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Abstract

studying genetic architecture of complex traits.

Background: An unfavorable genetic correlation between milk production and fertility makes simultaneous
improvement of milk production and fertility difficult in cattle breeding. Rapid genetic improvement in milk
production traits in dairy cattle has been accompanied by decline in cow fertility. The genetic basis of this
correlation remains poorly understood. Expanded reference populations and large sets of sequenced animals make
genome-wide association studies (GWAS) with imputed markers possible for large populations and thereby

Results: In this study, we associated 15,551,021 SNPs with female fertility index in 5038 Nordic Holstein cattle. We
have identified seven quantitative trait loci (QTL) on six chromosomes in cattle. Along with nearest genes to GWAS
hits, we used gene-based analysis and spread of linkage disequilibrium (LD) information to generate a list of
potential candidate genes affecting fertility in cattle. Subsequently, we used prior knowledge on gene related to
fertility from Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathway analysis, mammalian
phenotype database, and public available RNA-seq data to refine the list of candidate genes for fertility. We used
variant annotations to investigate candidate mutations within the prioritized candidate genes. Using multiple
source of information, we proposed candidate genes with biological relevance underlying each of these seven QTL.
On chromosome 1, we have identified ten candidate genes for two QTL. For the rest of chromosomes, we
proposed one candidate gene for each QTL. In the candidate genes list, differentially expressed genes from
different studies support FRAST, ITGB5, ADCY5, and SEMA5B as candidate genes for cow fertility.

Conclusion: The GWAS result not only confirmed previously mapped QTL, but also made new findings. Our
findings contributes towards dissecting the genetics for female fertility in cattle. Moreover, this study shows the
usefulness of adding independent information to pick candidate genes during post-GWAS analysis.
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Background

Dairy cattle breeding has achieved large increases in
milk production traits; however, simultaneously cow fer-
tility has declined [1]. A negative genetic correlation ex-
ists between yield and cow fertility [2]. This negative
genetic correlation of milk yield and its compositions
with fertility is assumed to be due to the negative energy
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balance of high-producing cows during the peak of lac-
tation [2]. Good fertility is essential for the overall econ-
omy of dairy farming [3]. Multiple measures of fertility
such as timing of estrus, pregnancy rate, days open, and
services per conception have been devised [4].
Numerous biological pathways are involved in pro-
cesses related to cow fertility. Thus fertility is a complex
trait affected by many genes or variants, each typically
with small effects [5]. This means that power of detec-
tion of individual genetic variants typically will be low.
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With next-generation-sequencing (NGS) combined with
imputation, we are able to map variants at the
whole-genome-sequencing (WGS) level in large popula-
tions. For cattle, the availability of data from 1000 Bull
Genome Project further facilitates the use of WGS for
GWAS [6]. The sequence data is expected to include
most causal variants affecting a polygenic traits or at
least markers in strong LD with causal variants.

Several GWAS and QTL mapping studies for fertility in
different cattle populations have been conducted. Two
QTL, one at 26 cM of chromosome 3 and one at 107 cM of
chromosome 7 were reported in French Holstein cattle [7].
In another study for French Holstein cattle, the position of
QTL on chromosome 3 was at 19 ¢cM [8]. In US Holstein,
Ashwell et al. [9] reported one strong signal on chromo-
some 18 affecting pregnancy rate, along with other QTL on
chromosome 6, 14, 16, 27, and 28 [9]. In Nordic Red
breeds, Kadri et al. [10] identified the causative mutation
associated with a major fertility QTL located on chromo-
some 12 was a 660-Kb deletion encompassing four genes
[10]. In the Canadian Holstein population, there was fertil-
ity QTL on chromosome 21 located between 53 to 59 Mb.
Several QTL for fertility were reported in the Nordic Hol-
stein cattle population located on chromosomes 1, 4, 7, 9,
11, and 13 [11]. Moreover, some of these QTL were also
found to be segregating in Nordic Red cattle and Danish
Jersey [11]. Nonetheless, overlap of QTL location among
different populations is poor [11]. This inconsistency illus-
trates the challenges in finding candidate genes and map-
ping causal variants for cow fertility. However, more and
more available information about function of genes and
their annotation in human and other model species can
shed light on genes affecting cow fertility. The integration
of additional sources of functional information helps to
identify candidate genes for fertility to the benefit of re-
search and breeding of dairy cattle.

The objectives of our study were: 1) using WGS markers
for GWAS to find associations between markers and cow
fertility; 2) using gene-based association statistics, Gene
Ontology (GO) terms, Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, mammalian phenotype
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database (MPD), along with publicly available differential
expression gene (DEQ) to prioritize candidate genes.

Results

Association analysis for fertility

Using a previously published approach [12], we per-
formed GWAS and found seven independent QTL
(-log10(P) > 8.5) across Bos taurus autosomes (BTA) 1, 6,
10, 13, 17 and 24 (Table 1 and Fig. 1). In total, 5806
SNPs exceeded the genome-wide significance level. The
most significant signal was on BTA13 with the lead SNP
located at 32,852,133 bp (rs210238678). This QTL was
close to previous reported QTL in Nordic Holstein cattle
(at BTA13: 33,903,159 bp) [13]. The second strongest as-
sociation signal was on BTA6 (95,867,927 bp,
rs41567777) with GK2 as the closest gene. GK2 belongs
to GO terms “carbohydrate metabolic process” and “gal-
actose metabolic process”. On chromosome 1, we identi-
fied two QTL. The first had its lead SNP at 69,742,415
bp (rs208311936) which is an intronic variant in the
UMPS gene. The second had its lead SNP at
140,785,028 bp (rs385628476), an intronic variant in the
BRWDI gene. UMPS belong to GO terms “female preg-
nancy” (The set of physiological processes that allow an
embryo or foetus to develop within the body of a female
animal that covers the time from fertilization of a female
ovum by a male spermatozoon until birth) which make
it a good candidate for fertility. For BRWDI, there is no
documented biological connection between the available
functional annotations with the gene and fertility. On
BTA 24, the lead SNP was located at 29,556,826 bp
(rs380439408). The closest gene is a novel gene,
ENSBTAG00000044212. On BTA10, we identified SNP
at 68,534,665 bp (rs211204488) as the lead SNP. The an-
notated element closest to this lead SNP is U7 snRNA
and SLC39A12 is the closest gene. The lead SNP on
BTA17 was located at 71,393,345 bp (rs110812733). This
lead SNP is located close to LIF gene which is involved
in many biological processes including “maternal process
involved in female pregnancy”, thereby making it a good
candidate gene for female fertility.

Table 1 Lead SNPs from genome-wide associated regions for female fertility in Nordic Holstein cattle

BTA BP effect -logyo(P) Interval Gene (distance in bp) Annotation
1 69,742,415 3.68 11.03 68,745,058~69,992,433 UMPS intron

7° 140,785,028 1.91 9.53 139,838,183~141,035,632 BRWDI1 intron

6 95,867,927 2.15 11.80 95,377,650~96,118,034 GK2 (14,991) intergenic
10 68,534,665 2.08 9.16 67,917,166~68,784,933 U7 snRNA (29,099) intergenic
13 32,852,133 -3.09 1648 31,866,274~33,102,422 SLC39A12 (100,247) intergenic
17 71,393,345 1.83 8.54 70,501,607~71,656,270 LIF (20,510) intergenic
24 29,556,826 2.32 10.18 28,794,256~29,807,379 ENSBTAG00000044212 (65,604) intergenic

Base positions are given as positions in UMD 3.1.1 [49]. Lead SNPs identified in the second round are marked by?. The method to define QTL intervals was

described in Methods
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Fig. 1 Circular Manhattan plot for association of SNP with fertility index in Nordic Holstein cattle. The dashed red line indicates the genome-wide
significance level [—log;o(P) = 8.5]. Red dots indicate genome-wide significantly associated SNP
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Gene-based analysis within a QTL interval

Due to small effective population sizes of major dairy
breeds, the LD extends over long distances [14]. We used a
linear-regression model implemented in MAGMA [15],
which considers LD, to perform gene-based association
analysis within the QTL intervals. It resulted in 447 genes
being genome-wide significant (P <2.46 x 10”°) for seven
QTL. To refine this gene list, we extracted all significant
SNP with LD with the lead SNP (r*>0.2). The genes sig-
nificant in gene-based analysis closest to these SNPs were
identified (Table 2). Some of the candidate genes identified
based on proximity to the lead SNP were also in this list.
However, the candidate genes suggested by gene-based ana-
lysis for BTA10:68534665 (rs211204488), BTA13:32852133
(rs210238678), and BTA24:29556826 (rs3804:39408) did not
include the genes closest to the lead SNP.

Post GWAS prioritization of candidate genes using multiple
sources of information

To prioritize candidate genes obtained from nearest to
lead SNP and gene-based analysis, we used GO, KEGG

and MPD [16] as additional biological support to candi-
date genes. In addition to UMPS and LIF that already
had known biological connection to fertility, the follow-
ing genes also have at least one source of information to
support them as candidate genes. KALRN belongs to the
GO terms “maternal process involved in parturition”.
HEGI belongs to the GO term “post-embryonic develop-
ment”. FRASI belongs to the GO term “embryonic limb
morphogenesis”. OTX2 belongs to the GO term “positive
regulation of embryonic development”. SPIREI belongs
to the GO term “establishment of meiotic spindle
localization”. ADCYS5 belongs to KEGG pathway “oocyte
meiosis”. SPIREI belongs to the KEGG pathway “dorso--
ventral axis formation”. MYLK belongs to the KEGG
pathway “oxytocin signaling pathway” which is involved
in stimulation of uterine contractions during parturition.
By searching MPD [16], we found that mutations in
BRWDI of mouse may cause female infertility. Muta-
tions in HEGI of mouse may cause partial embryonic le-
thality between embryo turning and the completion of
organogenesis. Mutations in KLF6 may cause abnormal
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Table 2 Candidate genes identified by gene-based analysis

QTL Official Gene name Location -logo(P)
1: 69742415  DIRC2 67,722,242-67,810,789 56.38
SEMAS5B 67,840,125-67,878,028 50.97
PDIAS 68,012,078-68,101,852 4722
SEC22A 68,170,572-68,232,640 2342
ADCY5 68,263,141-68,420954  61.35
MYLK 68,580,144-68,667,822  47.83
ROPN1 68,954,525-68,989,623 2227
KALRN 69,248,613-69,724,961 62.48
UMPS 69,732,778-69,782,823 3165
ITGB5 69,801,844-69,899,676 40.59
HEGT 70,027,330-70,106/415 44.68
SLCT12A8 70,126,992-70,250895  30.26
UBXN7 71,542,376-71,573,340 33.56
RNF168 71,629,579-71,653,254 45.44
1: 140785028 PSMGT 140,726,628-140,739,236  27.92
BRWDI1 140,741,647-140,863,405 22.38
6: 95867927  FRASIT 94,711,652-95,055,569 33.89
PAQR3 95409,078-95441932 2286
GK2 95,882,918-95,884,576 13.76
ENSBTAG00000032034  95,908,624-95,908,893 11.44
10: 68534665 KTNT 68,238010-68,351,879 4259
orx2 69,458,818-69,462,865 13.60
13: 32852133 KLF6 44,945,068-44,952,151 17.28
17: 71393345 LIF 71,413,855-71,418,166 14.25
24: 29556826  SPIRET 43,323,645-43,488,851 1247

embryonic hematopoiesis in mouse. Mutations in LIF
may cause failure of embryo implantation in mouse. Mu-
tations in OT'X2 may cause reduced fertility and embry-
onic growth arrest. Mutation in PSMGI may cause
abnormal embryo development in mouse.

Validation of candidate genes from differential expressed
genes

To validate our list of candidate genes and give bio-
logical evidence to candidate genes, we retrieved the list
of DEGs from previous studies. We chose three
RNA-seq datasets with a case-control design. The first
dataset [17] contains DEGs in the endometrium and the
corpus luteum of Holstein cows selected for high and
low fertility. No overlap between our candidate genes
and the DEGs list of this dataset was observed. The sec-
ond dataset contains DEGs in uterine biopsies from
pregnant and non-pregnant cows [18]. FRASI is the only
one candidate gene appearing in our list and the second
dataset. The third dataset contains DEGs from the endo-
metrium or conceptuses in cows classified as having
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high fertility, lower fertility, or as infertile [19]. Twelve
of our candidate genes including ITGBS5, ADCYS5, and
SEMASB also appeared in the third dataset (Table 3).
Moreover, the change in expression of these three genes
was in the same direction. In addition, FRASI from two
different studies and tissues showed same direction of
response to pregnancy.

Variants annotation of the variants in LD with lead SNP

Lead SNP may or may not be the causal variants [12]. To
refine our search, we annotated all significant SNP in LD
with the lead SNP (r* > 0.2). This included 2283 variants.
Half of these variants (1153, Fig. 2A) were intron variants,
followed by intergenic variants (1007, Fig. 2A). Among
variants located in coding sequences, most (13, Fig. 2B)
were synonymous variants, followed by missense variants
(6, Fig. 2B). Some variants had predicted functional conse-
quences: KALRN contained a splice acceptor variant
(rs109819533, BTA1:69652189). Two missense variants
(BTA13:32679690, rs464438710 and BTA1:69673871,
rs209885271) were reported as “deleterious” by SIFT [20].
They were located in the genes SLC39A12 and KALRN.

Candidate genes for fertility

In summary, we proposed candidate genes for all seven
QTL associated with fertility in Nordic Holstein cattle
(Table 4). For BTA1l: 69742415 (rs208311936), we found
several candidate genes with different supporting evidence.
In this list, KALRN has two potential causal mutations
(rs109819533, BTA1:69652189 and BTA1:69673871,
rs209885271). For the second lead SNP at BTA1:140785028
(rs385628476), we identified two candidate genes. Both of
them have evidence from MPD. For the rest of the QTL,
we propose one candidate gene for each QTL.

Discussion

Overlap of identified QTL in other cattle populations

Cow fertility in dairy cattle is a complex trait with many
biological pathway involved and has a very low heritability.
Non-genetic factors like body condition, farm manage-
ment, feeding also affect fertility in cattle. Therefore, re-
sults show little agreement between studies [7, 10, 11, 13].
Besides, WGS has not been used extensively to study the
genetic basis of variation in cow fertility in dairy cattle [21,
22]. The current study has identified seven QTL located
on six different autosomes (Table 1). The QTL with its
lead SNP at BTA17: 71,393,345 (rs110812733) was close
to a QTL (70-73 Mb) for fertility reported in Brown Swiss
cattle [21]. The lead SNPs for the QTL on BTA10, BTA13,
and BTA24 were close to significant SNPs for female fer-
tility traits previously reported in Danish and Swedish
Holstein cattle [23]. The QTL on BTA1l and BTA6 are
novel findings. Previous reported QTL were located out-
side QTL intervals obtained in the present study.
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Table 3 Overlap gene between candidate genes and DEGs from previous study

Gene name tissue design DE direction
FRAST uterine biopsies pregnant vs non-pregnant animals [18] Down
endometrium pregnant vs non-pregnant high-fertile animals [19] Down
[TGB5 endometrium pregnant vs non-pregnant high-fertile animals [19] Up
endometrium pregnant vs non-pregnant subfertile animals [19] Up
KLF6 endometrium pregnant vs non-pregnant high-fertile animals [19] Up
MYLK endometrium pregnant vs non-pregnant high-fertile animals [19] Down
DIRC2 endometrium pregnant vs non-pregnant high-fertile animals [19] Up
KALRN endometrium pregnant vs non-pregnant high-fertile animals [19] Down
ADCY5 endometrium pregnant vs non-pregnant high-fertile animals [19] Down
endometrium pregnant vs non-pregnant high-fertile animals [19] Down
SEMA5B endometrium pregnant vs non-pregnant subfertile animals [19] Down
endometrium pregnant vs non-pregnant high-fertile animals [19] Down
oTx2 conceptuses subfertile vs high-fertile animals [19] Up

Note, high-fertile (100% pregnancy rate) and subfertile (25 to 33% pregnancy rate) using serial transfer (n =3 to 4 rounds) of a single in vitro-produced embryo on

day 7 followed by pregnancy determination on day 28 [19]

Search for candidate genes
We proposed candidate genes for seven QTL identified in
this study. In this list, some candidate genes are supported
by literature reports of relevant biological functions re-
lated to fertility in other species. In mouse, it has been
shown that BRWDI is essential for female fertility by epi-
genetic control of meiotic chromosome stability [24].
KLF6 is a member of the Kriippel-like factor, and have a
similar function to other Kriippel-like factors. These are
indispensable for normal implantation [25]. Leukemia in-
hibitory factor (LIF) is a cytokine. It is required for blasto-
cyst implantation in mice. Several studies have shown that
LIF is important for the establishment of pregnancy [26].
Previous studies have shown that SPIRE1 encodes a pro-
tein that drives two critical steps in asymmetric oocyte
division in mice [27].

A similar strategy to prioritize candidate genes have
helped identify several candidate genes for mastitis

resistance [28]. In the present study, we faced two chal-
lenges like in our previous study [28]. The first challenge is
choosing appropriate sources of annotations to prioritize
candidate genes. Even though many biological processes
are involved in fertility, we could only use the direct evi-
dence that would affect conception and carrying the fetus
since we cannot be sure what other pathway also involved.
The second challenge is the long list of candidate genes
provided by gene-based analysis. In the present study, we
incorporated LD information in two ways: 1) using the lin-
reg model from MAGMA [15]; 2) only considering genes
close to significant SNPs in LD with lead SNP. We ob-
served the cross-validation of DEGs from different studies
or different animals in one study could provide better sup-
port. In this study, we utilized multiple RNA-seq datasets
to validate our candidate gene list. One of the candidate
genes, FRASI, was found in two dataset with DEGs. In both
datasets, differences in expression were in the same
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Fig. 2 The VEP annotation of SNPs in linkage disequilibrium (* > 0.20) with lead SNPs. a) Summary of annotations of all imputed variants. b)
Summary of annotations of variants which change the protein coding sequence
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Table 4 Candidate genes for lead SNPs for each identified QTL
affecting fertility with list of types of supporting evidence

Lead SNP rsID (dbSNP v. 150)  Office Gene Evidence
BTA:Base position name
1: 69742415 rs208311936 DIRC DE
SEMA5B DE
ADCY5 KEGG and DE
MYLK KEGG and DE
KALRN GO and DE
UMPS GO
ITGBS DE
HEGT GO and MPD
1: 140785028 15385628476 PSMGT MPD
BRWD1 MPD
6: 95867927 1541567777 FRAST GO,DE
10: 68534665 15211204488 oTXx2 GO,MPD and DE
13: 32852133 15210238678 KLF6 DE
17: 71393345 rs110812733 LIF GO, MPD
24: 29556826 15380439408 SPIRET GO, KEGG

direction when comparing pregnant with non-pregnant an-
imals. Three other candidate genes, ITGBS, ADCYS5, and
SEMASB were DE in the third dataset in two different
fertility-classified animals in the same directions when com-
paring pregnant with non-pregnant animals [19]. This indi-
cated that, with the emergence of more functional study
datasets permits the identification of better candidate genes
with higher confidence based on biological support. More-
over, the successful combination of information from differ-
ent sources to prioritize candidate genes suggested we
would gain higher power with the improvement of the un-
derstanding of functional genomics.

Limitation of the present study

The GWAS for cow fertility using imputed WGS marker
could identify only a small number of QTL in our study.
Both limited sample size and small contribution of individ-
ual QTL to the total phenotypic variance for fertility have
contributed to low power of detection. Even though the
genome-wide markers can explain a sizable proportion of
the trait heritability, the genome-wide significant SNPs
often explain only a small proportion of the trait heritabil-
ity. Meta-analysis of GWAS summary statistics from sev-
eral populations can improve the power [29] and map the
QTL location precisely [29]. We used the fertility index as
phenotype in our study. The breeding value for fertility
index is calculated based on several component traits,
which bring many biological processes together. GWAS for
individual component traits of fertility index will help to in-
terpret the results biologically. The imputed WGS marker
set helped us to precisely identify the location of QTL
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intervals. The fertility index included in the Nordic breed-
ing goal and the identified whole genome sequence vari-
ants, if included in the EuroGenomics custom SNP chip
[30], can help in routine genomic prediction.

Conclusions

In this study, we associated 15,551,021 imputed WGS
SNPs in 5038 Nordic Holstein cattle with female fertility
index in Nordic Holstein cattle. The GWAS helped us to
find seven QTL across six cattle autosomes. We obtained
potential candidate genes by 1) nearest genes; 2)
gene-based statistical analysis plus LD information. Subse-
quently, we argued the potential candidate genes by GO,
KEGG, MPD and multiple public available DEG dataset to
propose candidate genes with biological support. Our
finds extended our knowledge about female fertility in
dairy cattle and showed the power of our strategy.

Methods

Phenotype and genotype data

Phenotypic records of fertility in this study were ob-
tained from the Nordic Cattle Genetic Evaluation data-
base (NAV, http://www.nordicebv.info/). The phenotype
records used for association were de-regressed breeding
values [31, 32] from the routine genetic evaluation by
NAV and were available for 5038 progeny tested Hol-
stein bulls. The fertility index includes breeding values
for interval from first to last insemination (heifers and
cows), interval from calving to first insemination (cows)
and number of inseminations (heifers and cows).

We used two-step method previously described by
Iso-Touru et al. [33] and Wu et al. [34] to impute WGS
data. All bulls were genotyped with the Illumina Bovi-
neSNP50 BeadChip (54.k) ver. 1 or 2 (Illumina, San Diego,
CA, USA). In the first step, we imputed 54 k genotypes to
high-density (HD) by IMPUTE2 v2.3.1 [35]. The reference
population for imputation included 1222 Holsteins, 1326
Nordic Red Dairy Cattle, and 835 Danish Jerseys genotyped
by Illumina BovineHD BeadChip. In the second step, these
imputed HD genotypes were imputed to WGS by Mini-
mac2 [36] with a multi-breed reference of 1228 animals
from Run4 of the 1000 Bull Genomes Project [37] and add-
itional data from Aarhus University (80 individuals, includ-
ing 23 Holsteins, 30 Nordic Red Dairy Cattle, and 27
Danish Jersey) [38]. In this step of imputation, we per-
formed in 5-Mb chunks with a buffer region of 0.25 Mb on
either side. At the end, 22,751,039 bi-allelic variants were
present in the imputed sequence data. After excluding
SNPs with a minor allele frequency below 0.5% or with a
large deviation from Hardy—Weinberg proportions (P <
1.079), 15,551,021 SNPs on 29 autosomes in Nordic Hol-
stein cattle were retained for association analyses. The de-
tailed of this WGS dataset was published previously [34].
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Methodology of multiple QTL detection and estimation of
genetic variants explained by QTL

We used our previous proposed method [12] to perform
the association analysis. In brief, we literately ran GWAS
using GCTA [39] for each chromosome by fitting the
dose of lead SNP from previous literation as covariates.
To reduce the false positive, we defined the lead SNP as
the significant ones (experiment-wise 0.05 type I error
rate after Bonferroni correction for 15,551,021 simultan-
eous tests corresponds to a threshold of —log;o(P) = 8.5)
with the largest —log;o(P) value in each literation and
significant in first literation. To minimize the impact of
random errors and imputation inaccuracy, we also
checked whether the lead SNP is solo SNP. The solo
SNPs are SNPs with no other significant SNP within a 1
Mb region. These SNPs were skipped in our analysis.
The lead SNP in each round were collected to build a
lead SNP list. The boundaries of each QTL region were
defined as followed. If the SNP —log;o(P) value of the
flanking 1 Mb region around the lead SNP decreased by
more than three units compared to the value of the lead
SNP and the region was larger than 0.25 Mb, then we
set this SNP as the boundary; otherwise, we set +0.25
Mb from the lead SNP as the QTL boundary.

LD calculation and variant annotation

The procedure for LD calculation and variant annotation
were described in our previous study [28]. We used
PLINK [40] to calculate the pairwise ° between the lead
SNP and all other SNPs on the same chromosome. All
significant SNPs with 7 > 0.2 with the lead SNP were ex-
tracted for variants annotation. These SNPs were anno-
tated by VEP (version 92) [41].

Candidate genes identification and confirmation with
RNA-seq data

We included nearest genes and gene-based analysis as a
list of potential candidate genes list. For the nearest genes,
we used bedtools [42] closest function to find the nearest
genes (or function annotated feature) to the lead SNPs.
For gene-based analysis, we used MAGMA [15]. In order
to run MAGMA [15] for cattle, we should provide cus-
tomer gene annotation file and reference population to
MAGMA. For cattle genome annotation, we downloaded
the gene information file from Ensembl gene build 92 [43]
and converted them to MAGMA style location file. For
reference population, 455 Holstein animals from the 1000
Bull Genome Project (Run 6) [37, 38] were used for this
purpose. We performed MAGMA gene analysis with the
GWAS result using the model linreg. The number of
genes (including 5'- and 3'-UTRs) with at least one SNP
was 20,356; thus, the P-value threshold for genome-wide
significance for the gene-analysis was 2.46 x 10 °. Signifi-
cant SNPs in LD with lead SNPs were used to extract the
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closest or overlapping genes by bedtools [42] closest func-
tion from the list of significant genes from MAGMA [15].
These two sources of potential candidate genes were ana-
lyzed using DAVID [44] to retrieve the KEGG pathway an-
notations [45]. GO terms [46] associated with these genes
were retrieved from Uniprot [47]. The MPD [16] was
searched for mutations in these genes with known pheno-
typic effects related to fertility. At the meanwhile, the list
of DEGs from three previous studies [17-19] were used to
provide biological evidence for genes. All the potential
candidate genes with any biological support (GO, KEGG,
MPD and DE) were proposed as final candidate genes.
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