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Abstract

Functional fluorescence imaging has been widely applied to analyze spatio-temporal patterns of cellular dynamics in the
brain and spinal cord. However, it is difficult to integrate spatial information obtained from imaging data in specific regions
of interest across multiple samples, due to large variability in the size, shape and internal structure of samples. To solve this
problem, we attempted to standardize transversely sectioned spinal cord images focusing on the laminar structure in the
gray matter. We employed three standardization methods, the affine transformation (AT), the angle-dependent
transformation (ADT) and the combination of these two methods (AT+ADT). The ADT is a novel non-linear transformation
method developed in this study to adjust an individual image onto the template image in the polar coordinate system. We
next compared the accuracy of these three standardization methods. We evaluated two indices, i.e., the spatial distribution
of pixels that are not categorized to any layer and the error ratio by the leave-one-out cross validation method. In this study,
we used neuron-specific marker (NeuN)-stained histological images of transversely sectioned cervical spinal cord slices (21
images obtained from 4 rats) to create the standard atlas and also to serve for benchmark tests. We found that the AT+ADT
outperformed other two methods, though the accuracy of each method varied depending on the layer. This novel image
standardization technique would be applicable to optical recording such as voltage-sensitive dye imaging, and will enable
statistical evaluations of neural activation across multiple samples.
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Introduction

Various imaging techniques have been developed to evaluate

spatial activity patterns of the brain in the last two decades. Among

these techniques, functional magnetic resonance imaging and

positron emission tomography have been widely applied to the

mapping of neural activation in the human brain. Neural

activation can be detected using regression analysis or cross-

correlation analysis for the brain; however there had been a

difficulty in integrating spatial information on neural activation

across multiple samples due to inter-sample variability in the brain

shape and size. In order to solve this problem, projection of

individual imaging signals onto the standard brain atlas has been

attempted, and several methods of anatomical standardization for

the brain have been proposed, for example, point-based

standardization (e.g., Human Brain Atlas [1,2]) and intensity-

based standardization (e.g., Statistical Parametric Mapping

Method [3,4], Michigan Method [5]). These standardization

methods enable statistical tests for the group analysis across

subjects and activation mapping in the standard brain atlas with

statistical values. In addition, various non-linear transformation

methods for registration have been proposed [6–12]. The purpose

of such a method is to match different images of a particular

subject. Some standardization methods have been suggested not

merely for brain but also for the liver or breast [13–16]. In animal

studies, fluorescent voltage-sensitive dye (VSD) imaging has been

widely applied to analyze spatio-temporal patterns of neural

electric activities in the brain and spinal cord [17–24]. However,

neither a registration nor standardization method for VSD

imaging has ever been proposed for the brain or spinal cord of

animals. In the present study, we attempted to develop a method

that could be applied to projection of VSD fluorescent signals in a

transversely sectioned spinal cord onto the standardized atlas,

matching laminar structures of the gray matter. The primary

purpose of our standardization of spinal cord images is, firstly, to

delineate the white and gray matters and secondly, to match

internal structures to laminas I-X in the gray matter. However, it is

difficult to distinguish each lamina in the gray matter on the

background of the black and white image for VSD imaging in

which boundaries of the internal anatomical structure is not visibly
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clear, although the position of the central canal can be barely

identified in it. Further, the pixel intensity and spatial distribution

pattern are varied across samples. Therefore, the intensity-based

transformation method, which adjusts spatial distribution pattern

of an individual image to that of the template image, is not

appropriate to apply to the background picture of VSD imaging.

The alternative approach is point-based linear transformation,

which adjusts the position of characteristic points in individual

images to those in the template image. However, sufficient

accuracy of standardization by this method is hardly expected,

because the outline of the spinal cord does not provide enough

information to define characteristic points due to the simplicity of

the outline curve. Therefore neither the intensity-based nor point-

based standardization method is applicable to VSD imaging.

Considering these limitations, we must develop a new standard-

ized method depending on only some keystones defined by the

outline of the spinal code and the position of the central canal. The

ordinary method for image transformation is the affine transfor-

mation (AT), which projects individual images onto template

images through linear combinations of translation, rotation,

scaling, and shearing operation. The AT method corrects keystone

distortions and adjusts scales of individual images to the template

images. However the accuracy of the projection by the AT method

is not sufficient, because the AT does not correct local distortion

appropriately, although it does work for global distortion

correction.

Here, we propose a nonlinear transformation method, which

corrects scaling of the radial direction from the origin of the polar

coordinate system set on the image because of the limitation of

linear combination of translation. Hereafter, we call this method

the angle dependent transformation (ADT). The ADT method is a

contour-based standardization method. It adjusts the shape of the

contour of individual image to the template image. By this

method, the characteristics of the contour shape can be

represented not as a set of points but as a continuous outline

function, and thus we can expect higher performance of

standardization.

In this study, we used neuron-specific nuclear protein (NeuN)-

stained histological pictures of the transversely-sectioned spinal

cord, which are capable of distinguishing the laminar structure of

the spinal cord. We then evaluated the accuracy of the ADT, by

comparing the performance of three standardization methods, the

AT, ADT, and the combination of these two methods (AT+ADT).

For the comparison we applied two indices, i.e., the ratio of the

pixels which were correctly classified to each lamina and the error

ratio using the leave-one-out cross validation method.

Materials and Methods

Data acquisition
We prepared benchmark images, which were obtained from

NeuN-stained histological pictures of the transversely-sectioned

cervical spinal cord. The procedures using animals were done in

accordance with the NIH Guide for the Care and Use of

Laboratory Animals and were approved by the Animal Research

Committee of Shimane University School of Medicine. The

histological technique of NeuN staining has been described

elsewhere [17]. Briefly, neonatal rats (Wistar, 4–5 day-old, n = 4)

were deeply anesthetized by intraperitoneal injection of chloral

hydrate (350 mg/kg), perfused transcardially with saline, and fixed

with 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.3).

The spinal cords were removed and post-fixed with same fixative.

Subsequently, several (mostly 5–8) sections per single spinal cord

with 40 mm thickness were cut out mainly from the 4th cervical

segment (C4) on a freezing microtome. The sections were

incubated overnight in mouse anti-NeuN (Chemicon/Millipore)

diluted 1:500 by phosphate buffered saline (pH 7.3) containing

0.2% Triton X-100 and 3% normal donkey serum. Subsequently,

the sections were incubated in biotin-conjugated anti-mouse IgG

(1:500; Jackson) for 3 h, incubated in avidin-biotin-peroxidase

complex (1:100, Elite Kit, Vector) for 1 h, and then developed in

25 ml of PB containing 10 mg diaminobenzidine and 10 ml of

30% H2O2. After NeuN was immunohistochemically stained, we

excluded 3 damaged sections, and finally obtained 21 images. The

format of each histological image was RGB, and the resolution

and size were 72dpi and 1,280*960 pixels, respectively (Figure 1).

Transformation methods of individual image onto
template

The outline of the histological image of transversely-sectioned

spinal cord and the boundary of each lamina in the gray matter

were traced by a single experienced neuroanatomist for each

sample. We confirmed that this manual tracing yielded highly

reproducible results. The outline curve was smoothed with the p-th

order Fourier series in order to reduce the jags caused by the

trembling of hand during tracing process.

We selected the position of the central canal, which is a

conspicuous anatomical landmark located in the center region of

the spinal cord, as the origin of the axis in the polar coordinate

system. The radius toward the outline and the angle from x-axis

were denoted by r and h, respectively (Figure 2A). Every radius

meets the outline at a point; therefore the outline curve can be

represented with a univariate function.

The p-th order Fourier series is defined as

rk hð Þ~ a0

2
z
Xp

i~1

ai cos ihzbi sin ihð Þ, 0ƒhv2pð Þ ð1Þ

Here, k is an index of sample. Figures 2A and 2B show a

representative smoothed outline function and its development in

the r-h space, respectively. The smoothed outline function of each

sample could be projected onto the outline of template image

(Figure 3) through the AT, ADT and combination of these two

methods (AT+ADT). Although the template images of an animal

brain, such as baboon [25], macaque [26] and rat [27], have been

developed, no template image for the rat spinal cord has yet been

proposed. Then we prepared a template image of the rat spinal

Figure 1. Sample images of spinal cord. (A) Isolated lower
brainstem and cervical spinal cord. (B) Neuron-specific marker NeuN-
stained histological image of the cross-section of the spinal cord at C4
level. A NeuN-stained image showed clearly demarcated laminar
structures of the gray matter of the spinal cord.
doi:10.1371/journal.pone.0076415.g001

Standardization of Spinal Cord Images
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cord. The procedure for obtaining template image is explained in

Appendix S1.

Affine transformation (AT)
An affine transformation is a combination of linear transfor-

mations that preserves collinearity and ratios of distances. A

matrix representation of affine transformation of the n-th input

pixel T in,jnð Þ~ i’n,j’nð Þ is given by

i’l
j’l

� �
~

m11 m12

m21 m22

� �
il

jl

� �
z

m13

m23

� �
: ð2Þ

The parameters can be optimized by the least square method.

An affine transformation requires at least three predefined ground

control points (GCPs) to determine the six parameters by least

square methods. It is desirable to keep a sufficient distance

between GCPs to maintain the optimization process stable.

Suppose q are GCPs selected on the outline of the image of each

sample and template image, then the least square error will be

Wi~
Xq

k~1

i’k{ m11ikzm12jkzm13ð Þf g2

Wj~
Xq

k~1

jk{ m21ikzm22jkzm23ð Þf g2

: ð3Þ

Taking the derivative of Wiwith respect to these parameters and

setting them to zero gives the following set of normal equations:

LWi

Lm11
~
Xq

k~1

2ik(m11ikzm12jkzm13{i’k)~0

LWi

Lm12

~
Xq

k~1

2jk(m11ikzm12jkzm13{i’k)~0

LWi

Lm13
~
Xq

k~1

2(m11ikzm12jkzm13{i’k)~0

8>>>>>>>>>><
>>>>>>>>>>:

: ð4Þ

Solving these equations, the parameters m11, m12 and m13 can

be optimized, and applying this procedure for Wj gives the

optimized parameters m21, m22 and m23. Using these estimated

parameters, any point on an image of individual sample can be

projected onto the template image. Forward transformation

defined as (2) may cause two problems as a computational

procedure depending on the specific spatial transform function.

Some output pixels may not be covered and many source pixels

can be mapped to the same output pixel. In order to overcome

these problems with the forward mapping, many image spatial

transform implementations use inverse transformation

in,jnð Þ~T{1 i’n,j’nð Þ, which determines the corresponding location

in the input image. An approximate value for the input image at

in,jnð Þ can be obtained by interpolation and will be the value for

the n-th pixel in the transformed image. We used the bi-linear

interpolation method using the pixels nearest to in,jnð Þ.

Figure 2. Extraction of the outline based on the polar
coordinate system. (A) A schematic drawing of the extraction of
the outline. (B) A development of the smoothed outline in r-h space. a
and b indicate the maximum points, and c and d indicate the minimum
on the outline function in the r-h space, and these points were used as
ground control points (GCPs) to estimate the parameters for the AT.
doi:10.1371/journal.pone.0076415.g002

Figure 3. A schematic drawing of the standardization process. Individual sample image was projected onto the template image through the
affine transformation (AT), angle-dependent transformation (ADT) and combination of these two methods (AT+ADT).
doi:10.1371/journal.pone.0076415.g003

Standardization of Spinal Cord Images
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Angle-dependent transformation (ADT)
The angle-dependent scaling parameter ak hð Þ can be precisely

obtained with the ratio rk hzQkð Þ to rt hð Þ for each value of h

ak hð Þ~ rt hð Þ
rk hzQkð Þ : ð5Þ

Then r’andh’ in the new image are denoted by:

r’~ak h’ð Þr
h’~hzQk

�
ð6Þ

The coordinate transformation from the Cartesian coordinate

system to the polar coordination system for the points i,jð Þand

i’,j’ð Þ are realized as

r~
ffiffiffiffiffiffiffiffiffiffiffiffi
i2zj2

p
h~ tan{1 j

i

� �
(

and
r0~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i02zj02

p
h0~ tan{1 j0

i0

� 	
8<
: , ð7Þ

respectively.

Substituting (7) into (6) gives the relation between i,jð Þand i’,j’ð Þ

i’~ak tan{1 j
i

� �
zQk

� � ffiffiffiffiffiffiffiffiffiffiffiffi
i2zj2

p
cos tan{1 j

i

� �
zQk

� �
j’~ak tan{1 j

i

� �
zQk

� � ffiffiffiffiffiffiffiffiffiffiffiffi
i2zj2

p
sin tan{1 j

i

� �
zQk

� �
(

: ð8Þ

The coordinate values i’,j’ð Þ were corrected using the bi-linear

interpolation method as same as for the AT.

In this study, we employed the AT for the correction of keystone

distortion, which is caused when image acquisition with a camera

was performed obliquely to the sample surface. We assumed that

the inter-sample variation of the shape was due to a non-linear

local distortion and attempted to correct it using the ADT as much

as possible. Therefore we sequentially applied the ADT after the

AT for the AT+ADT method. All algorithms for standardization

were implemented in Matlab R2008b (MathWorks, MA, USA)

and ran on a Pentium-based Windows 7 computer.

Results

The outline curve was smoothed by Fourier series (1). It is

important to choose a sufficiently large value for the order of

Fourier series in the eq.(1), lest any relevant correlations in the

data be missed. On the other hand, too large orders may cause

over-fitting problems and deteriorate the smoothness.

We repeated the numerical analyses with p values incremented

from 1 to 40 and found that for p§10 the results remained

essentially unchanged and the outline function was sufficiently

smoothed.

There have been a number of proposed methods for model

selection. Among the methods, Akaike Information Criteria (AIC)

is the one which has been popularly used [28]. The order of

Fourier series p can be optimized using AIC. In this study we

attempted the analysis with changing the value of p, and found

that similar results were yielded with p§7. Therefore we conclude

that for our data an order of p~10 represents a good compromise

between the extremes.

For the AT, the number and location of GCPs have to be

decided. We selected two local maximum points in the

region0ƒhvp, two local minimum points on the outline of the

image in the r-h space, and the origin of the polar coordinate

system (totally five GCPs) (Figure 2). In the case we further

included two more local maximum points in the region pƒhv2p
for GCPs, it deteriorated the performance of lamina discrimina-

tion. Therefore we selected these GCPs for the analyses.

To investigate the layer discrimination ability of each method,

we prepared binary image for each lamina and sample (Figure 4).

The value of a pixel i,jð Þ in the binary image is defined as

Il,k(i,j)~
1 if pixel (i,j) is included in the l�th layerð Þ
0 elseð Þ

�
, ð9Þ

here, l and k are indices of lamina and sample, respectively. The

value of a pixel in the transformed image is similarly defined as

Il,k i’,j’ð Þ.
We averaged binary images across samples for each layer as

follows:

Il i’,j’ð Þ~ 1
n

Pn
k~1

Il,k(i’,j’): ð10Þ

The mean value for a pixel must vary between 0 and 1 and

indicates the probability that a pixel in the input image belongs to

l-th layer in the template image. Hereafter the percentage of the

mean value will be called the frequency ratio. Suppose the

frequency ratio achieves 100, a pixel i,jð Þ in the input image would

Figure 4. Conversion of a histological image to binary images of laminar structure. (A) Histological image data of the cross-section at the
4th cervical spinal cord. The boundaries of laminas in the gray matter were demarcated by solid lines. (B) Binary images corresponding to each lamina
and the white matter. The pixels which belong to a lamina were set to 1 and blotted out in white, and the other pixels were blotted out in black.
doi:10.1371/journal.pone.0076415.g004

Standardization of Spinal Cord Images
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be transformed exactly into the same layer in all samples. On the

contrary, suppose the frequency ratio is 0, a pixel i,jð Þ in the input

image would be transformed into a different layer, the white

matter, or outside the slice in all samples. Therefore the frequency

ratio is an appropriate index to evaluate the performance of these

transformation methods, and the spatial distribution of frequency

ratios constitutes a frequency ratio map. The pixels in the

frequency ratio map whose ratios were lower than the threshold

level were regarded as ambiguous pixels, that is, these pixels did

not belong to any layers. We illustrated the spatial distribution

map of ambiguous pixels with a threshold level at 95%.

Subsequently the threshold was decremented from 95% to 50%

by 5%, and we found that the area size, which did not belong to

any layers, increased until the threshold level decremented to 80%

and keeps nearly the same value with threshold levels lower than

80%. Figure 5 illustrates the spatial distribution of categorized

pixels and ambiguous pixels with threshold levels 95 and 80%.

Table 1 shows the number of pixels in each layer in the

transformed image, which belonged to the corresponding layers in

the input image. The total sum of categorized pixels across all

layers was the least in the AT method for both threshold levels

95% and 80%. In other words, the AT method had the poorest

accuracy among the methods in terms of categorization. Large

differences in the accuracy of categorization were recognized in

laminas I, II, III, IV, VI and IX. The pixels in laminas I and IX

were poorly categorized by the AT method regardless of

thresholds selected. In contrast, the number of categorized pixels

in lamina VI was least in the ADT method. While there were few

differences in the region close to the central canal, there were large

differences in regions that are far from the central canal (see

Figure 5).

Additionally we statistically evaluated the categorization ability

of each method by the leave-one-out cross validation. We left out

one of histological images among 42 images and labeled it as k-th

image, and produced a frequency map with remained 41 images

by the same procedure that was explained above. Then, to

compare with the left out image, the frequency ratio map was

converted into a binary image of each lamina or white matter. For

preparing the binary image, the values of the pixels which

belonged to the layer with highest frequency ratio were replaced

by 1, and others were set to be 0. Then, the produced binary

image was inversely transformed by the AT, ADT and AT+ADT

methods, and the parameters were optimized so that it fitted the

left out image as much as possible. Then we computed the error

ratio to evaluate how much the inversely transformed image

agrees with the left out image.

Pixels, which were categorized in each lamina in the

transformed image but were not categorized in the left out image,

induce type 1 error. In the opposite case, pixels induce type 2

error. Then, type 1 and 2 error ratios can be defined as

dpl,k~
Spl,k{Sl,k

Spl,k

and drl,k~
Srl,k{Sl,k

Srl,k

respectively, where

Srl,k~
P

i

P
j

Il,k i,jð Þ and Spl,k~
P

i

P
j

Il,k
’ i,jð Þ (Il,k

’ i,jð Þ: the pixel

value at a coordinate i,jð Þin the l-th lamina of the k-th image) are

total numbers of pixels which satisfy conditions Il,k i,jð Þ~1 and

Il,k
’ i,jð Þ~1, respectively. Repeating this procedure for all images

(k = 1,..n) yields mean error ratio estimates dpl~
1

n

Xn

k~1

dpl,k and

drl~
1

n

Xn

k~1

drl,k for type 1 and 2 error, respectively. Two-way

analysis of variance (ANOVA) was performed to assess mean error

Figure 5. Spatial distribution of categorized pixels and ambiguous pixels. Black colored regions represent ambiguous pixels that were
categorized with the probability less than 95% (upper) and 80% (bottom) threshold level, respectively. In this figure, we can overview the spatial
precision of each transformation method.
doi:10.1371/journal.pone.0076415.g005
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ratio differences due to the methods (AT, ADT and AT+ADT)

and laminas for type 1 and 2 error. There were significant main

effect of the methods (type 1: F(2,1230) = 26.77, p,0.01, type 2:

F(2,1230) = 13.14,p,0.01) and laminas (type 1: F(9,1230) = 77.96,

p,0.01, type 2: F(9,1230) = 119.39, p,0.01) and also interaction

(type 1: F(18,1230) = 7.72, p,0.01, type 2: F(18,1230) = 5.33,

p,0.01). It indicates that the performance of the methods is

different depending on the laminas. Subsequently the difference of

mean error ratios corresponding to the method for each lamina,

which satisfy the significance level, were evaluated by the paired t-

test with the Bonferroni correction (Figure 6).

In the case of type 1 error ratio, the error ratio of the AT+ADT

method was significantly lower than that for the AT method in

lamina I, II and III. A tendency that the AT+ADT gave the lowest

error ratio in laminas IV, V-l, IX and X was seen, although it did

not satisfy the significance level. In the case of type 2 error ratio,

the AT+ADT method showed a lower error ratio than the AT

method in laminas I and II. There was no significant difference

among the methods in other laminas. The AT+ADT method

never gave the highest error ratio in any lamina for both type 1

and 2 error ratios.

Discussion

In this study, we compared the performance of three image

standardization methods, the AT, ADT and AT+ADT in terms of

laminar categorization, and found that the performance varied

depending on the location of lamina. The ADT method showed

higher performance than the AT method in the accuracy of

transformation from each individual image to the template image

and sufficiently reduced type 1 and 2 error ratios in lamina I.

Similar tendency was recognized in lamina II. Since the ADT

method transforms pixels by adjusting the angular-dependent

scaling, higher performance is expected in the laminas, which lie

along with the circumferential direction. However, the keystone

distortion is not corrected by the ADT method alone. Therefore,

the AT method should be applied before applying the ADT

method. The method AT+ADT improved the performance in

laminas I, II, III and IV; this was most likely because the combined

method canceled disadvantages of each method.

We defined the outline of the spinal cord sample not by

automated procedure using an image processing technique but by

manual procedure, because it was difficult to extract the outline of

the spinal cord on VSD images due to low spatial resolution of the

VSD images. The development of an algorithm to automate the

procedure will be for a further study.

Since the central canal was selected as the origin of the polar

coordinate for the ADT method and a GCP for the AT method,

pixels close to the central canal would not be transformed into

distant locations. This would be a reason why there was no

significant difference among methods in the medial portion of

lamina V and in laminas VII, VIII and X. The type 1 and 2 error

ratios in laminas VII and VIII were lower than those in other

laminas, because the size of laminas VII and VIII is much larger

than that of other laminas. In the case of lamina IX, the type 1 and 2

error ratios were much higher than other laminas in all transfor-

mation methods. This was attributed to its area size and location that

are smaller and more variable as compared with those of other

laminas. Nevertheless, the area of lamina IX could be successfully

categorized, although the boundary of the area was ambiguous in

individual input images (Figure 5). By averaging standardized

images, the internal structure appeared remarkably clear (Figure 7).

Fluorescent VSD imaging has become a popular technique to

record global electric activities in the brain and spinal cord. VSD

imaging techniques have been applied, e.g., to the sensory system

of the spinal cord [17–19] as well as to the respiratory central

pattern generator of the brainstem [20–23]. Also, mathematical

methods to more efficiently detect neural activities from spatio-

temporal data obtained by VSD imaging have been developed

[23,24]. However, it has been difficult to associate the region of

Table 1. Number and percentage of pixels belonging to each lamina in the transformed image.

Threshold levelof
ambiguous pixels 95% 80%

Transformation
method AT ADT AT+ADT AT ADT AT+ADT

Lamina I 32 0.01% 3570 0.68% 5055 0.97% 1379 0.26% 8886 1.70% 9878 1.89%

Lamina II 25973 4.98% 34227 6.57% 33510 6.43% 36397 6.98% 42756 8.20% 41540 7.97%

Lamina III 10504 2.01% 13945 2.67% 14722 2.82% 19606 3.76% 22835 4.38% 22197 4.26%

Lamina IV 8707 1.67% 12299 2.36% 12077 2.32% 20063 3.85% 23694 4.54% 22570 4.33%

Lamina V-m 5471 1.05% 4852 0.93% 5422 1.04% 8250 1.58% 9189 1.76% 8888 1.70%

Lamina V-l 11517 2.21% 12248 2.35% 11024 2.11% 16303 3.13% 17231 3.31% 16859 3.23%

Lamina VI 3163 0.61% 2702 0.52% 3121 0.60% 13852 2.66% 10535 2.02% 13715 2.63%

Lamina VII, VIII 96135 18.44% 99707 19.12% 94886 18.20% 113158 21.70% 119280 22.88% 112556 21.59%

Lamina IX 0 0.00% 503 0.10% 377 0.07% 1696 0.33% 2784 0.53% 2350 0.45%

Lamina IX 3947 0.76% 4842 0.93% 4751 0.91% 5467 1.05% 6309 1.21% 5977 1.15%

White matter 89097 17.09% 121620 23.33% 120398 23.09% 118455 22.72% 142201 27.28% 138002 26.47%

Total of categorized
pixels

254546 48.82% 310515 59.56% 305343 58.57% 354626 68.02% 405700 77.82% 394532 75.67%

Inside of the outline
template

521351 100.00% 521351 100.00% 521351 100.00% 521351 100.00% 521351 100.00% 521351 100.00%

The bold type indicate the method which gave the smallest number of pixels for each layer.
Medial and lateral portions of lamina V were classified into V-m and V-l, respectively.
doi:10.1371/journal.pone.0076415.t001
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neural activation detected by VSD imaging with the anatomically

defined site, e.g., with a distinct lamina in the spinal cord. This

study will provide a solution for this problem. When applying this

method to the brain, it is possible to define the brain structure

located in the midline as the central point instead of the central

canal. Specifically, the midline of the fourth ventricle floor in the

medulla oblongata and pons, the aqueduct of Sylvius in the

midbrain and the midline of the third ventricle floor in the

diencephalon could be defined as the central point, respectively.

In summary, standardization methods by which individual

images are projected onto a common platform image, i.e., the

standard spinal cord atlas, were presented, and the AT+ADT

combined method most reliably associates the region of neural

activation with the location of the lamina. This novel image

standardization technique would be applicable to optical recording

Figure 6. Comparisons of the mean error ratio estimates for type 1 error (A) and type 2 error (B). The significance of the differences were
evaluated by two-way ANOVA with Bonferroni’s post hoc test, and results with significance level p,0.05 (Bonferroni-corrected a,0.05/3 = 0.017)
were marked with ‘‘*’’.
doi:10.1371/journal.pone.0076415.g006

Figure 7. Spatial averaging of histological images. (A) Averaged
histological image without standardization. It was constructed by
averaging all histological images to adapt to the position of the central
canal. (B) Standardized anatomical image. All histological images were
transformed using the AT+ADT method, and the averaged image was
constructed from them.
doi:10.1371/journal.pone.0076415.g007
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such as VSD imaging, and will enable statistical evaluations of

neural activation across multiple samples.

Supporting Information

Appendix S1 Template image preparation.
(DOC)

Figure S1 Outline functions. (A) Raw functions, (B) rigid-

body transformed functions and (C) the template function.

(TIF)
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