2012).
 21. Weiss-Angeli, V. et al. Nanocapsules of octyl methoxycinnamate containing quercetin delayed the photodegradation of both 

components under ultraviolet A radiation. J. Biomed. Nanotech. 4, 80–89 (2008).
 22. Ourique, A., Pohlmann, A., Guterres, S. & Beck, R. Tretinoin-loaded nanocapsules: Preparation, physicochemical characterization, 

and photostability study. Int. J. Pharm. 352, 1–4 (2008).
 23. Miladi, K., Sfar, S., Fessi, H. & Elaissari, A. Polymer Nanoparticles for Nanomedicines (eds. Christine, V. & Ponchel, G.) 17–53 

(Springer, 2016).
 24. Lassalle, V. & Ferreira, M. L. PLA nano-and microparticles for drug delivery: an overview of the methods of preparation. Macromol. 

Biosci. 7, 767–783 (2007).
 25. Benita, S., Alona R. & Taher N. Microspheres comprising nanocapsules containing a lipophilic drug. U.S. Patent 9,023,386, issued 

May 5, (2015).
 26. Baka, E., Comer, J. E. & Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using 

hydrochlorothiazide as model compound. J. Pharmaceut. Biomed. 46, 335–341 (2008).
 27. Suzuki, H., Kouichi, A., Hiroshi, N. & Isao, S. Quantitative analysis of trazodone hydrochloride in tablets by an ion‐selective 

electrode. J. Pharm Sci. 78(1), 62–65 (1989).
 28. Tetko, I. V. et al. Virtual computational chemistry laboratory–design and description. J. Comp. Aid. Mol. Dis. 19(5), 453–463 (2005).
 29. Nievergelt, P., Babor, M., Čejka, J. & Spingler, B. A high throughput screening method for the nano-crystallization of salts of organic 

cations. Chem. Sci. 9(15), 3716–3722 (2018).
 30. Ware, E. C. & Robert, L. An automated approach to salt selection for new unique trazodone salts. Pharm. Res. 21(1), 177–184 (2004).
 31. Cassidy, S. L., Lympany, P. A. & Henry, J. A. Lipid solubility of a series of drugs and its relevance to fatal poisoning. J. Pharm. 

Pharmacol. 40(2), 130–132 (1988).
 32. Ahmed, K., Yan, L., David, J. M. & Hang, X. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and 

release properties. Food Chem. 132(2), 799–807 (2012).
 33. Stella, B. et al. Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules. Int. J. 

Pharm. 344, 71–77 (2007).
 34. Heurtault, B. et al. The influence of lipid nanocapsule composition on their size distribution. Eur. J. Pharm. Sci. 18(1), 55–61 (2003).
 35. Huynh, N. T., Passirani, C., Patrick, S. & Jean-Pierre, B. Lipid nanocapsules: a new platform for nanomedicine. Int. J. Pharm. 379(2), 

201–209 (2009).
 36. Bhakay, A., Rahman, M., Dave, R. & Bilgili, E. Bioavailability enhancement of poorly water-soluble drugs via nanocomposites: 

formulation–processing spects and challenges. Pharmaceutics 10, 86 (2018).
 37. Lboutounne, H., Chaulet, J. F., Ploton, C., Falson, F. & Pirot, F. Sustained ex vivo skin antiseptic activity of chlorhexidine in poly 

(ϵ-caprolactone) nanocapsule encapsulated form and as a digluconate. J. Control. Release 82, 319–334 (2002).
 38. Lourenco, C., Teixeira, M., Simões, S. & Gaspar, R. Steric stabilization of nanoparticles: size and surface properties. Int. J. Pharm. 

138, 1–12 (1996).
 39. Dash, T. K. & Konkimalla, V. B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. 

Control. Release 158, 15–33 (2012).
 40. Dalencon, F., Amjaud, Y., Lafforgue, C., Derouin, F. & Fessi, H. Atovaquone and rifabutine-loaded nanocapsules: formulation 

studies. Int. J. Pharm. 153, 127–130 (1997).
 41. Jäger, E. et al. Sustained release from lipid-core nanocapsules by varying the core viscosity and the particle surface area. J. Biomed. 

Nanotech. 5, 130–140 (2009).
 42. Derakhshandeh, K., Erfan, M. & Dadashzadeh, S. Encapsulation of 9-nitrocamptothecin, a novel anticancer drug, in biodegradable 

nanoparticles: factorial design, characterization and release kinetics. Eur. J. Pharm. Biopharm. 66, 34–41 (2007).
 43. Jovanovic, A. V., Underhill, R. S., Bucholz, T. L. & Duran, R. S. Oil core and silica shell nanocapsules: toward controlling the size and 

the ability to sequester hydrophobic compounds. Chem. Mater. 17, 3375–3383 (2005).
 44. Li, G. L., Moehwald, H. & Shchukin, D. G. Precipitation polymerization for fabrication of complex core–shell hybrid particles and 

hollow structures. Chem. Soc. Rev. 42, 3628–3646 (2013).
 45. Bogdanova, O. V., Kanekar, S., D’Anci, K. E. & Renshaw, P. F. Factors influencing behavior in the forced swim test. Physiol. Behav. 

118, 227–239 (2013).
 46. Millstein, R. A. & Holmes, A. Effects of repeated maternal separation on anxiety-and depression-related phenotypes in different 

mouse strains. Neurosci. Biobehav. Rev. 31, 3–17 (2007).
 47. Porsolt, R., Bertin, A. & Jalfre, M. Behavioral despair in mice: a primary screening test for antidepressants. Arch. Int. Pharmacodyn. 

Ther. 229, 327–336 (1977).
 48. Can, A. et al. The mouse forced swim test. J. Vis. Exp. 177(3), 245–255 (2012).
 49. Quintanar-Guerrero, D., Allémann, E., Doelker, E. & Fessi, H. Preparation and characterization of nanocapsules from preformed 

polymers by a new process based on emulsification-diffusion technique. Pharm. Res. 15, 1056–1062 (1998).
 50. Setthacheewakul, S., Mahattanadul, S., Phadoongsombut, N., Pichayakorn, W. & Wiwattanapatapee, R. Development and evaluation 

of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur. J. Pharm. Biopharm. 76, 
475–485 (2010).

 51. Park, M. J., Balakrishnan, P. & Yang, S. G. Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral 
absorption of cyclosporine. Int. j. pharm. 441, 757–764 (2013).

 52. Ünal, H. et al. Core–shell hybrid nanocapsules for oral delivery of camptothecin: formulation development, in vitro and in vivo 
evaluation. J. Nanopart. Res. 17, 42 (2015).

 53. Prego, C., Fabre, M., Torres, D. & Alonso, M. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery. 
Pharm. Res. 23, 549–556 (2006).

https://doi.org/10.1038/s41598-020-58803-z


1 0Scientific RepoRtS |         (2020) 10:1964  | https://doi.org/10.1038/s41598-020-58803-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

 54. Tummala, S., Kumar, M. S. & Prakash, A. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for 
sustained and localized release in treating colorectal cancer. Saudi Pharm. J. 23, 308–314 (2015).

 55. Dash, S., Murthy, P. N., Nath, L. & Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. 
Pharm. 67, 217–223 (2010).

 56. Petit-Demouliere, B., Chenu, F. & Bourin, M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 
177, 245–255 (2005).

 57. De Caro, V. et al. Studies on a new potential dopaminergic agent: In vitro BBB permeability, in vivo behavioural effects and molecular 
docking evaluation. J. Drug Target. 23, 910–925 (2015).

 58. Belozertseva, I., Kos, T., Popik, P., Danysz, W. & Bespalov, A. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the 
rat forced swim and the mouse tail suspension tests. Eur. Neuropsychopharmacol. 17, 172–179 (2007).

Author contributions
The experiment was designed by Shady Swidan. Both authors performed the formulation of the TRH loaded 
nanocapsules and conducted all experiments. Nahla Elhesisy collected the raw materials and analysis tools. Shady 
Swidan analysed the data. The manuscript was drafted by Nahla Elhesisy and revised to its final form by Shady 
Swidan.

competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-58803-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Trazodone Loaded Lipid Core Poly (ε-caprolactone) Nanocapsules: Development, Characterization and in Vivo Antidepressant Ef ...
	Results and Discussion

	Determination of solubility of TRH in the core oil. 
	Charecteriation of the prepared TRH loaded nanospheres and nanocapsules. 
	Particle size and zeta potential analysis. 
	Encapsulation efficiency. 
	Study of the in vitro release of TRH from the prepared nanospheres and nanocapsules. 
	Kinetic study of the in vitro TRH release. 

	Assessment of the pharmacological action. 
	Forced swim test. 


	Conclusion

	Materials and Methods

	Materials. 
	Methods. 
	Determination of solubility of TRH in the core oil. 
	Preparation of TRH loaded nanospheres and nanocapsules. 

	Charecterization of the prepared TRH loaded nanospheres and nanocapsules. 
	Particle size and zeta potential analysis. 
	Determination of encapsulation efficiency. 
	In vitro TRH release through dialysis bag. 
	Kinetic study of the in vitro TRH release. 
	Morphological evaluation of the selected TRH nanocapsule formulation. 

	Assessment of the pharmacological action. 
	Forced swim test. 

	Statistical analysis. 

	Figure 1 Chemical structure of Trazodone HCl.
	Figure 2 EE% of TRH in the prepared formulations.
	Figure 3 In vitro TRH release from different prepared formulations compared to TRH dispersion in phosphate buffer pH 7.
	Figure 4 TEM photographs of the TRH loaded nanocapsules containing Labrafac Lipophile as a core lipid (F2) (a) Magnification power 15000X, (b) Magnification power 40000X.
	Figure 5 Immobility time of forced swim test for TRH dose equivalent to 5 mg/kg (*P < 0.
	Figure 6 Forced swim test (a) intraperitoneal injection, (b) immobile mouse during the experiment.
	Table 1 Particle size (PS), polydispersity index (PDI), zeta potential (ZP) of the prepared TRH loaded nanocapsules.
	Table 2 The calculated correlation coefficient (r) obtained from fitting the TRH in vitro release data to different kinetic models.
	Table 3 Composition of the prepared TRH loaded nanospheres (F1) and oil core nanocapsules.




