
Article

Human Semaphorin 3 Variants Link Melanocortin

Circuit Development and Energy Balance
Graphical Abstract
Highlights
d Rare variants affecting Semaphorin 3 signaling are

associated with human obesity

d Disruption of Semaphorin 3 signaling leads to weight gain in

zebrafish and mice

d Semaphorin 3 signaling promotes the development of

hypothalamic melanocortin circuits
van der Klaauw et al., 2019, Cell 176, 729–742
February 7, 2019 ª 2018 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2018.12.009
Authors

Agatha A. van der Klaauw,

Sophie Croizier,

Edson Mendes de Oliveira, ...,

E. Yvonne Jones, Sebastien G. Bouret,

I. Sadaf Farooqi

Correspondence
sbouret@chla.usc.edu (S.G.B.),
isf20@cam.ac.uk (I.S.F.)

In Brief

Semaphorin 3 signaling promotes the

development of hypothalamic circuits,

and human variants are associated with

obesity.

mailto:sbouret@chla.usc.edu
mailto:isf20@cam.ac.uk
https://doi.org/10.1016/j.cell.2018.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.12.009&domain=pdf


Article
Human Semaphorin 3 Variants Link Melanocortin
Circuit Development and Energy Balance
Agatha A. van der Klaauw,1,13 Sophie Croizier,2,3,13 Edson Mendes de Oliveira,1 Lukas K.J. Stadler,1 Soyoung Park,2

Youxin Kong,4,5 Matthew C. Banton,1,6 Panna Tandon,7 Audrey E. Hendricks,8,9 Julia M. Keogh,1 Susanna E. Riley,7

Sofia Papadia,1 Elana Henning,1 Rebecca Bounds,1 Elena G. Bochukova,1,10 Vanisha Mistry,1 Stephen O’Rahilly,1

Richard B. Simerly,2,11 INTERVAL, UK10K Consortium, James E.N. Minchin,7 Inês Barroso,1,8 E. Yvonne Jones,4

Sebastien G. Bouret,2,12,13,* and I. Sadaf Farooqi1,13,14,*
1University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Wellcome-MRC Institute of

Metabolic Science, Addenbrooke’s Hospital, Cambridge, UK
2The Saban Research Institute, Developmental Neuroscience Program, Center for Endocrinology, Diabetes and Metabolism,
Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA 90027, USA
3Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
4Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
5Pathogenesis of Vascular Infections Unit, INSERM, Institut Pasteur, Paris, France
6School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
7Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, UK
8Wellcome Sanger Institute, Cambridge, UK
9Department of Mathematical and Statistical Sciences, University of Colorado-Denver, Denver, CO 80204, USA
10The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
11Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, TN 37232-0615, USA
12INSERM U1172, Jean-Pierre Aubert Research Center, Lille, France
13These authors contributed equally
14Lead Contact

*Correspondence: sbouret@chla.usc.edu (S.G.B.), isf20@cam.ac.uk (I.S.F.)

https://doi.org/10.1016/j.cell.2018.12.009
SUMMARY

Hypothalamic melanocortin neurons play a pivotal
role in weight regulation. Here, we examined the
contribution of Semaphorin 3 (SEMA3) signaling
to the development of these circuits. In genetic
studies, we found 40 rare variants in SEMA3A-G
and their receptors (PLXNA1-4; NRP1-2) in 573
severely obese individuals; variants disrupted
secretion and/or signaling through multiple molec-
ular mechanisms. Rare variants in this set of genes
were significantly enriched in 982 severely obese
cases compared to 4,449 controls. In a zebrafish
mutagenesis screen, deletion of 7 genes in this
pathway led to increased somatic growth and/or
adiposity demonstrating that disruption of Sema-
phorin 3 signaling perturbs energy homeostasis.
In mice, deletion of the Neuropilin-2 receptor in
Pro-opiomelanocortin neurons disrupted their pro-
jections from the arcuate to the paraventricular nu-
cleus, reduced energy expenditure, and caused
weight gain. Cumulatively, these studies demon-
strate that SEMA3-mediated signaling drives the
development of hypothalamic melanocortin circuits
involved in energy homeostasis.
Cell 176, 729–742, Fe
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INTRODUCTION

Neural circuits in the hypothalamus play a critical role in the regu-

lation of energy homeostasis (Elmquist et al., 1998). The hypo-

thalamic melanocortin circuit is formed by leptin-responsive

neurons in the arcuate nucleus of the hypothalamus (ARH)

expressing either pro-opiomelanocortin (POMC) or Neuropep-

tide Y (NPY)/Agouti-related protein (AgRP), which project to,

and synapse with, melanocortin-4 receptor (MC4R)-expressing

neurons in the paraventricular nucleus of the hypothalamus

(PVH). In the nutritionally replete state, ARH POMC neurons

release melanocortin peptides, including a-melanocyte-stimu-

lating hormone (a-MSH), which act as agonists at MC4R to

reduce food intake and increase energy expenditure (Cowley

et al., 2001). Genetic disruption of POMC andMC4R leads to se-

vere obesity in rodents (Huszar et al., 1997; Yaswen et al., 1999)

and humans (Krude et al., 1998; Vaisse et al., 1998; Yeo et al.,

1998), emphasizing the critical role of this melanocortin circuit

in energy homeostasis.

Here, we studied the development of hypothalamic melano-

cortin circuits, focusing on the contribution of the class 3 Sema-

phorins (Pasterkamp, 2012) (SEMA3A-G), which direct the

development of gonadotropin-releasing hormone (GnRH) neu-

rons into the hypothalamus (Cariboni et al., 2015; Hanchate

et al., 2012). Disruption of Sema3 signaling impairs the devel-

opment of GnRH projections in mice and rare variants that

disrupt SEMA3 signaling are associated with hypogonadotropic
bruary 7, 2019 ª 2018 The Authors. Published by Elsevier Inc. 729
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Table 1. Phenotypes of SEMA3A-G, PLXNA1-4, and NRP1-2 Variant Carriers

Gene Variant

Age

(years)

BMI

(kg/m2)

BMI

SDS Endocrine Neuro developmental Gut Other

NRP1;

PLXNA3b
R237Qa;

T1679I

2.8 29.3 5.41

NRP2 V573L 34.1 50.0 -

NRP2 A506V 3.9 23.8 4.15 autism, speech delay

NRP2 A506V 11.3 24.1 2 severe migraine

PLXNA1 L1278F 6.3 28.7 4.53 behavioral problems

PLXNA1 G1650S 11.9 38.7 3.7

PLXNA1 R378H 21.0 34.8 2.89 hypotonia, autism,

speech delay

PLXNA2 T515M 14.0 35.9 3.32

PLXNA2 N788I 6.3 26.0 3.65

PLXNA2 W25X 11.0 34.2 3.48

PLXNA2 R1668Q 33.2 63.4 – Asperger’s syndrome,

speech delay

PLXNA2 A436V 6.2 26.0 3.7

PLXNA3 V879M 53.7 49.0 – hypothyroidism severe

constipation

PLXNA3 R1116C 3.5 23.3 3.71

PLXNA3 D1710Na 13.9 29.4 2.72 hypogonadotropic

hypogonadism

PLXNA3;

PLXNA3b
D127N;

R351H

6.9 26.8 3.59

PLXNA4 V245G 15.3 58.6 4.63 hypothyroidism nocturnal enuresis severe

constipation

PLXNA4 G643D 5.5 27.2 4.19 recurrent

infections

PLXNA4 T1642I 11.1 32.8 3.32

PLXNA4 R70Q 9.5 26.6 3.03 behavioral problems

SEMA3A K600M 2.3 29.5 5.5 hypothyroidism

SEMA3A R350T 7.7 30.2 3.8 hypothyroidism

SEMA3B F355L 10.0 28.4 3.16

SEMA3B P296L 13.2 33.4 3.14 epilepsy, narcolepsy,

conductive hearing loss,

impaired pain sensation,

behavioral problems,

speech delay

recurrent

infections

SEMA3C R739Q 15.5 43.6 3.82 hypothyroidism Asperger’s syndrome severe

constipation

SEMA3D R773G 11.9 41.3 3.82 nocturnal enuresis

SEMA3D R265H 13.0 35.8 3.4

SEMA3D T397A 8.9 36.1 4.02

SEMA3D Y199S 14.4 37.4 3.44

SEMA3D N444S 34.1 41.1 –

SEMA3D D380H 16.0 56.4 4.56 hypothyroidism

SEMA3D D640Y 7.5 29.2 4.01 autism, learning

difficulties, speech

delay

severe

constipation

SEMA3E R167G 14.1 40.5 3.72

SEMA3E K711N 7.1 23.1 2.75

(Continued on next page)
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Table 1. Continued

Gene Variant

Age

(years)

BMI

(kg/m2)

BMI

SDS Endocrine Neuro developmental Gut Other

SEMA3F E88K 2.8 34.8 6.4 severe

constipation

SEMA3G R561W 3.7 21.3 2.98 recurrent

infections

SEMA3G R728C 13.9 36.1 3.36

SEMA3G E478D 15.5 43.8 3.9

SEMA3G A86S 14.9 34.6 3.11

All variants were in found in the heterozygous form unless indicated; gastrointestinal motility disorders presented as severe therapy-resistant consti-

pation. Abbreviations: BMI, body mass index; BMI SDS, BMI standard deviation score for children.

See also Tables S1 and S2.
aHomozygous
bTwo participants harbored two variants.
hypogonadism in humans (Cariboni et al., 2015; Young et al.,

2012). We performed genetic studies in people with severe

obesity to test whether there was an enrichment of rare poten-

tially functional variants in genes encoding the SEMA3s and their

receptors compared to controls. We found 40 rare variants in

these genes; 34 altered the function of these proteins through

multiple molecular mechanisms. To test whether disruption of

Sema3 signaling can perturb energy homeostasis, we performed

a CRISPR/Cas9 mutant screen of these genes in zebrafish. We

showed that disruption of 7 genes caused increased somatic

growth and/or adiposity. Using hypothalamic explants from

mice, we demonstrated that Sema3 signaling via Nrp2 receptors

drives the development of Pomc projections from the ARH to the

PVH. Deletion of Nrp2 in Pomc neurons, reduced the density of

Pomc projections and caused weight gain in young mice.

Together, these findings demonstrate the role of Sema3

signaling in the development of melanocortin circuits that modu-

late energy homeostasis, findings that have relevance to the un-

derstanding of disorders of human hypothalamic development.

RESULTS

Identification of Rare Variants in Semaphorin 3 Ligands
and Their Receptors in Severely Obese Individuals
We hypothesized that if the genes encoding Sema3s and their

receptors (SEMA3A-G, NRP1-2, and PLXNA1-4) contribute to

the development of neurons that regulate body weight in hu-

mans, we might identify functional variants in these genes in

people with severe early onset obesity. We examined exome

sequencing data from 573 individuals with severe early onset

obesity (BMI SDS > 3; onset under 10 years of age) recruited

to the Genetics of Obesity Study (GOOS) studied as part of the

UK10K consortium (Hendricks et al., 2017; Walter et al., 2015).

We found 40 rare variants in these 13 genes (Table 1). To test

whether there was an enrichment for very rare (minor allele fre-

quency < 0.025%) predicted functional variants in 13 genes

involved in Semaphorin 3 signaling in severely obese cases

compared to controls, we compared exome sequencing data

from the final UK10K data release of 982 severely obese individ-

uals (including the 573 individuals in whom the first 40 variants
were identified) with that of 4,449 healthy controls recruited to

the INTERVAL study (Moore et al., 2014). After adjusting for mul-

tiple testing, we found that very rare predicted functional variants

in this cluster of genes were enriched in severely obese cases

compared to controls (OR = 1.40, p-adjusted = 0.02; Tables S1

and S2). Although suggestive, these associations were not sta-

tistically significant at the single gene level after adjusting for

multiple testing. Given the rarity of variants, larger sample sizes

will be needed to test whether the burden of rare variants in spe-

cific genes or combinations of genes is greater than expected in

severely obese cases versus controls.

Rare Variants in SEMA3s Affect Their Secretion and
Function in Cells
We performed experiments in cells to dissect the functional

consequences of very rare human variants (Figures 1 and S1;

Table S3). SEMA3A-G are secreted as disulphide bridge-linked

dimers and processed by furin (Figure 1A). SEMA3s (except

SEMA3E) bind to Neuropilin co-receptors (NRP1 and NRP2) in

hetero-complexes with PlexinA1-4 (PLXNA1-4) receptors to acti-

vate plexin signal-transduction (SEMA3E can signal without

NRPs through the class D plexin, PLXND1) (Janssen et al.,

2012; Tran et al., 2007). The dimeric SEMA3s form the signaling

complex with two PLXNAs and NRPs, the NRPs cross-bracing

the interfacing SEMA3s and PLXNAs (Janssen et al., 2012).

We mapped the 19 variants in SEMA3s onto the crystal

structure of SEMA3A and homology models of SEMA3B-3G to

suggest structural explanations for our findings (Figure 1A). To

assess whether SEMA3s mutants affect protein secretion, we

quantified the amount of secreted SEMA3 detected in the me-

dium of HEK293 cells transiently transfected with Flag-tagged

wild-type (WT) or mutant SEMA3 by ELISA. Six mutants

decreased protein secretion compared to WT SEMA3 (Fig-

ure 1B). Most led to increased intracellular retention of mutant

SEMA3, suggesting that the defect was in secretion rather

than synthesis (Figure S1A). In contrast, six mutants led to

increased protein secretion (Figures 1B and S1B). The SEMA3G

R728C variant may hinder SEMA3 dimerization by disrupting the

formation of an intersubunit disulfide bridge by the proximal,

conserved cysteine residue C726 (Figures 1A and S1C).
Cell 176, 729–742, February 7, 2019 731
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Figure 1. Rare Human Variants in SEMA3A-G Disrupt Protein Secretion and Signaling

(A) Structural modeling of SEMA3 variants. Upper panel: SEMA3 variants on a schematic representation (mouse Sema3A numbering). SS, signal sequence;

Sema, semaphorin domain; PSI, plexin-semaphorin-integrin domain; conserved furin cleavage sites indicated by scissors; conserved cysteines that form

SEMA3A-G dimers (orange line). Lower panel: SEMA3A-G mutants mapped onto human SEMA3A structure (increase, blue; decrease, red; no effect, gray; on

U87MG cell collapse). Sema and PSI domains on mouse Sema3A crystal structure (PDB: 4GZ8); Ig domain, model combining human SEMA4D (PDB: 1OLZ) and

mouse Sema3A (PDB: 4GZ8) structural data; c-terminal basic domain, schematic.

(B) ELISA analysis of C-FLAG-tagged WT/mutant SEMA3A-G secreted in the medium (a.u., arbitrary units).

(C) Effect of WT/mutant SEMA3A-G on cell collapse normalized to amount of semaphorin secreted.

(D) Structural analysis of SEMA3 mutants affecting cell collapse (increased, blue; decreased, red). Mutants are mapped on the crystal structure of the mouse

Sema3A-Nrp1-PlxnA2 complex (PDB: 4GZA).

Data represented as mean ± SEM from at least three independent experiments. *p < 0.05; **p < 0.01; ***p < 0.001 for all experiments.

See also Figure S1 and Table S3.
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Figure 2. Rare Human Variants in Neuropilins 1-2 and Plexins A1-4 Disrupt Cellular Localization and Signaling
(A) Cell-surface localization for WT/mutant NRP1-2 and PLXNA1-4 by ELISA.

(B) Effect of WT/mutant NRP1-2 and PLXNA1-4 on semaphorin-induced cell collapse.

(C) Total binding (Bmax) in cells expressing WT/mutant NRP1-2 or co-expressing NRP1-2 mutants and WT PLXNA1-4.

(D) Structural modeling of PLXNA mutants. Upper panel: PLXNA1-4 variants shown on schematic (mouse PlxnA1 numbering). SS, signal sequence; PSI, plexin-

semaphorin-integrin; IPT, Ig domain. Lower panel: PLXNA mutants mapped onto the crystal structure of mouse PlxnA1 ectodomain (PDB: 5L56).

(E) PLXNA mutants mapped onto the crystal structure of mouse PlxnA3 intracellular domain (PDB: 3IG3).

(F) Upper panel: NRP variants shown on the schematic (mouse Nrp1 numbering). Lower panel: NRP1-2 variants mapped onto the crystal structure of mouse Nrp1

(PDB: 4GZ9). The membrane-proximal MAM (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu) domain of Nrp is represented schematically.

(legend continued on next page)
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To test whether SEMA3 mutants affect receptor-mediated

signaling and thus disassembly of the actin cytoskeleton and

cellular collapse, U97MG cells were treated with medium from

cells transfected with WT or mutant SEMA3s, and the number

of collapsed cells counted. Compared to WT SEMA3s, 9 of the

19 SEMA3 mutants affected cell collapse (Figure 1C; Table

S3). Five SEMA3D mutants induced less collapse than WT

(Figure 1C).

Based on homology modeling, 12 of 19 variants were pre-

dicted to affect secretion and/or cellular collapse due to destabi-

lization of the Sema domain important for SEMA3-PLXNA-NRP

recognition (Figure 1D). Paradoxically, four mutants decreased

collapse despite increased secretion. SEMA3C R739Q and

SEMA3D R265H both locate close to the SEMA3-NRP interface

and may thus weaken SEMA3C-NRP1/2 binding. SEMA3D

R773G may destabilize the SEMA3-PLXNA-NRP complex by

affecting the charge distribution on the basic tail. SEMA3E

R167G, located at the SEMA3-PLXNA interface, may directly

affect PLXN binding (Figure 1D). Two SEMA3B mutants showed

decreased secretion, yet increased collapse even after adjust-

ment for the amount of protein secreted (Figures 1B, 1C, S1D,

and S1E). In summary, 15 of the 19 variants have functional con-

sequences on the protein by affecting secretion and/or collapse

in these assays (Table S3).

Rare Variants in NRP1-2 and PLXNA1-4 Disrupt Cell-
Surface Localization and Function
We examined the molecular mechanisms by which the 21 vari-

ants in PLXNA1-4 and NRP1-2 might affect their function (Fig-

ures 2 and S2). HEK293 cells were transfected with N-terminally

GLU-GLU-tagged WT and mutant constructs. Surface localiza-

tion of NRPs and PLXNs on non-permeabilized cells was quan-

tified by ELISA using an anti-GLU-GLU antibody. One NRP2

mutant (A506V) and 17 of the 18 PLXNA mutants significantly

decreased cell-surface expression compared to WT receptors

(Figures 2A and S2A). WT PLXNA1, A2, and A4 were predomi-

nantly localized on the plasma membrane, whereas mutant

PLXNs with reduced cell-surface expression were predomi-

nantly found within the endoplasmic reticulum (ER) (Figure S2B).

Interestingly, both WT and mutant PLXNA3 were localized in the

ER (Figure S2B). Almost all mutants with decreased cell-surface

localization reduced cell collapse in cells transfectedwith NRP or

PLXN (Figure 2B). In a ligand binding assay, none of the mutants

affected the equilibrium dissociation constant of the interaction

(Figure S2C); only NRP2 A506V decreased total binding (Fig-

ure 2C), in agreement with its modest decrease in cell-surface

expression. Co-expression of NRP mutants with each WT

PLXN gave similar results as with expression of NRP alone (Fig-

ures 2C and S2C).

Structural modeling of the 21 mutants in PLXNAs and NRPs

(Figures 2D–2F) suggested possible explanations for protein

misfolding. Six of the 11 mutants lie in the Sema domain of the
RBD, RhoGTPase-binding domain; GAP, GTPase-activating protein; TM, transme

domains (a1 and a2), two coagulation factor V/VIII homology domains (b1 and b2

expression (red), no effect on surface expression (gray), decreased surface expre

mean ± SEM from at least three independent experiments. *p < 0.05; **p < 0.01;

See also Figure S2.
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PlxnA ectodomains; however, they are not at the Sema3 and

Nrp-binding surfaces, so are likely to affect structural stability

rather than ligand or co-receptor interactions (Figure 2D). Mu-

tants on the PSI and IPT domains may disrupt the stability of

these domains (Figure 2D). PLXNA3 D127N is located on a sur-

face that mediates PlxnA-PlxnA interactions important for recep-

tor auto-inhibition pre-ligand binding (Kong et al., 2016) (Figures

S2D and S2E). Six mutants lie in the cytoplasmic Plxn domains

and may additionally affect coupling to downstream signaling

molecules; PLXNA1 L1278F on the juxta-membrane helices

may affect pre-signaling inhibition, PLXNA3 D1710N on the

Rap-GAP pocket helices may affect Rap binding, PLXNA1

G1650S, and PLXNA4 T1642I on the Rho-GTPase binding

domain (RBD) may affect interactions with the Rho-GTPases

and PLXNA3 T1679I may disrupt the hydrophobic core of the

PlxnA GAP domain (Figure 2E). Only 1 of the 3 mutants found

on NRP1 and NRP2 lead to decreased cell collapse and reduced

cell-surface expression likely by affecting molecular stability

(Figure 2F).

A Mutagenesis Screen in Zebrafish Demonstrates that
Disruption of Semaphorins, Plexins, and Neuropilins

Alters Somatic Growth and Adiposity
We used zebrafish to test whether altered Sema3 signaling

can disturb energy homeostasis, as the hypothalamic neural

circuits involved in energy homeostasis are highly conserved

(Leibold and Hammerschmidt, 2015; Minchin and Rawls,

2017). Multiple CRISPR guide RNAs (gRNAs) targeting distinct

regions of each zebrafish semaphorin 3, neuropilin, and plexin

a ortholog (Figures 3A and S3A) were injected into one-cell

stage zebrafish embryos. Disruption of the melanocortin sys-

tem can influence both somatic growth and adiposity in zebra-

fish (Sebag et al., 2013; Zhang et al., 2012). Deletions in seven

genes significantly increased somatic growth, body weight

and/or the percentage of body fat (Figures 3B and S3B). Dele-

tion of a duplicate gene for NRP2 (nrp2b) increased adiposity

and somatic growth (Figure 3C). In contrast, deletions of two

genes decreased percentage of body fat. Cumulatively, these

data demonstrate that Semaphorin 3 signaling can affect

energy homeostasis, potentially through several different

mechanisms.

SEMA3s and Their Receptors Are Expressed in the
Hypothalamus during Early Development
Using qRT-PCR we found that Nrp1-2 and PlxnA1-4 mRNAs

were detected in the mouse hypothalamus as early as E10 and

were highly expressed postnatally, particularly in the ARH (Fig-

ures 4A and S4A). NRP1-2 and PLXNA1-4mRNAs were also ex-

pressed in the human fetal hypothalamus and the hypothalamus

of human young adults (Figure 4A). Sema3a, Sema3c, Sema3e,

and Sema3f were expressed in the mouse PVH at P10 (Fig-

ure 4A); SEMA3C was the most abundant in the mouse PVH,
mbrane; JM, Juxtamembrane. The neuropilin ectodomain comprises two CUB

) and a MAM domain, L, linker. In (D)–(F), variants causing decreased surface

ssion as well as decreased cell collapse (blue) are shown. Data represented as

***p < 0.001.
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Figure 3. Disruption of Semaphorin 3 S, Neuropilins, and Plexins Alters Energy Homeostasis in Zebrafish

(A) Unrooted phylogenetic trees of Sema3, PlxnA, and Nrp genes. Genes from zebrafish (dotted lines) and mouse and human (solid lines) were used to construct

the trees. Where zebrafish genes have been duplicated, a letter is used to identify paralogs. Scale bars, number of substitutions per amino acid site.

(B) Heatmap showing change in length, weight, and percentage of body fat in deletion mutants relative to Cas9-only control fish; decrease (blue), increase

(orange) in the phenotype of mutants relative to control fish (for the natural log fold change); *genes not screened; agrp, positive control.

(C) Length (mm), weight (mg) and percentage of body fat in nrp2a and nrp2b mutant fish relative to Cas9-only injected control fish.

Data represented asmean ±SEM. *p < 0.05; ***p < 0.001 in one-sample t tests. Representative images of Nile Red-stained zebrafish showing increased adiposity

and size of nrp2b mutant fish (right). Scale bar, 1 mm.

See also Figure S3.
DMH, ARH, and preoptic area (Figure S4A) and in the human fetal

and young adult hypothalamus (Figure 4A). This temporal pattern

of gene expression overlaps with a critical time window for the

development of the melanocortin circuits that regulate energy

homeostasis. Pomc neurons in the ARH are generated on em-

bryonic day (E)11-12, acquire their terminal peptidergic pheno-

type during mid-late gestation (Padilla et al., 2010) and send
axonal projections to their target sites during the first few weeks

of postnatal life (Bouret et al., 2004).

Sema3s Drive the Growth of Pomc Projections In Vitro

To test whether Sema3s are involved in the development of

arcuate Pomc projections, we performed co-cultures between

ARH explants derived from Pomc-Cre; TdTomato mice (to
Cell 176, 729–742, February 7, 2019 735
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genetically label Pomc axons) and HEK293 cell aggregates

transfected with human SEMA3-encoding vectors (Figure 4B).

We quantified the density of axons extending toward (proximal)

or away (distal) from cell aggregates (Figure 4B). Compared

with the radial growth seen with HEK293 cells transfected with

an empty vector, growth of arcuate Pomc axons was enhanced

by HEK293 cell aggregates overexpressing SEMA3A, SEMA3B,

SEMA3C, SEMA3D, and SEMA3G (Figure 4C). Notably, only

SEMA3C and SEMA3D affected the growth of arcuate NPY

axons (Figure S4B). To validate the specificity of our in vitro

assay, we co-cultured an explant derived from the dorsal root

ganglion (DRG) with HEK293 cells overexpressing SEMA3A

and confirmed, as previously described (Taniguchi et al., 1997)

that SEMA3A inhibited the growth of DRG axons (Figure S4C).

Together, these observations demonstrate that SEMA3s can

signal to ARH axons, including to Pomc axons, and display

enhanced growth.

We repeated co-cultures between mouse ARH explants and

HEK293 cell aggregates transfected with a subset of human

SEMA3 variants and evaluated axon growth. Three of five vari-

ants tested negatively affected the overall growth of arcuate

axons; one increased the density of POMC projections (Fig-

ure 4D). Interestingly, SEMA3G E478D and SEMA3B P296L

mutants specifically reduced POMC axon growth.

Neuropilin Receptors Mediate the Growth of Arcuate
Pomc Projections toward the PVH and away from
the VMH
We reconstructed arcuate connections in vitro by co-culturing

two explants derived from different hypothalamic nuclei. When

an ARH explant derived from Pomc-Cre; TdTomato mice was

co-cultured with a PVH explant, the density of fibers directed to-

ward the PVH was substantially greater than that from the oppo-

site side of the ARH, suggesting that the PVH releases diffusible

chemotropic factors that promote growth of arcuate Pomc

axons (Figure 4E). Substitution of the PVH explants with control

HEK293 cells or an explant derived from the cortical cortex

(normally not innervated by ARH axons) did not result in any

detectable effect on neural projections (Figures 4E and S4D),

demonstrating a high degree of specificity. Nrp1 or Nrp2 neutral-

izing antibodies blocked the induction of growth exerted by the
Figure 4. Class 3 Semaphorins and their receptors are expressed in

ventricular nucleus of the hypothalamus by arcuate Pomc axons

(A) Expression of Neuropilin (NRP1-2), PlexinA (PLXNA1-A4), and Semaphorin (S

day E10/12/14, in hypothalamic nuclei of P10mice (ARH-arcuate; PVH-paraventri

14 weeks of gestational age (GA), and from human young adults; values relative

(B) In a co-culture system to evaluate neural growth, the average density of neurit

tissue, e.g., PVH) is compared to quantify the density of axons extending toward

(C) ARH explants from Pomc-Cre; TdTomato mice were co-cultured with an ag

TUJ1 (neuron-specific class III beta-tubulin).

(D) Quantitative analysis of TUJ1+ (upper panel) and Pomc+ (lower panel) axons

overexpressing SEMA3A-G mutants (*p < 0.05 versus mock; #p < 0.05 versus W

(E) ARH explants derived from Pomc-Cre, TdTomato mice were co-cultured with

bodies (a). Data represented as mean ± SEM. *p < 0.05 versus mock; D, p < 0.0

(F) ARH explants derived fromNrp2loxP/loxPmice that received intra-ARH injections

the ARH causes a significant reduction in ARH axon growth.

**p < 0.01 versus control. Scale bars, 250 mm (B) and 100 mm (D and E).

See also Figure S4.
PVH on arcuate Pomc axons (Figure 4E). The DMH promoted

growth of arcuate Pomc axons, but this effect was not blocked

with Nrp1- or Nrp2-neutralizing antibodies (Figure 4E). In

contrast, the VMH inhibited growth of arcuate Pomc axons and

this effect was blocked by the addition of Nrp1, but not Nrp2, an-

tibodies (Figure 4E and S4E). Thus, Nrp-mediated signaling

plays a specific role in establishing Pomc axonal projections to

the PVH.

Genetic Deletion of Neuropilin 2 Reduces the Density of
Pomc Projections to the PVH and Causes Weight Gain
in Mice
In the ARH, Nrp2mRNA expression was 2 times higher than that

of Nrp1 (Figure 4A). To investigate the role of Nrp2 in Pomc neu-

rons in vivo, we crossed mice carrying a Nrp2loxP allele (Walz

et al., 2002) with mice expressing Cre recombinase in a Pomc-

specific manner (Pomc-Cre) (Balthasar et al., 2004) to generate

mice that lack Nrp2 in Pomc-derived neurons. We repeated

the in vitro co-culture assay with an ARH explant derived from

Nrp2loxP/loxP mice that received intra-ARH injections of an AAV-

Cre vector and a PVH explant derived from WT mice. Genetic

loss of Nrp2 in ARH neurons also blocked growth of axons to-

ward the PVH (Figure 4F). As expected, the levels of Nrp2

mRNA were decreased in the arcuate nucleus of Pomc-Cre;

Nrp2loxP/loxP mice whereas the levels of Nrp1 were comparable

between control and mutant mice (Figure S5A); there was a

3-fold reduction in Nrp2mRNA in sorted POMC neurons derived

from mutant mice (Figure 5A). In contrast, there was no signifi-

cant change in the levels ofNrp1 andNrp2mRNAs in the pituitary

of mutant mice (Figure S5B and S5C), or in other hypothalamic

nuclei and extra-hypothalamic brain regions (Figure S5D).

Pomc-Cre; Nrp2loxP/loxP mice were born normally and had

body weights indistinguishable from control littermates until

11 weeks of age (Figure 5B) when mutant mice displayed signif-

icantly higher body weights (Figure 5B). Oxygen consumption

(VO2), locomotor activity and energy expenditure were reduced

inmutant mice compared with controlNrp2loxP/loxP mice (Figures

5C–5E). Although there was no change in body composition (Fig-

ure 5F), there was an increase in adipocyte size in mutant mice

(Figure 5G). Food intake and respiratory exchange ratio were

not significantly different compared to controls (Figures 5H and
the developing hypothalamus and direct innervation of the para-

EMA3A-G) mRNA in the hypothalamus (HYPO) of mouse fetuses at embryonic

cular nucleus of the hypothalamus), in the hypothalamus from human fetuses at

to GAPDH expression shown.

es in the proximal and distal parts of the ARH explant (with respect to the target

(proximal) or away (distal) from cell aggregates.

gregate of HEK293 cells overexpressing Sema3A-G and immunostained with

derived from arcuate explants co-cultured with an aggregate of HEK293 cells

T). ARH, arcuate nucleus.

explants containing the PVH, DMH, or VMH and Nrp1 or Nrp2 blocking anti-

5 versus PVH immunoglobin (IgG); $, p < 0.05 versus VMH IgG.

of an AAV-Cre vector with explants containing the PVH. Genetic loss of Nrp2 in
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Figure 5. Loss of Neuropilin 2 Signaling in Pomc Neurons Causes Reduced Energy Expenditure and Weight Gain in Mice and Disrupts

Arcuate Pomc Projections to the PVH

(A) Expression of Nrp1 and Nrp2 mRNA in sorted POMC+ neurons of adult Nrp2loxP/loxP and Pomc-Cre; Nrp2loxP/loxP mice; values relative to GAPDH expres-

sion shown.

(B–J) Body weight (B), oxygen consumption (C), locomotor activity (D), energy expenditure (E), body composition (F), adipocyte area (G), average food intake (H),

respiratory exchange rate (RER) (I), and glucose tolerance test and area under the curve (AUC) (J) of adult Nrp2loxP/loxP (control) and Pomc-Cre; Nrp2loxP/loxP

(mutant) mice.

(K) Microphotographs and quantification of the density of a-melanocyte-stimulating hormone (aMSH)-immunoreactive (IR) fibers innervating the neuroendocrine

paraventricular nucleus of the hypothalamus (PVHpml and PVHmpd), pre-autonomic PVH (postPVH), and DMH of adult Nrp2loxP/loxP and Pomc-Cre;

Nrp2loxP/loxP mice.

(legend continued on next page)
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5I). Pomc-Cre; Nrp2loxP/loxP mice displayed elevated levels of

glucose 15 min after a glucose challenge, compared to control

mice (Figure 5J). Leptin levels, but not insulin, T3, T4, and corti-

costerone levels, were significantly elevated in mutant mice (Fig-

ures S5E–S5I).

Although the overall distribution of aMSH-IR fibers was

similar between mutant and control mice, the density of

aMSH-IR fibers innervating the neuroendocrine and pre-auto-

nomic parts of the PVH of Pomc-Cre; Nrp2loxP/loxP mice was

2- to 3-fold lower than that observed in the Nrp2loxP/loxP mice

(Figure 5K). The density of aMSH projections to the DMH (Fig-

ure 5K) as well as to other major terminal fields (Figure S5J)

was comparable between mutant and control mice. Corticotro-

phin-releasing hormone (Crh) and thyrotrophin-releasing hor-

mone (Trh) expression in the PVH was increased, but oxytocin

mRNA levels were unchanged (Figure 5L). The number of

Pomc mRNA-expressing cells in the ARH of Pomc-Cre;

Nrp2loxP/loxP mice was comparable to that of control mice (Fig-

ures 5M and S5K–S5M). Together, these data indicate that Nrp2

signaling directs the formation of Pomc projections to the PVH

with marked target specificity.

DISCUSSION

In this study, we identified rare heterozygous variants in

SEMA3s, their receptors and co-receptors in individuals with se-

vere early-onset obesity. In zebrafish, we showed that deletion of

several genes in this pathway increased weight-related pheno-

types establishing a role for these molecules in energy homeo-

stasis. These genes might modulate body weight and/or fat

mass by several potential mechanisms. In mice, we showed

that Sema3s acting via Nrp2 direct the development of Pomc

projections from the arcuate to the paraventricular nucleus of

the hypothalamus. A role for Nrp1-mediated signaling in pre-

adipocyte differentiation has been demonstrated (Ceccarelli

et al., 2018). In zebrafish, plxnd1 has been shown to regulate ad-

ipose tissue growth by affecting the formation of the extracellular

matrix (Minchin et al., 2015), indicating that Semaphorin 3

signaling may affect non-neural mechanisms that contribute to

adiposity.

Rare Variants in the SEMA3s, Their Receptors, and
Co-receptors
We found multiple rare variants in the genes encoding ligands,

receptors, and co-receptors involved in Sema3 signaling by

studying severely obese individuals. Variants were not fully

penetrant and did not segregate with severe obesity in families

demonstrating non-Mendelian inheritance. There are parallels

with hypogonadotropic hypogonadism, where incomplete pene-
(L) Relative expression of corticotropin-releasing factor (Crh), thyrotropin-releasin

adult Nrp2loxP/loxP and Pomc-Cre; Nrp2loxP/loxP mice.

(M) Microphotographs and quantification of Pomc-expressing neurons and rela

Nrp2loxP/loxP mice.

Data represented as mean ± SEM. *p < 0.05; **p < 0.01 versus Nrp2loxP/loxP. A

hypothalamus; PVH, paraventricular nucleus of the hypothalamus; PVHmpd, dor

PVH; post PVH, posterior part of the PVH; V3, third ventricle. Scale bars, 100 mm

See also Figure S5.
trance and variable expressivity within and across families has

been observed (Cassatella et al., 2018). As the number of genes

implicated in hypogonadotropic hypogonadism has increased,

it has become clear that oligogenic inheritance (i.e., more than

one gene mutated in the same individual) can in part explain

these observations. Indeed, heterozygous variants in SEMA3A,

SEMA3E, and PLXNA1 can contribute to hypogonadotropic hy-

pogonadism in an oligogenic manner with variable penetrance

(Cariboni et al., 2015; Hanchate et al., 2012). In this study, while

variant carriers did not carry additional variants in known obesity

genes, it is plausible that other, as yet unidentified, genes may

contribute to expression of the obesity phenotype in the individ-

uals studied here.

Many challenges when studying rare variants might contribute

to complex traits that do not follow Mendelian patterns of inher-

itance (Agarwala et al., 2013; Zuk et al., 2014). Statistical burden

association tests are used to test for a difference in the load of

rare variants predicted to have a functional impact in cases

versus controls. Using this approach, we found nominal enrich-

ment for very rare variants in the cluster of genes encoding

SEMA3 ligands, receptors, and co-receptors when severely

obese cases were compared to healthy controls indicating that

rare variants within this gene-set may be associated with

obesity. However, given the number of rare variants, their pres-

ence in cases and in controls, and the complexity of Sema3

signaling, larger genetic studies are needed to more fully test

whether the burden of functionally significant variants (as tested

in cells) is increased in severely obese individuals compared to

controls and whether this association is driven by specific

genes/combinations of genes.

Some of the neurodevelopmental phenotypes observed in

variant carriers overlap with those seen in animals (Table 1).

Onemale carrying PLXNA3D1710N had hypogonadotrophic hy-

pogonadism. As PLXNA3 lies on the X chromosome, this individ-

ual would have minimal residual signaling through PLXNA3. The

true prevalence of hypogonadotrophic hypogonadism among

variant carriers may be underestimated here as several pro-

bands were pre-pubertal children.

SEMA3 signaling is known to regulate the development of the

enteric nervous system in rodents and rare heterozygous loss of

function variants in SEMA3C and SEMA3D have been associ-

ated with Hirschsprung’s disease in humans (Jiang et al.,

2015), a disorder characterized by failure of development of

parasympathetic ganglion cells in the large intestine. Five people

had severe medication-resistant constipation in childhood with

multiple hospital admissions; two individuals had been investi-

gated for Hirschsprung’s disease and one required a colostomy

for severe dysmotility (SEMA3D D640Y). Additional studies in

neuronal cells, experimental animal models of human variants,
g hormone (Trh), and oxytocin (Oxt) mRNA in the PVN of the hypothalamus of

tive levels of Pomc mRNA in the ARH of adult Nrp2loxP/loxP and Pomc-Cre;

RH, arcuate nucleus of the hypothalamus; DMH, dorsomedial nucleus of the

sal component of the medial parvicellular PVH; PVHpml, lateral magnocellular

.

Cell 176, 729–742, February 7, 2019 739



and in variant carriers will be needed to directly test the func-

tional impact of these variants on the development of the enteric

nervous system.

Insights into the Molecular Mechanisms Disrupted by
Rare Human Variants
Many of the SEMA3 variants reduced secretion and/or receptor-

mediated signaling. In blinded studies, fourmutants that had func-

tionalconsequencesonsecretionand/orsignaling incellsaffected

the density of neuronal projections, while the one WT-like variant

(SEMA3D D640Y) studied, did not affect neuronal projections

(Table S3). Paradoxically, some mutants exhibited increased

secretion in cells. Experiments in chick DRGs have shown that

the concentration of SEMA3s can determine which signaling

pathway is activated and thereby influence the extent of growth

cone collapse within a < 100 ng/mL to > 625 ng/mL range (Manns

et al., 2012). As such, mutants that both increase and decrease

secretion might disrupt axon guidance in vivo. Understanding

how ligand concentration (as altered by human variants) affects

axon growth may provide insights into the development of hypo-

thalamic and extra-hypothalamic circuits in the human brain.

Mutant PLXN receptors were predominantly found within the

endoplasmic reticulum rather than at the cell surface; structural

modeling of the 21 mutants in PLXNAs and NRPs suggested

several explanations for the misfolding of mutant receptors. The

downstream consequences of aberrant receptor expression and

signaling are challenging to predict as different NRP-PLXN com-

plexes mediate signaling by different combinations of Semaphor-

ins in different brain regions. For example, experiments in neurons

suggest that Sema3A signals via Nrp1-PlxnA4 complexes,

whereasNrp2-PlxnA3 complexesmediate responses to Sema3F.

Studies in PlxnA3-null mice show that PlxnA3 can mediate the

effects of Sema3A and Sema3F (Cheng et al., 2001). However,

neurons from PlxnA3-null mice only partially lose responses to

Sema3A implying a degree of compensation through other recep-

tor complexes, whereas hippocampal neurons from these mice

lose essentially all responsiveness to Sema3F implying there is

no redundant receptor for this specific response.

In preliminary studies, we modeled the effects of two NRP1

and –2 variants on melanocortin neural circuits in zebrafish.

Compared to WT NRP2, A506V NRP2 resulted in a significant

further reduction in the density of a-MSH-labeled fibers in the

preoptic area (teleost homolog of the PVH) (Figure S3C).

Compared to WT NRP1, the R237Q NRP1 mutant resulted in a

further reduction in the density of AgRP immunoreactive fibers

innnervating the anterior tuberal nucleus (teleost homolog of

the VMH) (Figure S3C). Given the challenges associated with

dissecting the impact of these molecules on neuronal circuits

and weight-related phenotypes, deletion/reactivation studies of

components of the signaling pathway in specific neuronal popu-

lations will be needed to determine the extent to which other

components of the signaling complex can compensate for the

partial lack of expression of mutant receptors in vivo.

Role of SEMA3 Signaling in the Development of
Hypothalamic Neural Circuits
Our data suggest that Sema3 signaling in developing Pomc neu-

rons contributes to the regulation of energy homeostasis and
740 Cell 176, 729–742, February 7, 2019
glucose homeostasis. The relatively modest effect of Nrp2 dele-

tion in Pomc neurons on body weight is not surprising, as only

Pomc axonal projections to the PVH were disrupted in this

mouse model. Our findings align with experiments specifically

disrupting leptin signaling in ARH Pomc neurons (Berglund

et al., 2012). Further in-depth exploration of the degree of

compensation/plasticity associated with targeted experimental

manipulations will be needed. Further characterization of the

impact of human variants in mature neurons, where they can

affect the maturation and density of dendritic spines, synapto-

genesis, and synaptic plasticity (Orr et al., 2017), may inform un-

derstanding of the mechanisms that underlie human disorders

characterized by hypothalamic dysfunction.
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Cariboni, A., André, V., Chauvet, S., Cassatella, D., Davidson, K., Caramello,

A., Fantin, A., Bouloux, P., Mann, F., and Ruhrberg, C. (2015). Dysfunctional

SEMA3E signaling underlies gonadotropin-releasing hormone neuron defi-

ciency in Kallmann syndrome. J. Clin. Invest. 125, 2413–2428.

Cassatella, D., Howard, S.R., Acierno, J.S., Xu, C., Papadakis, G.E., Santoni,

F.A., Dwyer, A.A., Santini, S., Sykiotis, G.P., Chambion, C., et al. (2018).
Congenital hypogonadotropic hypogonadism and constitutional delay of

growth and puberty have distinct genetic architectures. Eur. J. Endocrinol.

178, 377–388.

Ceccarelli, S., Nodale, C., Vescarelli, E., Pontecorvi, P., Manganelli, V., Case-

lla, G., Onesti, M.G., Sorice, M., Romano, F., Angeloni, A., and Marchese, C.

(2018). Neuropilin 1 mediates keratinocyte growth factor signaling in adi-

pose-derived stem cells: potential involvement in adipogenesis. Stem Cells

Int. 2018, 1075156.

Cheng, H.J., Bagri, A., Yaron, A., Stein, E., Pleasure, S.J., and Tessier-Lavigne,

M. (2001). Plexin-A3 mediates semaphorin signaling and regulates the devel-

opment of hippocampal axonal projections. Neuron 32, 249–263.

Cowley, M.A., Smart, J.L., Rubinstein, M., Cerdán, M.G., Diano, S., Horvath,

T.L., Cone, R.D., and Low, M.J. (2001). Leptin activates anorexigenic POMC

neurons through a neural network in the arcuate nucleus. Nature 411, 480–484.

DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C.,

Philippakis, A.A., del Angel, G., Rivas, M.A., Hanna, M., et al. (2011). A frame-

work for variation discovery and genotyping using next-generation DNA

sequencing data. Nat. Genet. 43, 491–498.

Elmquist, J.K., Maratos-Flier, E., Saper, C.B., and Flier, J.S. (1998). Unraveling

the central nervous system pathways underlying responses to leptin. Nat.

Neurosci. 1, 445–450.

Farooqi, I.S., Keogh, J.M., Yeo, G.S., Lank, E.J., Cheetham, T., and O’Rahilly,

S. (2003). Clinical spectrum of obesity and mutations in the melanocortin 4 re-

ceptor gene. N. Engl. J. Med. 348, 1085–1095.

Hanchate, N.K., Giacobini, P., Lhuillier, P., Parkash, J., Espy, C., Fouveaut, C.,

Leroy, C., Baron, S., Campagne, C., Vanacker, C., et al. (2012). SEMA3A, a

gene involved in axonal pathfinding, is mutated in patients with Kallmann syn-

drome. PLoS Genet. 8, e1002896.

Hendricks, A.E., Bochukova, E.G., Marenne, G., Keogh, J.M., Atanassova, N.,

Bounds, R., Wheeler, E., Mistry, V., Henning, E., Körner, A., et al.; Understand-

ing Society Scientific Group; EPIC-CVD Consortium; UK10K Consortium

(2017). Rare variant analysis of human and rodent obesity genes in individuals

with severe childhood obesity. Sci. Rep. 7, 4394.

Huszar, D., Lynch, C.A., Fairchild-Huntress, V., Dunmore, J.H., Fang, Q., Ber-

kemeier, L.R., Gu, W., Kesterson, R.A., Boston, B.A., Cone, R.D., et al. (1997).

Targeted disruption of the melanocortin-4 receptor results in obesity in mice.

Cell 88, 131–141.

Janssen, B.J., Malinauskas, T., Weir, G.A., Cader, M.Z., Siebold, C., and

Jones, E.Y. (2012). Neuropilins lock secreted semaphorins onto plexins in a

ternary signaling complex. Nat. Struct. Mol. Biol. 19, 1293–1299.

Jiang, Q., Arnold, S., Heanue, T., Kilambi, K.P., Doan, B., Kapoor, A., Ling,

A.Y., Sosa, M.X., Guy, M., Jiang, Q., et al. (2015). Functional loss of sema-

phorin 3C and/or semaphorin 3D and their epistatic interaction with ret are crit-

ical to Hirschsprung disease liability. Am. J. Hum. Genet. 96, 581–596.

Jun, G., Flickinger, M., Hetrick, K.N., Romm, J.M., Doheny, K.F., Abecasis,

G.R., Boehnke, M., and Kang, H.M. (2012). Detecting and estimating contam-

ination of human DNA samples in sequencing and array-based genotype data.

Am. J. Hum. Genet. 91, 839–848.

Kong, Y., Janssen, B.J., Malinauskas, T., Vangoor, V.R., Coles, C.H., Kauf-

mann, R., Ni, T., Gilbert, R.J., Padilla-Parra, S., Pasterkamp, R.J., and Jones,

E.Y. (2016). structural basis for plexin activation and regulation. Neuron 91,

548–560.

Krude, H., Biebermann, H., Luck, W., Horn, R., Brabant, G., and Grüters, A.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Flag Sigma-Aldrich Cat# F3040; RRID: AB_439712

Glu-Glu Covance Cat# PEP-115P; RRID: AB_291283

Anti-Mouse IgG-HRP Bio Rad Cat #1721011; RRID: AB_11125936

Anti-rabbit IgG-HRP Dako Cat# P0448; RRID: AB_2617138

Biotin anti-human IgG Sigma-Aldrich Cat# SAB3701279 ; RRID: AB_AB_258559

Beta-actin Cell Signaling Technology Cat #4970; RRID: AB_2223172

Calnexin Cell Signaling Technology Cat #2679; RRID: AB_2228381

Anti-mouse AF488 Invitrogen Cat#A28175; RRID: AB_2536161

Anti-rabbit AF568 Invitrogen Cat#A10042; RRID: AB_2534017

Human Neuropilin 1 R&D Systems Cat#AF3870; RRID: AB_884367

Human Neuropilin 2 R&D Systems Cat#MAB2215; RRID: AB_2155370

betaIII tubulin Covance Cat#MRB-435P; RRID: AB_663339

Neuropeptide Y Chemicon Cat#AB1583; RRID: AB_2236176

a-MSH Millipore Cat#AB5087; RRID: AB_91683

Digoxigenin Roche Cat# 11093274910; RRID: AB_514497

Perilipin A Sigma-Aldrich Cat#P1873-200UL; RRID: AB_532267

Bacterial and Virus Strains

Subcloning Efficiency DH5a

Competent Cells

Thermo Fisher Scientific Cat#18265017

XL10-Gold Agilent Cat# 200315

AAV5-CMV.HI.eGFP-Cre.WPRE.SV40 This paper NA

Biological Samples

Hypothalamus (human fetus at 14 weeks) Dr Prevot, Inserm U1172, Lille, France NA

Hypothalamus (human, 19 years ±

1.5 years) n = 2

Dr Prevot, Inserm U1172, Lille, France NA

Chemicals, Peptides, and Recombinant Proteins

Lipofectamine 2000 Invitrogen Cat#11668027

Semaphorin 3C R&D Systems Cat#5570-S3-050

Wheat Germ Agglutinin, Alexa Fluor 647

Conjugate

Invitrogen Cat# W32466

Critical Commercial Assays

T7 Endonuclease I (T7E1) New England Biolabs Cat#M0302

QuantaBlu Fluorogenic Peroxidase

Substrate Kit

Thermo Fisher Scientific Cat#15169

PicoPure RNA Isolation Kit Thermo Fisher Scientific Cat# KIT0214

RNeasy Lipid Tissue Mini Kit QIAGEN Cat#74804

High-Capacity cDNA Reverse

Transcription Kit

Thermo Fisher Scientific Cat#4368814

Experimental Models: Cell Lines

HEK293 ATCC CRL-1573

COS-7 ATCC CRL-1651

U87MG Gift from Gera Neufeld NA

HUVEC Gift from Gera Neufeld NA

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Zebrafish: WIK ZDB-GENO-010531-2

Mouse (C57BL/6): Pomc-Cre Balthasar et al., 2004 NA

Mouse (C57BL/6): ROSA-TdTomato

reporter line

Madisen et al., 2010 NA

Mouse (C57BL/6): Pomc-Cre; Nrp2

loxP/loxP

This Paper NA

Mouse (C57BL/6): Nrp2 loxP/loxP Walz et al., 2002 NA

Recombinant DNA

Human Sema3A expression plasmid OriGene CAT#: RC213681

Human Sema3B expression plasmid OriGene CAT#: RC223532

Human Sema3C expression plasmid OriGene CAT#: RC205269

Human Sema3D expression plasmid OriGene CAT#: RC216032

Human Sema3E expression plasmid OriGene CAT#: RC216038

Human Sema3F expression plasmid OriGene CAT#: RC208333

Human Sema3G expression plasmid OriGene CAT#: RC222035

Human PlexinA1 expression plasmid OriGene CAT#: RC222057

Human PlexinA2 expression plasmid OriGene CAT#: RC221024

Human PlexinA3 expression plasmid OriGene CAT#: RC212456

Human PlexinA4 expression plasmid OriGene CAT#: RC226436

Human Neuropilin 1 expression plasmid OriGene CAT#: RC217035

Human Neuropilin 2 expression plasmid OriGene CAT#: RC220920

Software and Algorithms

Ensembl GeneTree https://uswest.ensembl.org/Help/View?id=137 ENSGT00760000119048

Clustal Omega https://www.ebi.ac.uk/Tools/msa/clustalo/ NA

Unrooted http://pbil.univ-lyon1.fr/software/unrooted.html NA

DanRer 10 Varshney et al., 2015 NA

TIDE https://tide.nki.nl/ NA

VerifyBamID (v1.0) http://csg.sph.umich.edu/kang/verifyBamID/ NA

EIGENSTRAT v4.2 Price et al., 2006 NA

PLINK v1.07 https://www.cog-genomics.org/plink2 NA

Fiji https://fiji.sc/ NA

Prism https://www.graphpad.com/

scientific-software/prism/

NA

Modeler https://salilab.org/modeller/ NA

Pymol https://pymol.org/2/ NA
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, I. Sadaf

Farooqi (isf20@cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Studies in humans
The Genetics of Obesity Study (GOOS) is a cohort of 7,000 individuals with severe early-onset obesity; age of obesity onset is less

than 10 years (Farooqi et al., 2003; Wheeler et al., 2013). Severe obesity is defined as a body mass index (weight in kilograms divided

by the square of the height in meters) standard deviation score greater than 3 (standard deviation scores calculated according to the

United Kingdom reference population). The mean age of the subjects with variants was 13.0 ± 1.6 years. 28 were female and 11 were
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male, mean BMI or BMI SDS did not differ between males and females (35.3 ± 3.4 kg/m2 versus 34.9 ± 1.8 kg/m2; 3.8 ± 0.2 SDS

versus 3.8 ± 0.2 SDS). All studies were approved by the Cambridge Local Research Ethics Committee and each subject (or their

parent for those under 16 years) provided written informed consent; minors provided oral consent. Healthy blood donors from the

INTERVAL project were used as controls (Moore et al., 2014). All participants gave informed written consent.

Studies in cellular models
HEK293 (XX female) and COS7 (XY male) cells were cultured in high glucose Dulbecco’s modified eagle medium (DMEM, GIBCO,

41965) supplemented with 10% fetal bovine serum (FBS, GIBCO, 10270, South America origin), 1% GlutaMAX (100X) (GIBCO,

35050), and 100 units/mL penicillin and 100 mg/mL streptomycin (Sigma-Aldrich, P0781). U87MG (XY male) cells were cultured in

MEM with non-essential amino acids (Sigma) supplemented with 10% FBS (GIBCO), 1mM Sodium pyruvate, 1% GlutaMAX

(100X) (GIBCO, 35050), and 100 units/mL penicillin and 100 mg/mL streptomycin (Sigma-Aldrich, P0781). HUVECs (XX, female) cells

were cultured in M199 (with Glutamine) (Sigma-Aldrich, M4530), supplemented with 20% FBS (GIBCO), 1% GlutaMAX (100X)

(GIBCO, 35050), 100 units/mL penicillin and 100 mg/mL streptomycin (Sigma-Aldrich, P0781), 1% Vitamins- MEM-EAGLE Vitamin

Solution (GIBCO, 11120052). HUVEC cells were grown in flasks coated with gelatin (Sigma-Aldrich, G1890). U87MG and HUVEC

cells were a kind gift from Gera Neufeld (the Rappaport Institute). Cells were incubated at 37�C in humidified air containing 5%

CO2 and transfections were performed using Lipofectamine 2000 (GIBCO, 11668) in serum-free Opti-MEM I medium (GIBCO,

31985) according to the manufacturer’s protocols.

Studies in zebrafish
All zebrafish experiments were conducted in accordance with the Animals (Scientific Procedures) Act 1986, and following UK Home

Office approval (License #: P0662C816). Using CRISPR/Cas9, deletion mutants of zebrafish homologs of Semaphorin3s, PlexinA1-4

and Nrp1-2 were generated and characterized by their length and weight. Zebrafish were reared at equivalent densities and the

analyses were conducted prior to any overt sexual differentiation.

Studies in mice
All animal procedures were conducted in compliance with and approved by the IACUC of the Saban Research Institute of the

Children’s Hospital of Los Angeles. Animals were housed under specific pathogen-free conditions, maintained in a temperature-

controlled room with a 12 h light/dark cycle, and provided ad libitum access to water and standard laboratory chow (Special Diet

Services). To genetically label Pomc fibers for in vitro studies, Pomc-Cre mice (Balthasar et al., 2004) were crossed with a

ROSA-TdTomato reporter line (Madisen et al., 2010). To generate Pomc-specific Nrp2 knockout (Pomc-Cre; Nrp2loxP/loxP) mice,

Pomc-Cre mice were mated to mice carrying a loxP-flanked Nrp2 allele (Nrp2loxP/loxP) (Walz et al., 2002). Breeding colonies were

maintained by mating Pomc-Cre; Nrp2loxP/+ mice to Nrp2loxP/loxP mice. Cre-negative Nrp2loxP/loxP were used as controls. All mice

were generated in a C57BL/6 background and only male mice were studied.

METHOD DETAILS

Studies in Humans
Sequencing, variant calling, and quality control

Details about sequencing and variant calling for the severe childhood onset obesity project (SCOOP, UK individuals of European

ancestry recruited to the GOOS cohort) cases (Hendricks et al., 2017), as part of the UK10K exomes, and the INTERVAL controls

have been reported previously (Singh et al., 2016). Briefly, single–sample variant calling using GATK Haplotype Caller (v3.2) was per-

formed on the union of Agilent v3 and v5 targets plus a 100 base pair flanking region on 9795 UK10K and INTERVAL samples,

including SCOOP cases (N = 982) and INTERVAL controls (N = 4499). The called variants were thenmerged into 200 sample batches

and were joint-called using Genotype VCFs and default settings (DePristo et al., 2011; Van der Auwera et al., 2013). To ensure high-

quality variant calls across all datasets and sequencing batches, only variants with at least 7x coverage in at least 80% of samples

were called. We applied further variants QC keeping only variants with a calibrated VQSR tranche above 99.75% sensitivity, miss-

ingness < 20%,Hardy-Weinberg equilibrium c2 p value > 10E-8,mean genotype qualityR 30, and variants in low-complexity regions

as described previously (Li, 2014). Further, individual genotypeswere set tomissing if any of the followingwas true: GQ< 30, alternate

allele read depth (DP1) < 2, allelic balance (AB) < 0.2, or AB > 0.8.We used VerifyBamID (v1.0) (Jun et al., 2012) and a threshold ofR

3% to identify contaminated samples, principal components calculated from the 1000Genomes Phase I integrated call set (Abecasis

et al., 2010) using EIGENSTRAT v4.2 (Price et al., 2006) to identify non-Europeans, and pairwise identity by descent estimates from

PLINK v1.07 (Purcell et al., 2007) with a threshold ofR 0.125 to identify related individuals. Contaminated, non-European, and related

samples were removed resulting in 927 SCOOP cases and 4,057 INTERVAL controls for analysis.

Gene-set enrichment

We performed gene-set enrichment similar to previous analyses described in (Purcell et al., 2014; Singh et al., 2016). Briefly, using

PLINK/SEQ (Purcell et al., 2007) we calculated individual gene region burden test-statistics for an enrichment in cases compared to

controls of very rare (MAF < 0.025%) variants meeting one of two predicted functional requirements: functional or loss of function, or

only loss of function. We then used the SMP utility to calculate the gene set enrichment while controlling for exome-wide differences
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between cases and controls. Twenty thousand case control permutations were used to estimate the empirical gene set enrichment

p value on which a Bonferroni adjustment for two tests (i.e., functional and LoF, and LoF only) was applied to arrive at the adjusted

p value.

Functional Characterization of Rare Human Variants
Cloning and site-directed mutagenesis

The cDNA constructs used throughout the study were made by site-directed mutagenesis using QuikChange II XL kit (Agilent Tech-

nologies, 200516) according to the manufacturer’s protocols. SEMA3s cDNA constructs contained a C-terminal Myc/DDK tag;

NRP1-2 and PLXNA1-4 cDNA constructs contained a N-terminal Glu-Glu tag and C-terminal Myc/DDK tag; all constructs were

ligated into pCMV6-Entry vector (Origene) using Sgf I/Mlu I site. All constructs were verified by Sanger sequencing.

SEMA3s secretion, cell surface and total cell ELISA

Secreted SEMA3s were detected in the medium of transfected HEK293 cells grown in 96 well plates. Medium from these cells was

transferred to MaxiSorp plates and bound SEMA3 immunodetected with an anti-Flag antibody. Cell surface antigen was quantified

on transfected non-permeabilised live HEK293 cells in 96 well plates using an anti-Glu-Glu antibody. Total cell antigen was detected

in transfected HEK293 cells in 96-well plates after fixation and permeabilisation using an anti-Flag antibody.

Secreted Semaphorin ELISA

50,000 HEK293 cells were seeded into each well of a poly-D-lysine coated 96-well plate. After 24hr the cell medium was exchanged

for Opti-MEM (GIBCO) and cells transfected. Cell medium was exchanged once more with 50 mL of Opti-MEM containing a 1:400

dilution of Protease inhibitors (Sigma). 48 h after transfection, cell medium from two identically transfected 96-well plates was pooled

together (100 ml total volume) with the addition of 25mMHEPES pH7.5 and centrifuged at 1500rpm for 5min. The top 80 mL ofmedium

was transferred to black MaxiSorp plates (NUNC), the plates were sealed and incubated overnight at 4oC with gentle agitation. Cell

medium was removed and plates were washed thrice for 10 min with gentle agitation before blocking and immunodetection as

described in the ELISA procedure below using the anti-Flag antibody and QuantaBlu Fluorogenic Peroxidase Substrate Kit (Thermo).

Cell surface and total protein ELISA

40,000 HEK293 cells were seeded into each well of a poly-D-lysine coated 96-well plate and transfected the following day. 48 h after

transfection cells were washed once with PBS and processed for the detection of either cell surface or total cellular antigens. Cell

surface protein was detected by blocking live cells on ice (3% dry milk, 50mM Tris, pH 7.4 in PBS) for 30 mins and then incubation

with anti-Glu-Glu antibody (Covance) in blocking buffer on ice for 2 hr. Cells were washed thrice for 10 min on ice with PBS and then

fixed (3.7% formaldehyde in PBS) for 10 min on ice and then 10 min at room temperature. Cells were washed thrice for 10 min with

PBS, blocked again for 30min and incubatedwith secondary antibody as described for the total cellular antigen detection procedure.

Total cellular antigens were detected in fixed (3.7% formaldehyde in PBS) and permeabilised (0.1% triton in PBS for 5mins) cells after

blocking for 1hr and incubation with anti-flag antibody (Sigma) for 2 hr in blocking buffer. Cells were washed thrice for 10 min with

PBS, incubated with anti-mouse HRP antibody (BioRad) (1.5% dry milk, 50mM Tris, pH 7.4 in PBS) for 1 hr, washed thrice more for

10 min with PBS before incubation with HRP substrate (TMB, BioRad) and measurement of absorbance at 450nM.

Cell collapse assays

SEMA3-induced cell collapse was tested in U87MG cells grown on a gelatin coated surface. Cells were exposed to SEMA3-condi-

tioned cell medium and collapsed cells micrographed after 30 min and counted manually. Receptor mutants were tested by trans-

fecting COS7 cells withPLXNA,NRP, and GFP, followed by exposure to purified SEMA3C at 2 mg /ml for 30min. Collapsed cells were

micrographed under blue laser and collapse quantified using ImageJ.

Semaphorin expression vectors were transfected into HEK293 cells at 60%–90% confluency in 10cm dishes. Growthmediumwas

replaced with serum-free medium after 12 h. After 48 h the medium, containing secreted semaphorin, was harvested, aliquoted, and

snap frozen in liquid nitrogen followed by storage at �80�C. The cell contraction assay with mutant ligands was carried out as

reported previously (Sabag et al., 2014). U87MG cells were used for SEMA3A, SEMA3B, SEMA3D, SEMA3F, and SEMA3G induced

collapse. HUVEC cells were used with SEMA3C and SEMA3E. The morning of the assay 105 cells/well were seeded into a 12-well

plate coated with gelatin (Sigma, UK). Cells were allowed to attach to the plate surface for 5 h. Semaphorin-containing medium was

then added to the wells at a 1:2 dilution and cells kept at 37�C for 30 min. Following collapse cells the plates were photographed

under the microscope and collapsed cells counted individually (at least 100 cells per well). To test cell collapse mediated by mutant

receptors, COS7 cells were seeded at 2x105 cells/well in a gelatin coated 6-well plate, and the following day co-transfected with

PlxnA1-4, Nrp1-2, and GFP. After 24 h purified, recombinant, human SEMA3C (R&D Systems, UK) was added at a concentration

of 2 mg/ml and incubated at 37�C for 30 min. Following collapse, cells were photographed under the microscope and collapsed cells

were counted using image recognition software on ImageJ (NIH, Bethesda). Collapse efficiency was assessed by counting the pro-

portion of collapsed cells 30 min following addition of the WT semaphorin to the culture medium.

Ligand binding assay

Cells expressing NRP1-2 or co-expressing NRP1-2 and PLXNA1-4 were incubated with recombinant human SEMA3C-Fc chimera

and binding was quantified using an anti-human IgG (Fc specific) antibody. HEK293 cells (40,000 cells/well) were seeded in a poly-D-

lysine coated 96-well plate. After 24 h, 70%–80% confluent cells were transiently transfected with WT or mutant NRP1/2 alone or

co-transfected with NRP1/2 (WT and mutant) and WT PLXNA1-4. For NRP and PLXNA constructs, the amount of DNA used was

30 and 60 ng, respectively. Twenty four hours after transfection, cells were blocked with 1% BSA in serum-free media (SFM) for
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30 min at 37�C then incubated with recombinant human SEMA3C Fc chimera (0.2 – 10 nM) (rhSEMA3c-Fc, R&D System, catalog

number 5570-S3-050) in SFM supplemented with 1% BSA for 30 min at 37�C. Following 5 washes with Dulbecco’s Phosphate Buff-

ered Saline (DPBS), cells were fixed with 3.7% formaldehyde at room temperature (RT) for 15 min, washed three times with PBS and

subsequently blocked for 30 min at room temperature (1% BSA in 50 mM Tris-Phosphate buffer pH 7.4). For binding detection, a

biotinylated goat-anti-human IgG (Fc specific) (Sigma-Aldrich, SAB3701279) diluted 1:10000 in blocking buffer was incubated for

1 h at RT. Subsequently, the wells were washed three times with PBS and a peroxidase-conjugated Streptavidin (Thermo) (dilution

1:12000) was added to thewells and incubated for 30min at RT. After threewashes, bound SEMA3Cwas quantified by the addition of

90 mL of TMB (Biorad) per well, and stopped by 60 mL of 0.2M H2SO4. Absorbance at 450 nm was measured using an Infinite M1000

PRO microplate reader (Tecan). Specific binding was determined by subtracting non-specific binding (cells transfected with empty

vector [pCMV6]) from total binding. Specific binding was plotted and kd and Bmax determined using Prism 6.07 (GraphPad) software.

Reducing and non-reducing Immunoblotting

HEK293 cells were seeded in 10 cm dishes and transfected the following day once the cells had reached 90% confluency. 6 h after

transfection the cell medium was replaced with serum-free medium containing 1:400 dilution of protease inhibitors. 48 hr after trans-

fection the cell mediumwas supplemented with additional protease inhibitors. 72 hr after transfection the cell mediumwas harvested

from the dishes, centrifuged at 1500 rpm for 5 min and the sample was prepared for electrophoresis (resuspended in 1x BOLT LDS

sample buffer (Thermo) and 1x Bolt reducing agent (Thermo) and heated for 10mins at 70oC). Cells were washed once with PBS and

lysed in triton lysis buffer (50 mM Tris pH7.5, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50 mM sodium

fluoride, 10 mM sodium pyrophosphate, 10 mM sodium glycerophosphate, 1% (v/v) Triton X-100 and protease inhibitors (Roche).

Lysates were centrifuged at 14,000 rpm for 20 min and the protein concentration determined using a Bradford assay (BioRad). Equal

amounts of protein were prepared for electrophoresis, as described above. For non-reducing Immunoblotting, samples were pre-

pared in 1x BOLT LDS sample buffer (without reducing agent) and heated at 60oC for 5 min. Protein electrophoresis was performed

using BOLT gels (Thermo) and transfer onto nitrocellulose using an iBLOT (Thermo). Membranes were probed overnight at 4oC using

an anti-Flag primary (Sigma) and anti-mouse HRP (DAKO) secondary antibody or an anti-actin (NEB) primary and anti-rabbit second-

ary antibody (DAKO).

Immunofluorescence and Confocal Microscopy

80,000 COS7 cells were seeded onto glass coverslips in 12-well plates and transfected. 48 h after transfection cells were fixed with

4% formaldehyde in PBS for 10 min and washed three times for 5 min with PBS before membrane staining with 10 mg/ml Alexa Fluor

647 conjugated wheat germ agglutinin for 10min. Cells were washed three more times, permeabilised with 0.1% Triton X-100 in PBS

for 5 min before being washing again. Cells were incubated in blocking buffer (3% BSA in PBS) for 1h, then primary antibody (mouse

anti-Flag and Rabbit anti-Calnexin (Cell signaling) diluted in blocking buffer followed by washing and incubation with secondary

antibody (anti-mouse Alexa Fluor 488 and anti-Rabbit Alexa Fluor 568 (ThermoFisher). Cells were washed and incubated with

DAPI (1 mg/ml) for 5 min before being washed again and mounting onto coverslips using mounting medium (VECTASHIELD with

DAPI). Slides were imaged using a Leica SP8 confocal microscope with a 63x objective (NA 1.4) and images processed using FIJI.

Structural analysis

To study how the humanSEMA3-PLXNA-NRP variants affect signaling, wemapped themutated residues onto structural models and

assessed their potential effects on stability and protein-protein interactions. For SEMA3s, all human SEMA3 sequences (SEMA3A-

3G) were first aligned to the sequence of mouse SEMA3A. A homology model encompassing the first three Sema3 domains, the

sema, PSI and Ig domains, was made by combining the sema-PSI segments of the mouse Sema3A crystal structure at 3.3 Å reso-

lution (PDB: 4GZ8) together with a homology model of the Sema3 Ig domain generated using the 3.0 Å crystal structure of human

Sema4D which includes a more complete Sema-PSI-Ig segment (PDB: 1OL2). The human SEMA3 variants were then mapped

onto the equivalent residues in themouse Sema3Amodel. To locate the variants potentially affecting the Sema3-Plxn-Nrp interfaces,

the crystal structure of mouse Sema3A-PlxnA2-Nrp1 (PDB: 4GZA) was used as a reference. Similarly, human PlxnA1-A4 sequences

were aligned with mouse PlxnA1 and the mouse residues corresponding to the human variants were identified. The human PLXN

variants on the extracellular segments (domains sema to IPT6) were mapped onto the 4 Å crystal structure of the mouse PlxnA1 ec-

todomain (PDB: 5L56). Variants in the PlxnA cytoplasmic domain were mapped onto a homology model of PlxnA1 generated using

the 3.3 Å crystal structure of the zebra fish PlxnC1 active dimer (PDB: 4M8M). Human NRP1 and NRP2 variants were mapped onto

the equivalent positions in the 2.7 Å crystal structure of mouse Nrp1 (PDB: 4GZ9). TheMAMdomain of the Nrps was not modeled. All

protein sequences were obtained from the UniProt database (http://www.uniprot.org/). Protein sequence alignment was performed

using the ClustalW Omega server (https://www.ebi.ac.uk/Tools/msa/clustalo/). Homology models were generated and analyzed us-

ing Modeler. Structural visualization and image production was performed using Pymol (https://pymol.org/2/).

Studies in Zebrafish
Zebrafish homologs of class 3 Semaphorins, class A Plexins and Nrps were identified using Ensembl GeneTree

(ENSGT00760000119048). Phylogenetic trees were constructed from the zebrafish, human, and mouse orthologs using Clustal

Omega (Sievers et al., 2011). Phylogenetic trees were visualized using the Unrooted software (http://pbil.univ-lyon1.fr/software/

unrooted.html). Two-five non-overlapping short guide RNAs (gRNA) targeting each zebrafish genewere identified using the Zebrafish

Genomics track data hub (GA targets) in DanRer 10; gRNA templates were assembled and mRNA produced as described (Varshney

et al., 2015) with the exception that the T7 promoter was substituted with an SP6 promoter. sgRNAs (200 ng each) were incubated
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with 600 ng Cas9 protein (New England Biolabs, #M0646T) for 5 min at 37�C prior to 2 nL being injected into 1-cell stage zebrafish

WIK embryos. For each gRNA, mutagenesis was confirmed using T7 Endonuclease I (T7E1, New England Biolabs, #M0302),

and quantified using TIDE (Brinkman et al., 2014). gRNA and primer sequences for T7 assays are available from JENM on request.

Zebrafish were reared at equivalent densities. Zebrafish injected with Cas9 protein only were used as the control group. However,

gRNA-only injected zebrafish were also measured and no difference in somatic growth was observed between Cas9-only fish.

Length andweight weremeasured as previously described (Parichy et al., 2009). Nile Red staining on postembryonic larvaewas con-

ducted as described (Minchin et al., 2015). Percent body fat was calculated as previously described (Minchin and Rawls, 2017), in

stage matched larvae. For the initial CRISPR screen, analyses were conducted at 5, 14 and 35 days post fertilization in three inde-

pendent experiments. Between 6 and 25 animals were used for each group within an experiment. Analyses were conducted prior to

any overt sexual differentiation. Standard length, weight and%body fat were analyzed in three additional nrp2 experiments and used

between 40 and 83 animals in total.

Immunohistochemical analysis of aMSH and AgRP projections

Human wild-type NRP1 and NRP2 along with the NRP1 R237Q and NRP2 A506V variants were cloned into the pCMV6-Entry vector

(Origene), which was then linearized using the AgeI-HF restriction enzyme (New England Biolabs, #R3552), column cleaned (Zymo

Research Clean & Concentrator, #D4013) and RNA transcribed using the mMessage mMachine T7 Transcription Kit as according to

the manufacturers protocol (Thermo Fisher, #AM1344). Capped RNA was then cleaned using Zymo RNA Clean & Concentrator col-

umns (Zymo Research Clean & Concentrator, #R1013) and 100 pg injected into one-cell stage wild-type (WIK) zebrafish embryos.

Injected fish were raised at 20 fish/3L until 35 dpf. Thirty-five day old fish (n = 8-9/group) were fixed overnight with 4% paraformal-

dehyde/borate buffer. The fish brainswere then frozen, sectioned at 20-um thick, and processed for immunofluorescence using stan-

dard procedures (Bouret et al., 2004). Briefly, sections were incubated with a sheep anti-aMSH antibody (1:40,000, Millipore) and a

rabbit anti-AgRP (1:1,000, Phoenix Pharmaceuticals). The primary antibodies were visualizedwith Alexa Fluor 568 donkey anti-sheep

IgG and Alexa Fluor 488 donkey anti-rabbit IgG (1:200, Millipore). Sections were counterstained using bis-benzamide (1:10,000,

Invitrogen) to visualize cell nuclei. Two sections through the preoptic area (POA), anterior tuberal nucleus of hypothalamus (ATN),

and lateral hypothalamic nucleus (LH) were acquired using a Zeiss LSM710 confocal system equippedwith a 20X objective. To quan-

tify fibers density, each image plane was binarized to isolate labeled fibers from the background and to compensate for differences in

fluorescence intensity. The integrated intensity, which reflects the total number of pixels in the binarized image, was then calculated

for each image as previously described (Bouret et al., 2004). This procedure was conducted for each image stack.

Studies in Mice
Analysis of gene expression

The hypothalamus of E10, E12, and E14mouse embryos (n = 3-4/group) as well as the ARH, DMH, LHA, POA, PVH, SCN, and VMHof

P10 male mouse pups and the ARH and PVH of 8-weeks-old mice (n = 5/group) were dissected under a stereomicroscope. In addi-

tion, the hypothalamus of a human fetus at 14 weeks of gestational age and hypothalamic of human young adults (19.0 years ±

1.5 year; n = 2/group; generously provided by Dr Prevot, Inserm U1172, Lille France) was collected. Total RNA was isolated using

the Arcturus PicoPure RNA isolation kit (for mouse tissues) (Life Technologies) or the RNeasy Lipid tissue kit (for human tissues)

(QIAGEN). cDNA was generated with the high-capacity cDNA Reverse Transcription kit (Life Technologies). Quantitative real-time

PCRwas performed using TaqMan Fast Universal PCRMastermix and the commercially available Taqman gene expression primers.

mRNA expression was calculated using the 2-DDCt method after normalization to the expression of Gapdh housekeeping gene. All

assays were performed using an Applied Biosystems 7900 HT real-time PCR system.

Real-time PCR primers

Real-time PCRwas performed on Applied Biosystems 7900HT Fast Real-Time PCR System using TaqMan Gene Expression Assays

(Applied Biosystems): Pomc (Mm00435874_m1), Npy (Mm03048253_m1), Agrp (Mm00475829_g1), Leprb (Mm00440181_m1),

Crh (Mm01293920_s1), Trh (Mm01963590_s1), Oxt (Mm00726655_s1), Nrp1 (Mm00435379_m1), Nrp2 (Mm00803099_m1),

Plxna1 (Mm00501110_m1), Plxna2 (Mm00801930_m1), Plxna3 (Mm00501170_m1), Plxna4 (Mm00558881_m1), Sema3a

(Mm00436469_m1), Sema3b (Mm00436477_m1), Sema3c (Mm00443121_m1), Sema3d (Mm01224783_m1), Sema3e

(Mm00441305_m1), Sema3f (Mm00441325_m1), Sema3g (Mm01219778_m1), Gapdh (Mm99999915_g1).

Signaling activity of wild-type and mutant SEMA3s in HEK293 cells

HEK293 cells were grown in monolayers in 5% CO2 at 37�C, in Dulbecco’s modified Eagle’s medium (Life Technologies) containing

1 mM sodium pyruvate, 2 mM glutamine, 50 mM glucose, and supplemented with 10% fetal bovine serum (Invitrogen), 100 mg/ml

streptomycin and 100 U/ml penicillin. A cDNA containing the entire coding region of the human SEMA3A, SEMA3B, SEMA3C,

SEMA3D, SEMA3E, SEMA3F, SEMA3G was inserted into a pRK5 plasmid expression vector. Recombinant plasmids containing

SEMA3 cDNAs harboring the variants identified in obese individuals were then engineered using the QuickChange mutagenesis

protocol (Stratagene). HEK293 cells were transiently transfected using a fast-forward protocol (Lipofectamine 2000, Invitrogen).

Conditioned medium was collected 48 h after transfection, tested for the presence of Flag by western blot analysis using an anti-

Flag antibody (Sigma-Aldrich).

Explant co-culture assays

Brains were collected from P4 Pomc-Cre; TdTomato male mice (for ARH explants) and P8-P12 wild-type male mice (for PVH, DMH,

and VMH explants) and sectioned at a 200-um thickness with a vibroslicer as previously described In addition, Nrp2loxP/loxP mice
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received stereotaxic bilateral injections of AAV5-CMV.HI.eGFP-Cre.WPRE.SV40, in the ARH at P0. Control group consisted of WT

mice that received bilateral stereotaxic injections of AAV5-CMV.HI.eGFP-Cre.WPRE.SV40 virus into the ARH at P0. Brains were

collected for co-culture experiments at P6. The ARH, PVH, DMH, and VMH were then carefully dissected out of each section under

a stereomicroscope. ARH explants were co-cultured onto a collagen matrix (BD Bioscience) with either PVH, DMH, or VMH explants

(n = 4-12 explants/group from 3-6 independent experiments) or HEK293 cells transfected with Sema3-encoding vectors described

above (n = 6-28 explants/group from 3-6 independent experiments). Control experiments included co-cultures with control HEK293

cell aggregates and cortical explants. For the heterochronic cultures, beginning on the first day in vitro, each explant were transferred

to fresh modified Basal Medium Eagle (Invitrogen) containing either Nrp1 or Nrp2 neutralizing antibodies (1.5 ug/ml, R&D Systems) or

control goat IgGs. After 48 h, the explants were fixed in paraformaldehyde and stained with betaIII tubulin (TUJ1 monoclonal anti-

body, 1:5,000, Covance) or NPY (1:3,000, Chemicon). Pomc-TdTomato+, TUJ1+ and NPY+ neurites extending from the ARH explants

were analyzed as followed. Confocal image stacks of the co-cultures, that included the proximal and distal edges of the ARH explant,

were acquired using a Zeiss LSM 710 confocal system equipped with a 10X objective. Slides were numerically coded to obscure the

treatment group. Image analysis was performed using ImageJ analysis software (NIH). For the in vitro experiments, each image plane

was binarized, and the total density of Pomc+, TUJ1+ and Npy+ neurites were measured in the proximal (P) and distal (D) parts of the

explant. The P/D ratio is a measure of growth toward or away from the explant, with a ratio > 1 indicating net increase in projections

and < 1 indicating decreased axon growth.

Immunohistochemical analysis of aMSH projections

15-17-weeks old male mice (n = 4/group) were perfused transcardially with 4% paraformaldehyde. The brains were then frozen,

sectioned at 30-um thick, and processed for immunofluorescence using standard procedures (Bouret et al., 2004). Briefly, sections

were incubated with a sheep anti-aMSH antibody (1:40,000, Millipore). The primary antibody was visualized with Alexa Fluor 488

donkey anti-sheep IgG (1:200, Millipore). Sections were counterstained using bis-benzamide (1:10,000, Invitrogen) to visualize

cell nuclei. Two sections through various anatomical compartments of the PVH (PVHmpd and PVHpml, neuroendocrine; and

postPVH, autonomic) were acquired using a Zeiss LSM710 confocal system equippedwith a 20X objective. For the quantitative anal-

ysis of fibers density, each image plane was binarized to isolate labeled fibers from the background and to compensate for differ-

ences in fluorescence intensity. The integrated intensity, which reflects the total number of pixels in the binarized image, was then

calculated for each image. This procedure was conducted for each image stack.

Analysis of Pomc cell numbers

15-17-weeks old male mice (n = 4/group) were perfused transcardially with 4% paraformaldehyde. The brains were then frozen,

sectioned at 30-um thick, and processed for fluorescent in situ hybridization using standard procedures. Two sections through

the ARH were acquired using a Zeiss LSM 710 confocal system equipped with a 20X objective. For the quantitative analysis of

cell number, the number of Pomc+ cell bodies in the ARH were manually counted using ImageJ analysis software (NIH). The average

number of cells counted in two ARH hemi-sections from each mouse was used for statistical comparisons.

Physiological measurements in mice

Male mice (n R 9/group) were weighed every 2 days from P4 to P22 (weaning) and weekly from 4 to 14 weeks using an analytical

balance. Body composition analysis (fat/lean mass) was performed in 16-week-old mice (n = 7-8/group) using NMR (Echo MRI).

Food intake, energy expenditure, and locomotor activity weremonitored at 17-19weeks of age using a combined indirect calorimetry

system (TSE Systems) (n = 7-8/group). Mice were acclimated in the monitoring chambers for 2 days then data were collected for

3 days. These physiological measures were performed at the Rodent Metabolic Core of Children’s Hospital of Los Angeles. Glucose

tolerance tests (GTTs) were conducted in 10- to 11-week-old mice (n = 9-11/group) through i.p. injection of glucose (1.5 mg/g body

weight) after overnight fasting. Blood glucose levels were measured at 0, 15, 30, 45, 60, 90, 120, and 150 min post-injection. Serum

leptin, insulin, T3, T4 levels were assayed in 18-21-week-old fed mice and corticosterone levels were assayed in 18-21-week-old fed

mice (n = 8-11/group) using ELISA kits (Millipore, Calbiotech and Enzo Life Sciences, respectively).

Fluorescent in situ hybridization

Antisense digoxigenin-labeled riboprobes were generated from plasmids containing PCR fragments of Pomc. Briefly, sections were

postfixed for 10 min in 4% paraformaldehyde. Then, sections were incubated with 1ug/ml Proteinase K (Promega) for 5 min at 37�C
and 15min at RT, respectively. They were then incubated for 10min in 0.1M triethanolamine (TEA), pH 8.0, and then for 5min at room

temperature in 100 mL 0.1 M triethanolamine (TEA) with 500 uL glacial acid acetic. Tissue was pre-hybridized for 2 h at 62�C in hy-

bridization buffer (66% (v/v) deionized formamide, 13% (w/v) dextran sulfate, 260 mM NaCl, 1.3 X Denhardt’s Solution, 13 mM Tris

pH 8.0, 1.3 mM EDTA pH 8.0). Probes were denatured at 80�C for 5 min before being added to the hybridization buffer, along with

tRNA and DTT for a final concentration of 0.5mg/ml tRNA and 10mM DTT. Tissue was hybridized overnight at 62�C. After washes in

stringency solutions, sections were blocked in TNB solution (0,5%blocking reagent, Roche). Tissue sections were then incubated for

1 hr at RT in a horseradish peroxidase-conjugated sheep anti-DIG antibody (1:400, Roche Applied Sciences). DIG was visualized

using a TSA PLUS Biotin Kit (Perkin Elmer). After washes, sections were incubated for 30 min in a 1:50 dilution of the Biotin Ampli-

fication Reagent working solution (prepared following manufacturer’s instructions), before incubating for 1 hr in 1:200 streptavidin

conjugated to cyanin 2 (Jackson Immunoresearch). Sections were counterstained using bisbenzamide (1:10,000, Invitrogen), to visu-

alize cell nuclei, and coverslipped with buffered glycerol (pH 8.5).
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Histomorphological assessment of white adipose tissue

Male mice were anesthetized at 16-17 weeks of age (n = 5/group). Epididymal adipose tissue was collected, fixed in a 4% parafor-

maldehyde solution, sectioned at 5 um, and then stained with a Perilipin A antibody (1:1,000, Sigma) using standard procedures.

Images were taken with a Zeiss LSM 710 confocal microscope with a 20X objective. Determination of mean size (mm2) wasmeasured

using ImageJ software (NIH, ImageJ 1.39 T). The average adipocyte size measured from three sections in each mouse was used for

statistical comparisons.

QUANTIFICATION AND STATISTICAL ANALYSIS

All values were represented as themean ± SEM. Studies in cellular models are from at least 3 independent experiments. Numbers for

every experiment are found in the relevant part of the STAR Methods. Explant co-culture assays are derived from 4-28 explants in

3-6 independent experiments. Mice studies are from 3–11 animals per group. Statistical analyses were conducted using GraphPad

Prism (version 6.07). Datasets with only two independent groups were analyzed for statistical significance using unpaired two-tailed

Student’s t test. Datasets with more than two groups were analyzed using one-way analysis of variance (ANOVA) followed by the

Bonferroni posthoc test. For statistical analyses of body weight and GTT (mice), we performed two-way ANOVAs followed by

Bonferroni’s posthoc test. Statistically significant outliers were calculated using Grubb’s test for outliers. p % 0.05 was considered

statistically significant. Statistical significance is represented as *p < 0.05, **p < 0.01 and ***p < 0.001.
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Supplemental Figures
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Figure S1. Functional Characterization of Rare Human Variants in SEMA3A-G, Related to Figure 1

(A) Total expression of C-FLAG-tagged SEMA3A-G by ELISA analysis (A.U., arbitrary units).

(B) Western blotting of total cellular and secreted SEMA3A-G.

(C) Dimerization analysis using reducing and non-reducing western blotting of total cellular and secreted SEMA3G.

(D) Collapse efficiency was assessed by counting the proportion of collapsed cells 30 min following addition of the indicated WT Semaphorin to the culture

medium.

(E) Effect of SEMA3A-G on cell collapse unadjusted for the amount of semaphorin secreted. Data are presented as mean ± SEM from at least 3 independent

experiments; *p < 0.05, **p < 0.01 and ***p < 0.001.



(Figure continued on next page)
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Figure S2. Functional Characterization of Rare Human Variants in Neuropilins 1-2 and Plexins A1-4, Related to Figure 2

(A) Total expression of WT and mutant NRP1-2 and PLXNA1-4 by ELISA on permeabilised HEK293 cells (A.U, arbitrary units).

(B) Confocal microscopy of Cos-7 cells showing the co-localization of transiently expressedWT andmutant PLXNA1-4 (green) with plasmamembrane (magenta)

and endoplasmic reticulum (red) markers. Scale bars represent 10 mm.

(C) Saturation receptor-ligand binding assay. Cells expressing WT/mutant NRP1-2 or co-expressing mutant NRP1-2 and WT PLXNA1-4 were incubated with

increasing amounts of recombinant human SEMA3C and the equilibrium dissociation constant (kd) of the interaction and the total binding (Bmax) were

calculated.

(D) Structural model of SEMA3s signaling via the PLXNA receptors and co-receptor NRP1 or 2.

(E) Variant PXLNA2 D127N locates on the PLXNA-PLXNA interface important for pre-signaling auto-inhibition. Data are presented as mean ± SEM from at least 3

independent experiments; *p < 0.05, **p < 0.01 and ***p < 0.001.



(legend on next page)



Figure S3. Generation and Characterization of Semaphorin-Neuropilin-Plexin Deletion Mutants in Zebrafish, Related to Figure 3

(A) Schematic illustrating the mutagenesis strategy to target sema3, plxna and nrp genes in zebrafish. Two-five sgRNAs were generated to mutagenize each

zebrafish gene. Only sgRNAs verified to induce mutagenesis were injected into one-cell stage zebrafish embryos. Zebrafish were raised to �30 days post

fertilization and fish length (mm), weight (mg) and % body fat were quantified.

(B) Results on fish length (mm), weight (mg) and % body fat for all deletion mutants (summarized in Figure 3B).

(C) Microphotographs and quantification of the density of a-melanocyte-stimulating hormone (aMSH) (red) and agouti-related peptide (AgRP) (green) immu-

noreactive (IR) fibers innervating the preoptic area (POA), anterior tuberal nucleus of hypothalamus (ATN), and lateral hypothalamic nucleus (LH) of 35-day-old

wild-type zebrafish overexpressing NRP1 and NRP2; *p < 0.05 in one-sample t tests.



Figure S4. Expression of Class 3 Semaphorins and Their Receptors in the Developing Hypothalamus and Specificity of Co-Culture Assays,

Related to Figure 4

(A) Expression of Semaphorin (Sema3A-G), Neuropilin (Nrp1-2), PlexinA (PlxnA1-A4) mRNA in microdissected hypothalamic nuclei of P10 mice; compared to

expression of GAPDH.

(B) Quantitative analysis of NPY+ axons derived from arcuate explants co-cultured with an aggregate of HEK293 cells overexpressing Sema3A-G.

(C) Representative image showing an isolated explant derived from the dorsal root ganglion (DRG) and co-cultured with an aggregate of HEK293 cells over-

expressing Sema3A.

(D) Representative image showing an ARH explant co-cultured with a cortical explant.

(E) Representative image showing ARH explants derived from Pomc-Cre, TdTomato mice co-cultured with explants containing the VMH in the presence of Nrp1

blocking antibodies (a).

Data are represented as mean ± SEM. *p < 0.05 and **p < 0.01 versus mock. ARH, arcuate nucleus of the hypothalamus; DMH, dorsomedial nucleus of the

hypothalamus; LHA, lateral hypothalamic area; POA, preoptic area; SCN, suprachiasmatic nucleus; VMH, ventromedial nucleus of the hypothalamus.
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Figure S5. Metabolic and Neuroanatomical Characterization of Pomc-Cre; Nrp2loxP/loxP Mice, Related to Figure 5

(A) Expression of Nrp1 and Nrp2 mRNA in the arcuate nucleus of the hypothalamus of adult Nrp2loxP/loxP and Pomc-Cre; Nrp2loxP/loxP mice; values relative to

GAPDH expression are shown.

(B–D) (B)Relative levels ofNrp1 in the pituitary of adultNrp2loxP/loxP (control) andPomc-Cre;Nrp2loxP/loxP (mutant) mice.Nrp2mRNA expression in (C) the pituitary,

and (D) ventromedial nucleus of the hypothalamus (VMH), dorsomedial nucleus of the hypothalamus (DMH), lateral hypothalamic area (LHA), paraventricular

nucleus of the thalamus (PVT), hippocampus (HIP), cortex (Cx), and medial amygdala (MEA) of Nrp2loxP/loxP (control) and Pomc-Cre; Nrp2loxP/loxP (mutant) mice.

(E–I) (E) Serum leptin, (F) insulin, (G) triiodothyronine (T3), (H) thyroxine (T4), and (I) corticosterone levels of adult Nrp2loxP/loxP and Pomc-Cre; Nrp2loxP/loxP mice.

(J) Representative confocal images showing a-melanocyte-stimulating hormone (aMSH)-immunoreactive (IR) fibers in the brain of adult Nrp2loxP/loxP and

Pomc-Cre; Nrp2loxP/loxP mice.

(K–M) Relative levels of (K) Agouti-related peptide (Agrp), (L) neuropeptide Y (Npy), and (M) leptin receptor (Leprb) mRNA in the arcuate nucleus of the hypo-

thalamus of adult Nrp2loxP/loxP and Pomc-Cre; Nrp2loxP/loxP mice.

Data are presented as mean ± SEM. *p < 0.05, **p < 0.01 versus Nrp2loxP/loxP mice. Aq, aqueduct; ARH, arcuate nucleus of the hypothalamus; CEA, central

nucleus of the amygdala; vlPAG, ventrolateral periaqueductal gray matter; PBN, parabrachial nucleus; PVT, paraventricular nucleus of the thalamus; SCN,

suprachiasmatic nucleus; VMH, ventromedial nucleus of the hypothalamus; V3, third ventricle. Scale bars, 100 mm.
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