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Objective: The aim of this study was to examine whether osteoporosis

(OP) is associated with Alzheimer’s disease-related cerebrospinal fluid (CSF)

biomarkers and brain structures among older people.

Methods: From the Alzheimer’s disease Neuroimaging Initiative database, we

grouped participants according to the OP status (OP+/OP−) and compared

the Alzheimer’s disease (AD)-related CSF biomarker levels and the regional

brain structural volumes between the two groups using multivariable models.

These models were adjusted for covariates including age, education, gender,

diagnosis of Alzheimer’s disease, and apolipoprotein E4 carrier status.

Results: In the cross-sectional analyses at baseline, OP was related to higher

CSF t-tau (total tau) and p-tau181 (tau phosphorylated at threonine-181) but

not to CSF amyloid-beta (1–42) or the volumes of entorhinal cortex and

hippocampus. In the longitudinal analyses, OP was not associated with the

change in the three CSF biomarkers over time but was linked to a faster decline

in the size of the entorhinal cortex and hippocampus.

Conclusion: OP was associated with elevated levels of CSF t-tau and p-tau181

at baseline, and accelerated entorhinal cortex and hippocampal atrophies over

time among older people.
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Introduction

An increase in life expectancy causes the aging of the
population. The growing older population is plagued by
age-related diseases, typically Alzheimer’s disease (AD) and
osteoporosis (OP). AD is a well-known neurodegenerative
disease that causes cognitive dysfunction among older
adults (Mangialasche et al., 2010). OP, on the contrary, is a
skeletal disease characterized by low bone mineral density
(BMD) and micro-architectural bone tissue deterioration
(Black and Rosen, 2016). Although AD and OP appear
to have nothing in common, we are not the first to
suspect that they may have connections (Yaffe et al.,
1999; Tan et al., 2005; Zhou et al., 2014; Sohrabi et al.,
2015).

The potential connections have been implicated from
a variety of perspectives. Experimental evidence supported
that AD was linked to pathogenic changes in osteoporotic
animal models (Li et al., 2013; Calabrese et al., 2016),
while low BMD was a trait of certain AD mouse models
(Xia et al., 2013; Dengler-Crish et al., 2017). According to
epidemiological studies, low BMD increases the risk of AD,
while OP affects nearly half of cognitively impaired patients
(Ebrahimpur et al., 2020). Large-scale investigations focused
on the relationship between the two chronic degenerative
diseases were first reported by Yaffe et al. (1999) who found
that women with osteoporosis have poorer cognitive functions
and greater risks of cognitive deterioration. In Germany and
South Korea, this relationship was further confirmed for
both sexes (Kostev et al., 2018; Kwon et al., 2021). These
studies indicated that AD and OP may share some central
mechanisms. However, none of them have investigated the long-
term pathological connections between OP and AD in living
humans.

Pathological evidence has been widely valued in the
diagnosis of AD. AD-related cerebrospinal fluid (CSF)
biomarkers, including amyloid-beta (Aβ) protein, total
tau (t-tau), and phosphorylated tau (p-tau), have been
established as core indicators to define the progressive
stage in the AD continuum (McKhann et al., 2011; Jack
et al., 2016). The aberrant buildup of these pathological
proteins will cause generalized atrophy of brain structures,
typically affecting the entorhinal cortex and hippocampus
(Callen et al., 2001; Killiany et al., 2002; Kril et al.,
2002; Dengler-Crish et al., 2017). The degeneration
of these brain structures, which are measurable on
MRI, causes the progression of AD (Killiany et al.,
2002).

Using the Alzheimer’s disease neuroimaging initiative
(ADNI) database, this study aims to find out whether OP
relates to AD-related CSF biomarkers and brain structures
among older people.

Materials and methods

Alzheimer’s disease neuroimaging
initiative

Raw data were pulled from the ADNI database.1 ADNI
researchers collect, validate, and utilize data, including
demographic characteristics, medical history, images, genetics,
cognitive tests, CSF, and blood biomarkers, from participants
who are adults aged 55–90 years with AD patients, mild
cognitive impairment (MCI) subjects, and elderly normal
controls (NC). The ADNI study was approved by the
institutional review board at each ADNI center, and informed
written consent was obtained from each participant. Further
information is available at www.adni-info.org and in previous
reports (Jack et al., 2010; Jagust et al., 2010; Petersen et al., 2010;
Saykin et al., 2010; Weiner et al., 2010).

Participants

Alzheimer’s Disease Neuroimaging Initiative provides
a systematic record of history for each participant
(“RECMHIST.csv”), allowing researchers to extract terms
using screening techniques. Our screening terms for OP
included “OP” or “osteoporo (sis/tic),” which we used to group
participants (OP+/OP−). Based on the information in ADNI
data, 157 out of 2,292 participants were found to have OP at
baseline, among whom, 102 out of 1,628 had complete covariate
information and no history of depression, anxiety, malignant
tumor, or stroke. Then, the data flow was split into two branches.
One was CSF data (n = 717), which excluded participants with
incomplete Aβ1−42, t-tau, and p-tau181 (tau phosphorylated at
threonine-181) information. The other was MRI data (n = 992),
which eliminated individuals with incomplete information
about intracranial volume (ICV), entorhinal cortex volume
(ECV), and hippocampal volume (HV). Besides, to conform
the data to the demands of longitudinal analysis—that is,
individuals must have at least one valid follow-up record in
addition to the baseline one—345 participants were removed
from the CSF data for the longitudinal analyses, whereas none
were excluded from the MRI data. Figure 1 is the flowchart of
the data processing.

Cerebrospinal fluid measurements

Cerebrospinal fluid Aβ1−42, t-tau, and p-tau181 were
measured using the INNOBIA AlzBio3 immunoassay

1 adni.loni.usc.edu
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FIGURE 1

The flowchart of data processing. ADNI, Alzheimer’s disease neuroimaging initiative; OP, osteoporosis; AD, Alzheimer’s disease; CSF,
cerebrospinal fluid.
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(Fujirebio, Belgium, pg/ml). To keep the within-batch precision
values under 10% (5.1–7.8% for Aβ1−42, 4.4–9.8% for t-tau, and
5.1–8.8% for p-tau181), ADNI provided unified CSF collection
and procedural protocols (Shaw et al., 2009). From the ADNI
file (“ADNIMERGE.csv”), we set the measurements of these
CSF biomarkers as response variables in our models of CSF
data.

Magnetic resonance imaging
measurements

Alzheimer’s disease neuroimaging initiative provides a
set of standardized processes for MRI acquisition to reduce
systematic error (Christensen et al., 1997; Hsu et al., 2002).
The ECV, HV, and ICV were also extracted from the ADNI file
(“ADNIMERGE.csv”). Both ECV and HV were normalized by
ICV using a residual method to remove head size differences
(Voevodskaya et al., 2014; Pintzka et al., 2015). In our models
of MRI data, the response variables were ICV normalized ECV
and HV (ECVn and HVn, mm3).

Statistical analyses

Demographic, cross-sectional, and longitudinal analyses
were conducted on CSF and MRI data. Baseline demographic
variables were compared between the OP− and OP+ groups
(Chi-square tests for categorical variables; Student’s t-tests for

normally distributed variables; and Mann–Whitney U-tests for
non-normally distributed variables). The results of descriptive
statistics are presented for the normally distributed variables as
“mean [SD]” and for the non-normally distributed variables as
“median [P25, P75]” (P25: 25th percentile; P75: 75th percentile).

In the cross-sectional analyses at baseline, we first
investigated the associations between OP and CSF biomarkers
(Aβ1−42, t-tau, and p-tau181) after adjusting for covariates
including age, sex, education, apolipoprotein E4 (APOE4)
carrier status, and diagnosis of AD. Next, we tested the
differences in brain structures (ECVn and HVn) between the
OP− and OP+ groups via linear regression models adjusted for
identical covariates.

In the longitudinal analyses, we fitted linear mixed-effects
models to characterize individual paths of change. These
models had random intercepts and slopes for time and an
unstructured covariance matrix for the random effects and
included the interaction between (continuous) time and OP
status as the predictor. These models were adjusted for the same
covariates, including age, sex, education, APOE4 carrier status,
and diagnosis of AD.

P-values <0.05 were considered to reject the null hypothesis.
P-values in the linear regression models and linear mixed-
effects models were calculated using the Satterthwaite’s degrees
of freedom method (“lmerTest” R package), and the Holm’s
method (also called the Holm–Bonferroni method) is used to
counteract the problem of multiple comparisons. R software
(version 4.2.0) and GraphPad Prism (version 9.3.1) were used
for statistical analysis and visualization.

TABLE 1 Participant characteristics at baseline.

CSF data MRI data

Level OP− OP+ P-value OP− OP+ P-value
Number of participants (n) 667 50 911 81

Age (mean [SD]) (years) 73.9 [7.2] 74.9 [7.0] 0.382t 73.7 [6.9] 75.7 [7.0] 0.013t

Sex [%] Female 233 [34.9] 42 [84.0] <0.001c 337[37.0] 69 [85.2] <0.001c

Male 434 [65.1] 8 [16.0] 574 [63.0] 12 [14.8]

Education (median [P25, P75])
(years)

16.0 [14.0, 18.0] 15.5 [13.0, 18.0] 0.108w 16.0 [14.0, 18.0] 16.0 [14.0, 18.0] 0.651w

Diagnosis (n [%]) NC 154 [23.1] 8 [16.0] 0.256c 274 [30.1] 20 [24.7] 0.387c

MCI 383 [57.4] 28 [56.0] 492 [54.0] 44 [54.3]

AD 130 [19.5] 14 [28.0] 145 [15.9] 17 [21.0]

APOE4 (n [%]) APOE4- 322 [48.3] 24 [48.0] 1.000c 488 [53.6] 45 [55.6] 0.820c

APOE4+ 345 [51.7] 26 [52.0] 423 [46.4] 36 [44.4]

ECVn (mean [SD]) (mm3) 3,537.1 [756.2] 3,375.8 [746.9] 0.066t

HVn (mean [SD]) (mm3) 6,898.1 [1,145.8] 6,558.3 [949.9] 0.010t

Aβ1−42 (median [P25, P75])
(pg/ml)

763.1 [566.4, 1,112.8] 792.2 [619.5, 989.8] 0.841w

t-tau (median [P25, P75])
(pg/ml)

253.6 [186.6, 347.6] 324.8 [237.2, 438.2] 0.003w

p-tau181 (median [P25, P75])
(pg/ml)

24.4 [16.6, 35.4] 31.8 [21.8, 44.1] 0.005w

Baseline demographic variables were compared between the OP− and OP+ groups. c , Chi-square tests for categorical variables; t , Student’s t-tests for normally distributed variables; w ,
Mann–Whitney U-tests for non-normally distributed variables. OP, osteoporosis; NC, normal control; MCI, mild cognitive impairment; AD, Alzheimer’s disease; APOE4, apolipoprotein
E4; ECVn , intracranial volume normalized entorhinal cortex volume; HVn , intracranial volume normalized hippocampal volume; Aβ1−42 , amyloid-beta 1-42; t-tau, total tau; p-tau181 ,
tau phosphorylated at threonine-181. Bold font indicates statistical significance.
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Results

Demographic variables at baseline

Cerebrospinal fluid biomarkers
In the CSF data, at baseline, the measurements of Aβ1−42,

t-tau, and p-tau181 were available for 717 participants, of
whom 50 had OP (154 [23.1%] NC, 383 [57.4%] MCI, and
130 [19.5%] AD in OP− group; 8 [16.0%] NC, 28 [56.0%]
MCI, and 14 [28.0%] AD in OP + group; P = 0.256).
Participants without OP were about 1 year younger than
those with OP (73.9 [7.2] for OP−, 74.9 [7.0] for OP+;
P = 0.382). Participants with OP were more likely to be
female (42 [84.0%]) than those without OP (female 233
[34.9%]; P < 0.001). A similar APOE4 carrier rate was found
between the two groups (345 [51.7%] for OP−; 26 [52.0%]
for OP+; P = 1.000). Education years were approximately
6 months shorter for participants with OP (16.0 [14.0,
18.0] for OP−; 15.5 [13.0, 18.0] for OP+; P = 0.108).
In short, only “sex” was found to be significantly different
between the two groups.

We further compared the CSF Aβ1−42, t-tau, and
p-tau181 between the two groups at baseline. The OP−
group had a lower Aβ1−42 (763.1 [566.4, 1112.8], pg/ml)
than the OP + group (792.2 [619.5, 989.8], pg/ml;
P = 0.841). Both t-tau and p-tau181 were significantly
lower in OP− group than OP + group (253.6 [186.6,
347.6] vs. 324.8 [237.2, 438.2] for t-tau, pg/ml; P = 0.003;
24.4 [16.6, 35.4] vs. 31.8 [21.8, 44.1] for p-tau181, pg/ml;
P = 0.005).

Brain structures
In the MRI data, at baseline, the measurements of ECV,

HV, and ICV were available for 992 participants, of whom 81
had OP (274 [30.1%] NC, 492 [54.0%] MCI, and 145 [15.9%]
AD in OP− group; 20 [24.7%] NC, 44 [54.3%] MCI, and 17
[21.0%] AD in OP + group; P = 0.387). Participants with OP
were roughly 2 years older than those without OP (73.7 [6.9]
for OP−, 75.7 [7.0] for OP+; P = 0.013). Sex composition
differed significantly between the two groups (female, OP−:
337 [37.0%] vs. OP+: 69 [85.2%]; P < 0.001). There was no
significant difference in the APOE4 carrier rate between the two
groups (423 [46.4%] for OP−; 36 [44.4%] for OP+; P = 0.820).
Education years between the two groups were very close (OP−:
16.0 [14.0, 18.0] vs. OP+: 16.0 [14.0, 18.0]; P = 0.651). To
sum up, “age” and “sex” were found to be significantly different
between the two groups.

We further examined the ECVn and HVn between
the two groups at baseline. Both ECVn and HVn were
higher in the OP− group than in the OP + group
(3,537.1 [756.2] vs. 3,375.8 [746.9] for ECVn, mm3;
P = 0.066; 6,898.1 [1,145.8] vs. 6,558.3 [949.9] for HVn,

mm3; P = 0.010). However, the difference was only
significant for HVn.

Table 1 provides an overview of the baseline CSF and MRI
data, in which the differences between the two groups are
summarized.

Cross-sectional analyses at baseline

To evaluate the relationship between OP and AD at
baseline, CSF biomarkers and brain structural volumes were
adjusted for five covariates, including age, sex, education,
APOE4 carrier status, and AD diagnosis via linear regression
models. Briefly speaking, OP was significantly linked to a
higher estimated average effect of CSF t-tau and p-tau181

at baseline (estimate = 39.4 pg/ml, 95% CI: 3.2–75.5 pg/ml,
P = 0.033 for t-tau; estimate = 4.5 pg/ml, 95% CI: 0.4–
8.5 pg/ml, P = 0.030 for p-tau181). ECVn was almost
irrelevant with OP (estimate = 0.7 mm3, 95% CI: −156.2–
157.6 mm3, P = 0.993; mm3). Baseline estimated average
effect of CSF Aβ1−42 and HVn were slightly lower in
OP + group, but not statistically significant (estimate = –5.9
pg/ml, 95% CI: −104.4–92.7 pg/ml, P = 0.907 for Aβ1−42;
estimate = −77.1 mm3, 95% CI: −293.8–139.6 mm3, P = 0.485
for HVn). The simplified outcomes of these models are
presented in Table 2 and are visualized in Figure 2. The detailed
results (including covariates) are available in Supplementary
Table 1.

Longitudinal analyses

After completing the cross-sectional analyses, we
investigated how OP affected the changes in CSF biomarkers
and brain structural volumes over time. Unlike the cross-
sectional results, CSF biomarkers were not associated with
OP status over time (Table 3). By contrast, compared with
individuals without OP, those with OP showed significantly
faster declines in both ECVn and HVn (estimate = −37 mm3,
95% CI: –68.3 to –5.6 mm3, P = 0.021 for ECVn on interaction
of OP and time [OP+: time], Figure 3A; estimate =−42.5 mm3,
95% CI: −71.1 to –13.8 mm3, P = 0.004 for HVn on interaction
of OP and time [OP+: time], Figure 3B). Detailed longitudinal
results (including covariates) are provided in Supplementary
Table 2.

In addition, as “loss to follow-up” aggravated with time in
both groups, a series of sensitivity tests were conducted on the
data with follow-up cutoffs from 24 to 132 (maximum) months.
We found no decisive differences in outcomes when the follow-
up cutoff time exceeded 48 months. For each time point, the
numbers of follow-up visits are listed, along with the P-values of
sensitivity tests (Supplementary Table 3, full results not shown).
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TABLE 2 Summary of linear regression models examining the association of OP status with the response variables.

Response variable Independent variable Estimate 95% CI P-value

Aβ1−42 (pg/mL) OP status (OP+) −5.9 −104.4 to 92.7 0.907

t-tau (pg/mL) OP status (OP+) 39.4 3.2–75.5 0.033

p-tau181 (pg/mL) OP status (OP+) 4.5 0.4–8.5 0.030

ECVn (mm3) OP status (OP+) 0.7 −156.2 to 157.6 0.993

HVn (mm3) OP status (OP+) −77.1 −293.8 to 139.6 0.485

OP status (OP+) is significantly associated with t-tau and p-tau181 at baseline. OP, osteoporosis; Aβ1−42 , amyloid-beta 1-42; t-tau, total tau; p-tau181 , tau phosphorylated at threonine-181;
ECVn , intracranial volume normalized entorhinal cortex volume; HVn , intracranial volume normalized hippocampal volume. Bold font indicates statistical significance.

FIGURE 2

The cross-sectional associations between OP and the response variable of the model. Estimated average effects with 95% CI error bars are
demonstrated on each panel. The upper part of each panel represents the contrast (mean of OP + group minus mean of OP– group) with a 95%
CI error bar. OP is associated with cerebrospinal fluid levels of t-tau and p-tau181 (B,C), but not associated with the Aβ1−42 (A), ECVn (D), and
HVn (E). All analyses are adjusted for age, gender, education, APOE4 carrier status, and diagnosis of Alzheimer’s disease (AD). *P-value <0.05.
OP, osteoporosis; Aβ1−42, amyloid-beta 1-42; t-tau, total tau; p-tau181, tau phosphorylated at threonine-181; ECVn, intracranial volume
normalized entorhinal cortex volume; HVn, intracranial volume normalized hippocampal volume.

TABLE 3 Summary of linear mixed-effects models examining the association of OP status with changes in response variables over time.

Response variable of model Predictor Estimate 95% CI P-value

Aβ1−42 (pg/mL) Time: OP+ 4.5 −15.0 to 24.1 0.648

Time −13.5 −19.4 to−7.6 <0.001

OP status (OP+) 12.1 −114.2 to 138.4 0.851

t-tau (pg/mL) Time: OP+ 4.2 −1.8 to 10.3 0.17

Time 5.1 3.4 to 6.8 <0.001

OP status (OP+) 11.4 −37.3 to 60.2 0.645

p-tau181 (pg/mL) Time: OP+ 0 −0.7 to 0.6 0.902

Time 0.4 0.2 to 0.6 <0.001

OP status (OP+) 1.3 −4.2 to 6.8 0.633

ECVn (mm3) Time: OP+ −37 −68.3 to−5.6 0.021

Time −55.5 −64.4 to−46.5 <0.001

OP status (OP+) 15.8 −138.1 to 169.7 0.841

HVn (mm3) Time: OP+ −42.5 −71.1 to−13.8 0.004

Time −117.1 −125.1 to−109.1 <0.001

OP status (OP+) −67.5 −283.7 to 148.7 0.54

The interaction of time and OP status (Time: OP+) was the main predictor of the linear mixed-effects model. The interaction represents the relationship between OP status (OP+) and
the change of response variable over time. The changes of ECVn and HVn over time are both significantly associated with OP. OP, osteoporosis; Aβ1−42 , amyloid-beta 1-42; t-tau, total
tau; p-tau181 , tau phosphorylated at threonine-181; ECVn , intracranial volume normalized entorhinal cortex volume; HVn , intracranial volume normalized hippocampal volume. Bold
font indicates statistical significance.
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FIGURE 3

The long-term effects of OP on entorhinal cortex and hippocampus MRI-based measurements. Compared with individuals without OP, those
with OP show a faster decline in both the estimated effect of ECVn and HVn (A,B). The upper part of each panel represents the contrast of the
predictor (the interaction of OP+ and time; mean of OP + group minus mean of OP– group) with a 95% CI error bar. Both analyses are adjusted
for age, gender, education, APOE4 carrier status, and diagnosis of Alzheimer’s disease (AD). OP, osteoporosis; ECVn, intracranial volume
normalized entorhinal cortex volume; HVn, intracranial volume normalized hippocampal volume.

Discussion

Alzheimer’s Disease Neuroimaging Initiative is a historic
study of brain aging that aims to accelerate discovery in the
race to prevent, treat, and eventually cure AD. For more
than a decade, ADNI researchers have been working to better
understand AD. In addition to studying AD itself, many
researchers, including ourselves, are interested in investigating
the links between AD and other diseases, such as osteoarthritis
(Li et al., 2020), Parkinson’s disease (Wang et al., 2018), hearing
loss (Xu et al., 2019), hypertension (Scott et al., 2015; Zhou et al.,
2020), and hypercholesterolemia (Varma et al., 2021), from the
ADNI database. To the best of our knowledge, this is the first
study to demonstrate the links between OP and higher levels
of CSF t-tau and p-tau181 at baseline, and the faster volumetric
declines of enterhinal cortex and hippocampus over time among
older people.

Our findings are consistent with previous studies on
tau pathology. Histopathological data showed a significantly
reduced BMD phenotype was found in the htau mouse
models (Dengler-Crish et al., 2017). Dengler-Crish et al. (2018)

further reported that the BMD reduction occurred before the
presence of significant tauopathy in the hippocampus, which
can be implied that OP status may risk neurodegeneration via
promoting tau pathology. Tauopathy could induce cognitive
impairment across the AD spectrum via synaptic dysfunction
and neuronal loss (Andorfer et al., 2003; Polydoro et al., 2009;
Di et al., 2016), independent of amyloid pathology (Bejanin
et al., 2017). Notably, the weak links we found between OP
and the buildup of CSF t-tau and p-tau181 over time were
inconsistent with Dengler-Crish’s study (Dengler-Crish et al.,
2018). These conflicts may be partially explained by sample
removal for longitudinal CSF data analyses, which is reasonable
given that the CSF collection is invasive and the subjects are real
humans. Still, it is hoped that future research will provide more
comprehensive longitudinal data to validate our results.

Interestingly, subjects with OP began with comparable
baseline volumes as those without OP and experienced a
significantly faster decline in both ECVn and HVn over time.
In addition, sensitivity tests’ outcomes barely changed when
they were tracked for more than 48 months. The possible
explanations are as follows: (1) OP might play different roles
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in different stages of the AD continuum; (2) the individual
variability of ECVn and HVn at baseline was low; and (3)
the process of brain structural atrophy caused by abnormal
accumulation of CSF pathological proteins takes a long time
(Killiany et al., 2002; Kril et al., 2002; Dengler-Crish et al., 2018).
These explanations merit further studies.

There are several possible molecular biological explanations
for our findings. Currently known, pathways that OP and
AD may share include RANK-RANKL (Luckhaus et al., 2009;
Stapledon et al., 2021), vitamin D receptor (Morello et al., 2018;
Jia et al., 2019), C/EBPβ-δ-secretase (Xiong et al., 2022), PI3K-
Akt (Fehsel and Christl, 2022), and Wnt/β-catenin (Li et al.,
2013; Dengler-Crish et al., 2018; Folke et al., 2019), among which
Wnt/β-catenin had the most attention. Wnt/β-catenin signaling
is known to facilitate bone formation in bone tissue and to
promote synaptogenesis in the brain. Likewise, pathological
inhibition of this pathway has been implicated in both OP
and AD pathogenesis, albeit in separate contexts (Dengler-Crish
and Elefteriou, 2019). More importantly, Wnt deficiency was
detectable in bone prior to the brain in the htau mouse model
(Dengler-Crish et al., 2018), which may help explain our findings
and emphasize the necessity of OP screening in AD-susceptible
populations. Aside from Wnt/β-catenin signaling, RANK-
RANKL signaling is another pathway shared by both OP and
AD. According to Li et al. (2016) Aβ enhances RANKL-induced
osteoclast activation and function, implying that Aβ is involved
in the pathogenesis of OP at molecular levels in osteoclasts.
Furthermore, the link between vitamin D deficiency and AD
is gaining attention. Vitamin D supplementation improved
cognitive function in both the AD mouse model (Morello
et al., 2018) and in a randomized, double-blind, and placebo-
controlled trial in which Aβ-related biomarkers were found to be
lower in elderly patients with AD (Jia et al., 2019). Our findings,
however, did not support these Aβ-related pathophysiological
explanations. These discrepancies may be partially explained by
differences in Aβ distribution and accumulation between the
central nervous system and peripheral tissues (Li et al., 2014;
Roberts et al., 2014; Ristori et al., 2020). More studies are needed
to elucidate the potential mechanisms through which OP acts in
AD.

Our study has certain limitations. First, the attrition bias
due to loss to follow-up is not corrected in the analyses.
Furthermore, the sample size is not balanced between the
two groups. Future studies with larger sample size, longer
follow-up duration, and lower attrition rates might provide
more powerful evidence to support our findings. Second, the
ADNI database does not contain adequate information about
OP, such as the time OP started, lab evidence, or imaging
evidence, for every participant with OP or without OP. This
could lead to some wrong classifications. Even so, this is a
common limitation of database-based research (Norton et al.,
2014; Frain et al., 2017; Xu et al., 2019; Harshfield et al.,
2020; Li et al., 2020; Kwon et al., 2021). Future studies are

encouraged to extend our work to other databases to verify
our results. Third, the associations we discovered can reflect
but not represent causal relationships. Direct evidence of causal
relationships may be provided by future research focusing
on the protective effect of anti-osteoporosis drugs, such as
bisphosphonates, on AD development. Fourth, although we
excluded individuals with psychiatric conditions other than AD
in the present analyses, we still cannot exclude the influence
of other potential confounders, such as social isolation, eating
disorder, or addictive behavior. Moreover, our models included
five covariates. Other potential covariates (e.g., hypertension
and hyperlipemia) are not included since they are recorded
either binomially (without specific values) or merely once.
Adding them to our models may not improve accuracy but
will increase complexity and inefficiency (Zhang, 2014). Future
research can be devoted to adding more valuable covariates, but
this will need better database support.

Conclusion

This study identified the cross-sectional and longitudinal
association between OP and the known pathological features of
AD. Our findings suggest that OP’s neurodegenerative effects
may be driven by elevated baseline CSF t-tau and p-tau
levels, and the accelerated entorhinal cortex and hippocampal
atrophy among older adults, providing critical insight into
the neuropathological mechanisms by which OP increases
the risk of developing AD. Furthermore, our results suggest
that preventing or managing OP during the preclinical and
prodromal stages of AD may be effective in combating
neurodegeneration among older people.
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