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Abstract. The radius of diffusion of basic FGF 
(bFGF) in the presence and in the absence of the 
glycosaminoglycans heparin and heparan sulfate was 
measured. Iodinated t25I-bFGF diffuses further in 
agarose, fibrin, and on a monolayer of bovine aortic 
endothelial (BAE) ceils in the presence of heparin than 
in its absence. Heparan sulfates affected the diffusion 
of ~25I-bFGF in a manner similar to, though less pro- 
nounced than, heparin. When applied at the center of 
a monolayer of BAE cells, bFGF plus heparin stimu- 

lated morphological changes at a 10-fold greater radius 
than bFGF alone. These results suggest that bFGF- 
heparin and/or heparan sulfate complexes may be 
more effective than bFGF alone in stimulating cells lo- 
cated away from the bFGF source because the bFGF- 
glycosaminoglycan complex partitions into the soluble 
phase rather than binding to insoluble glycosaminogly- 
cans in the extracellular matrix. Thus, the complex of 
bFGF and glycosaminoglycan may represent one of the 
active forms of bFGF in vivo. 

B 
ASIC FGF (bFGF) ~ is found in essentially all normal 
tissues (Joseph-Silversten and Rifkin, 1987; Rifkin 
and Moscatelli, 1989; Burgess and Maciag, 1989), is 

probably present in all vertebrates, and is highly conserved 
among different species (Gospodarowicz et al., 1986a,b; 
Rifkin and Moscatelli, 1989). bFGF induces cellular prolif- 
eration, stimulates protease secretion and chemotaxis, de- 
lays senescence, and affects protein synthesis and hormone 
release in a variety of mesoderm and neuroectoderm-derived 
cells (Gospodarowicz et al., 1986a, b; Burgess and Maciag, 
1989; Rifkin and Moscatelli, 1989). This growth factor has 
been detected in the majority of tumor cell lines tested 
(Moscatelli et al., 1986), and has been implicated as a con- 
tributing factor in the neovascularization of tumors (Folkman 
et al., 1971; Folkman et al., 1988). However, bFGF, which 
is a highly positively charged molecule at physiologic pH (pI 
= 9.8) (Lobb et al., 1986a), binds avidly to negatively 
charged proteoglycans and appears not to be freely diffusible 
in its extracellular microenvironment (Vlodavsky et al., 
1987b). Indeed, it is not found in significant amounts in se- 
rum or in medium conditioned by cells which produce it 
(Gauthier et al., 1987; Vlodavsky 1987a,b). 

One of the interactions between bFGF and negatively 
charged molecules that has been studied and proposed to be 
of biological significance is the interaction between bFGF 
and heparin (Klagsburn and Shing, 1985; Gospodarowicz 
and Cheng, 1986; Saksela et al., 1988; Sommer and Rifkin, 
1989; Saksela and Rifkin, 1990; Uhlrich et al., 1986). bFGF 
was initially purified using heparin-Sepharose chromatogra- 

1. Abbreviations used in this paper: BAE, bovine aortic endothelial; BCE, 
bovine capillary endothelial; bFGF, basic FGF; ECM, extracellular matrix. 

phy (Gospodarowicz et al., 1984; Shing et al., 1984) and 
considerable speculation has been made concerning the 
potential significance of the interaction between bFGF and 
heparin-like species in the extracellular matrix (ECM) dur- 
ing angiogenesis and tumor growth (Folkman et al., 1988; 
Baird and Ling, 1987; Saksela et al., 1988; Flaumenhaft et 
al., 1989; Presta et al., 1989). bFGF has been isolated from 
ECM produced in vitro (Vlodavsky et al., 1987a) and from 
basement membranes synthesized in vivo (Folkman et al., 
1988) and has been demonstrated to interact specifically 
with heparan sulfate proteoglycans in both matrices. Proteo- 
lytic degradation of the ECM by plasmin releases an active 
form of the bFGF-heparan sulfate complex (Saksela and Rif- 
kin, 1990), and bFGF complexed in this manner is protected 
from proteolytic degradation (Sommer and Rifkin, 1989; 
Saksela et al., 1988). 

In addition to rendering bFGF resistant to proteolytic 
degradation, the interaction with soluble heparan sulfate 
might also prevent bFGF from binding to immobilized hepa- 
ran sulfate proteoglycans in the ECM. Since bFGF in a 
bFGF-heparan sulfate complex would have its heparin-bind- 
ing site(s) unavailable to bind to insoluble heparan sulfate 
proteoglycans in the ECM, the bFGF would tend to partition 
into the soluble phase and diffuse freely in an environment 
rich in immobilized glycosaminoglycans. In contrast, un- 
complexed bFGF would be bound by such matrix molecules 
and be unable to diffuse. Thus, despite the fact that the 
bFGF-heparan sulfate complex would be larger than the 
bFGF molecule alone, the complex would diffuse further 
than free bFGF when released from a discrete source and 
demonstrate an increased radius of action. Since bFGF binds 
avidly to immobilized heparan sulfate proteoglycans in vivo 
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(Folkman et al., 1988), it is possible that the active species 
responsible for stimulating target cells in vivo is a bFGF- 
heparan sulfate complex. 

In this paper, we have examined the partition properties of 
free bFGF and bFGF plus soluble glycosaminoglycans un- 
der several conditions. We have found that the bFGF-heparin 
complex diffuses further than bFGF alone in agarose, in 
fibrin, and on a cell monolayer, all of which have immobi- 
lized binding sites for bFGF. The bFGF-heparin complex 
also stimulates morphological changes in a significantly 
larger area than bFGF alone when released from a defined 
source on a cellular monolayer. Heparan sulfate affects the 
partition of bFGF in a manner similar to that of heparin. We 
propose that these results derive from the greater partition 
of the bFGF-heparin or heparan sulfate complex into the 
aqueous mobile phase rather than binding to the insoluble 
matrix. 

Materials and Methods 

Reagents 

Porcine intestinal mucosa heparin and bovine kidney heparan sulfate were 
obtained from Sigma Chemical Co. (St. Louis, MO). Equine heart cyto- 
chrome c was purchased from Calbiochem-Behring Corp. (San Diego, CA). 
Fibrinogen was obtained from Miles Scientific Division (Naperville, IL), 
and thrombin was obtained from Sigma Chemical Co. Human placental 
bFGF was purified as described previously (Moscatelli et al., 1986; Presta 
et al., 1986). Recombinant human bFGF was a gift from Synergen Inc. 
(Boulder, CO). 

Cells 
Bovine capillary endothelial (BCE) and bovine aortic endothelial (BAE) 
cells were isolated as described previously (Folkman et al., 1979) and 
grown at 37°C in alpha modified Eagle's medium (a-MEM) (Flow Labora- 
tories, Inc., McLean, VA) supplemented with 5 % calf serum (Flow Labora- 
tories Inc.). Serum-free conditioned medium was collected from cultured 
BCE cells every 4 d and stored at -70°C. 

Labeling of bFGF 
bFGF was labeled with 125I (17 Ci/mg) (New England Nuclear, Boston, 
MA) using Iodo-Gen (Pierce Chemical Co., Rockford, IL) as previously 
described (Neufeld and Gospodarowicz, 1985; Moscatelli, 1987). 

Diffusion in Agarose Gels 
To assay the diffusion of cytochrome c in an agarose gel, 6 ml of a hot 0.8 % 
agarose (Seakem HGT agarose; FMC Corp., Rockland, ME) solution in 
water were transferred to a 60-mm tissue culture dish and allowed to gel 
at room temperature on a leveling plate. A well was then made in the center 
of the gel using a 5-mm-diam core punch. 15 tzl of a 100 mg/ml solution of 
cytochrome c plus 15 td of either distilled water, heparin (100 mg/ml), sura- 
rain (1 mg/ml), or protamine sulfate (60 mg/ml) were added to the center 
well. The culture dishes were maintained on a leveling plate in a humi d en- 
vironment for 48 h at 37°C and then photographed. 

To assay the diffusion of 125I-bFGF in an agamse gel, 2 ml of a 0.8% 
agarose solution were transferred to a 35-ram tissue culture dish and allowed 
to gel. A 5-ram well was punched in the center of the gel and 15 #1 of a 
10 ng/ml solution of 125I-bFGF plus 15/zl of either distilled water, heparin 
(100 mg/ml), suramin (1 mg/ml), or pmtamine sulfate (60 mg/mi) were 
added to the well. After a 48-h incubation in a humid environment at 37°C, 
the agarose gel was dried under a heat lamp and the side of the culture dish 
was removed using a soldering iron. The bottom of the culture plate contain- 
ing the dried film of agarose was exposed to autoradiography Kodak film 
for the indicated period of time and developed. The radioactivity in the 
dried film was quantitated by transferring 0.5 ml of 0.5 % Triton X-100 onto 
the culture plate and scraping the film into a test tube with a spatula. The 
radioactivity associated with the film was measured in a Multi-Prias I 

gamma scintillation counter (Packard Instrument Co., Inc., Downers 
Grove, IL). 

For experiments analyzing the diffusion of 125I-bFGF in the presence of 
commercial heparan sulfate, autoradiograms were analyzed by scanning 
across four different diameters of the autoradiographic image using laser 
densitometry. The amount of radioactivity at the source of 125I-bFGF was 
quantitated by measuring the peak height of the densitometer tracing. The 
peak height is defined as the distance between the densitometer measure- 
ment of grain density at background and the measurement of grain density 
at the source of 125I-bFGE The relative area of 125I-bFGF diffusion was 
calculated by measuring the peak width of the densitometer tracings and 
using this measurement to represent the diameter of diffusion of 125I-bFGE 

Diffusion of bFGF in Fibrin Gels 

To assay the diffusion of 125I-bFGF in a fibrin gel, 2 ml of fibrinogen (3 
mg/ml) in PBS were transferred to a 35-ram tissue culture dish. 10 #1 of 
thrombin (100 U/ml) were mixed into the fibrinogen solution to initiate po- 
lymerization, and the culture dish was placed on a leveling plate. A 12-mm- 
diam Millicell-HA filter with legs (Millipore Co., Bedford, MA) from 
which the filter had been removed was placed in the center of the culture 
dish to form a well and the fibrinogen was allowed to polymerize for 1 h 
at 22°C. 250 ttl of 125I-bFGF (0.1 ng/ml) were transferred to the Millicell 
with or without heparin (10 ng/ml). After a 24-h incubation, the Millicell 
was removed, and the gel was dried under a heatlamp. The side of the cul- 
ture dish was removed and the bottom of the culture plate was placed on 
autoradiography film. The film was exposed for the indicated time and de- 
veloped. The developed film was analyzed by seanning laser densitometry 
to determine the distance of 125I-bFGF diffusion in the fibrin gel. The ex- 
tent of diffusion was calculated by subtracting the radius of the Millicell 
from which the 125I-bFGF originated (5 mm) from the radius of the area 
through which 125I-bFGF diffused after a 24-h incubation. 

Diffusion of bFGF on a Cellular Monolayer 
Confluent cultures of BAE cells in 60-ram tissue culture dishes were washed 
twice with PBS and 2 ml of serum-free a-MEM was added. A 12-mm Mil- 
licell, from which the legs had been removed, was gently placed on the cen- 
ter of the monolayer. 200 #1 of a-MEM containing 15 ng of 125I-bFGF was 
added alone or with heparin (100 p.g/ml) to the Millicell and diffusion was 
allowed to take place without perturbation for the indicated time at 37°C 
on a leveling plate. After incubation, the Millicell and the 2 ml of medium 
were quickly removed. The cells were washed twice with PBS, fixed with 
methanol, and stained with Wright-Giemsa stain (J. T. Baker Chemical Co., 
Phillipsburg, N J). The outside bottom surface of the culture dish was scored 
with concentric circles using a syringe needle secured to a compass to 
delineate regions of increasing distance away from the area where the Mil- 
licell has been placed. Photographs were taken of each region of the culture 
dish using an Olympus C-35AD 33-mm camera attached to a Diavert light 
microscope (E. Lietz, Inc., Rockleigh, N J). The side of the culture dish was 
removed and the bottom of the dish placed on autoradiographic film, ex- 
posed for the indicated time, and developed. The radioactivity associated 
with the cellular monolayer was quantitated by transferring 1 ml of 0.5% 
Triton-X 100 onto the culture plate and scraping the dried monolayer into 
a test tube with a spatula. 

Purification of Heparan Sulfates Secreted by 
BCE Cells 

Triton X-100 was added to 250 ml of conditioned medium from cultured 
BCE cells to a final concentration of 0.5 % and the conditioned medium was 
chromatographed on 10 ml of DE 52 (Whatman Inc., Clifton, NJ) in a 2 
× 15 cm column equilibrated with 0.01 M PO4, pH 7.4, 0.15 M NaCl, and 
0.5% TX-100, according to the procedure of Saksela et al. (1988). The 
column was washed with equilibration buffer followed by 0.25 M NaC1 in 
the same buffer. The remaining bound material was eluted with 0.5 M NaC1, 
resulting in a relatively selective release of the glycosaminoglycans and pro- 
teoglycans (Yanagishita et al., 1987). The eluate was diluted to 0.25 M 
NaC1, and applied to 1 ml of DE 52. The column was washed with 0.01 
M Tris-HCl, pH 7.4, containing 0.25 M NaC1 and 0.5 % TX-100. The bound 
material was eluted with 2.0 M NaCl in the above buffer. The fractions were 
analyzed for glycosaminoglycan and proteoglycan concentration by the 
method of Bitter and Muir (1962) and were assayed for their ability to in- 
crease the diffusion of 125I-bFGF in agarose. Diffusion was assessed by au- 
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Figure 1. Diffusion of cytochrome c in 
agarose gels in the absence or presence of 
heparin, suramin, or protamine sulfate. 15 
/~1 of cytochrome c (100 mg/ml) were trans- 
ferred to a well in the center of an agarose 
gel. 15 #1 of distilled water, heparin (100 
mg/ml), suramin (1 mg/ml), or protamine 
sulfate (60 mg/ml) were then mixed with the 
cytochrome c solution. The gels were pho- 
tographed after a 48-h incubation when no 
further diffusion of cytochrome c could be 
observed. 

toradiography as described above and the autoradiograms were analyzed by 
scanning laser densitometry. 

Results 

Diffusion of Cytochrome c in Agarose Gels 
Initial experiments were designed to determine whether the 
radius of diffusion of a positively charged polypeptide 
through a negatively charged matrix would be decreased by 
interactions between the polypeptide and the immobilized 
negative charges. If  a decrease in the radius of diffusion did 
occur, then we could determine whether this effect could be 
overcome by complexing the polypeptide with soluble nega- 
tively charged molecules such as heparin and suramin. We 
used cytochrome c because (a) like bFGF, it has a basic pI; 
(b) its molecular weight (12 kD) is comparable to that of 
bFGF (18 kD); and (c) its diffusion can easily be observed 
owing to its characteristic red color. Agarose was used be- 
cause it is known to contain immobilized sulfate groups. 

Cytochrome c diffuses poorly in agarose as determined by 
the dark red ring tightly encircling the well from which it 
originates (Fig. 1). In contrast, cytochrome c diffuses sig- 
nificantly further in the presence of heparin (Fig. 1). A sec- 
ond sulfated molecule which has been shown to interact with 
bFGF is suramin (Sato and Rifkin, 1988). Suramin binds to 
bFGF and blocks its interaction with matrix as well as with 
its receptor. When the diffusion of a mixture of cytochrome 

c and suramin was assayed, the cytochrome c diffused nearly 
to the edge of the culture dish. These results indicate that the 
positively charged cytochrome c complexes with the nega- 
tively charged sulfate moieties of heparin and suramin forming 
soluble complexes which can diffuse within an environment 
of immobilized negative charges. In contrast, cytochrome c 
in the absence of a polyanion is bound to the insoluble matrix 
and is unable to diffuse. 

Fig. 1 also demonstrates that the highly basic molecule 
protamine sulfate can increase the diffusion of cytochrome 
c by a mechanism distinct from that attained by the addition 
of heparin or suramin. With the addition of protamine sul- 
fate, the cytochrome c moved a defined distance from the 
central source and did not diffuse past that point. A reason 
for this may be that protamine binds to the sulfate moieties 
in the agarose thereby reducing the number of anionic sites 
available for interaction with the cytochrome c in the im- 
mediate vicinity of the central well. This permits the 
cytochrome c to diffuse further into the agarose until it 
reaches a point at which all of the protamine sulfate has been 
bound to the agarose. The cytochrome c then ceases to 
diffuse further. This hypothesis is supported by an experi- 
ment in which additional protamine was added to the well 
when the diffusion of the cytochrome c had ceased. Under 
these conditions, the cytochrome c diffused further and again 
stopped, creating a new border with a larger radius than the 
first (data not shown). This probably resulted from the neu- 
tralization of a greater area of agarose by the additional pro- 
tamine. 
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Figure 2. Diffusion of ~25I- 
bFGF in agarose gels in the 
absence or presence of hepa- 
rin, suramin, or protamine sul- 
fate. 15 #1 ~2~I-bFGF (10 ng/ 
ml) were transferred to a well 
in the center of an agarose gel. 
15/zl of distilled water, hepa- 
rin (100 mg/ml), suramin (1 
mg/ml), or protamine sulfate 
(60 mg/ml) were then mixed 
with the 125I-bFGF solution. 
After a 48-h incubation, the 
gels were dried under a heat 
lamp, the side of the culture 
dishes in which they were con- 
tained was removed, and au- 
toradiography was performed. 
The film was developed after 
a 10-h exposure. The total 
amount of radioactivity in each 
of the dishes was roughly 
equivalent: ~2~I-bFGF alone 
(36,000 cpm), with heparin 
(41,000 cpm), with suramin 
(40,000 cpm), and with prota- 
mine sulfate (40,000 cpm). 

Diffusion of mI-bFGF in Agarose Gels 

The diffusion of  bFGF in agarose was visualized by using 
~2~I-bFGF in experiments similar to those performed with 
cytochrome c, drying the agarose, and exposing the dry 
agarose to autoradiographic film. The results indicate that 
the same factors which affect the radius of  diffusion of  
cytochrome c in agarose also affect the radius of diffusion of 
bFGF in agarose (Fig. 2). By itself, ~25I-bFGF diffused 3.5 
mm into the agarose gel from the edge of the well from which 
it originates over 48 h. Both heparin and suramin markedly 
increased the radius of  diffusion, enabling the t25I-bFGF to 
diffuse 9.5 and 8.0 nun, respectively, into the gel. Thus, 
~25I-bFGF diffused ,'~2.7-fold further in the presence of 
heparin and 2.3-fold further in the presence of suramin than 
in the absence of  these molecules. The decreased density of 
grains in the autoradiograms of the heparin and suramin 

samples is due to dilution of t25I-bFGF over a larger surface 
as the total amount of radioactivity in each dish was similar. 
As was seen with cytochrome c, protamine had a less dra- 
matic effect in promoting diffusion. In the presence of prota- 
mine, '25I-bFGF diffused 5.0 mm into the agarose gel: 1.4- 
fold further than in the absence of  protamine. These results 
support the conclusions that heparin can bind positively 
charged regions of both cytochrome c and bFGF and neutral- 
ize interactions with immobilized negative charges in the 
matrix. 

Diffusion of mI-bFGF in Fibrin Gels 

Several reports have demonstrated the ability of fibrin to sup- 
port in vitro angiogenesis (Montesano et al., 1985; Nicosia 
et al., 1983). For this reason, we analyzed the diffusion of 
~25I-bFGF in fibrin. Fibrinogen has an isoelectric point of  

Figure 3. Diffusion of ~25I- 
bFGF in fibrin gels in the ab- 
sence or presence of heparin. 
A Millicell well from which 
the filter had been removed 
was placed in the center of a 
35-mm dish (represented by 
the outer circle of each figure) 
containing fibrinogen. A gel 
was formed by the addition of 
thrombin and 125I-bFGF was 
transferred to the MiUicell well 
in the absence or presence of 
heparin. Diffusion was assayed 
as described in Fig. 2 after a 
24-h incubation. The film was 
developed after a 14-h ex- 
posure. 
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Figure 4. Diffusion of ~25I-bFGF on a cellular monolayer 
in the absence or presence of heparin. A legless Millicell 
was placed in the center of a confluent monolayer of BAE 
cells. 200 #1 of 125I-bFGF (15 ng/ml) with or without 
heparin (100 #g/ml) were transferred to the MilliceU. Af- 
ter a 24-h incubation the cells were fixed, the sides of the 
culture dish were removed, and autoradiography was per- 
formed. The film was developed after a 96-h exposure. 

5.5 and should interact with bFGE Fig. 3 demonstrates that 
the diffusion of ~25I-bFGF is restricted in a fibrin gel. Hepa- 
rin, however, increased its diffusion. Scanning laser den- 
sitometry showed that 125I-bFGF alone diffused 2.5 mm 
from the edge of the Millicell during a 24-h incubation, 
while ~25I-bFGF complexed with heparin diffused 6.0 mm 
from the edge of the Millicell. Thus, x25I-bFGF diffused in 
fibrin approximately 2.4-fold further in the presence of hepa- 
rin than in its absence. 

Diffusion of bFGF on a Cellular Monolayer 

Since heparin increased the radius of diffusion of bFGF in 
agarose, we attempted to determine whether heparin in- 
creased the radius of diffusion of bFGF on a cellular 
monolayer. It seemed possible that bFGF released onto a 
small area of the monolayer in the absence of heparin would 
be bound by immobilized (insoluble) heparan sulfate pro- 
teoglycan in the matrix in the immediate vicinity of its re- 

lease. In contrast, bFGF released onto a small area in the 
presence of heparin would not be bound by heparan sulfate 
proteoglycans. It would diffuse further away from the site of 
release, being bound primarily by bFGF receptors, which 
are 10-fold less abundant within the monolayer than heparan 
sulfate proteoglycan binding sites (Moscatelli, 1987). 

Fig. 4 shows that bFGF originating from a Millicell placed 
in the center of a monolayer diffused further in the presence 
of heparin than in its absence. The radius of diffusion in the 
presence of heparin was difficult to quantitate because of the 
asymmetric pattern of diffusion. However, the result is 
marked and reproducible. The association of uncomplexed 
lzSI-bFGF with the monolayer probably represents binding 
to both bFGF-receptors and heparan sulfate proteoglycans 
immediately under and surrounding the source of ~25I- 
bFGE The radioactivity associated with the monolayer in 
the presence of ~25I-bFGF and heparin probably represents 
binding to bFGF-receptors since soluble heparin at the con- 
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125I-bFGF diffusion in 
presence of heparan sulfate 
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Figure 5. Diffusion of 1251- 
bFGF in agarose gels in the 
presence of increasing con- 
centrations of commercial bo- 
vine kidney heparan sulfate. 
Diffusion experiments as de- 
scribed in Fig. 2 were per- 
formed using 125I-bFGF in the 
absence or presence of increas- 
ing amounts of heparan sulfate. 
The radius of diffusion and 
density of autoradiographic 
grains at the source of 1251- 
bFGF were determined by scan- 
ning densitometry. The auto- 
radiograms were scanned across 
four different diameters and the 
results averaged. Open circles 
and vertical bars represent the 
means and standard deviations 
of the measurements of the peak 
height of an autoradiographic 
tracing. Closed circles and ver- 

tical bars represent the means and standard deviations of an area 
representing the diffusion of ~25I-bFGF determined as described in 
Materials and Methods. 

centration used in this experiment (10/~g/ml) is known to 
prevent binding of bFGF to heparan sulfate proteoglycans in 
the ECM (Moscatelli, 1987; Flaumenhaft et al., 1989). The 
reason for the symmetric pattern of 12SI-bFGF in the hepa- 
rin containing samples is unclear but may relate to differ- 
ences in the composition of the cell monolayer or convection 
currents in the culture dish. 

To demonstrate that the differences in the radius of diffu- 
sion between the two conditions did not result from an in- 
creased ability of 125I-bFGF to be released from the Mil- 
licell in the presence of heparin, we measured the amount 
of radioactivity remaining in the Millicell after the 24-h in- 
cubation period. Such measurements suggested that "~20% 
of the total 12SI-bFGF escaped from the Millicell over the 
24-h incubation period in the absence or presence of hepa- 
rin. The difference in diffusion is also not the result of in- 
creased binding of the bFGF-heparin complex to the ECM 
of the BAE cells compared to the binding to bFGF alone 
since ~8  % of the total 12SI-bFGF applied to the Millicell 
was associated with the monolayer in the absence or pres- 
ence of heparin after a 24-h incubation. Thus, we conclude 
that the increased radius of diffusion of ~2SI-bFGF on a cel- 
lular monolayer in the presence of heparin results from the 
ability of heparin to prevent the binding of 125I-bFGF to 
immobilized heparan sulfate proteoglycans in the ECM and 
thereby allow the 12SI-bFGF-heparin complex to diffuse free- 
ly on the monolayer. 

Heparan Sulfates Increase the Radius of  Diffusion 
ofbFGF 
In vivo, bFGF is more likely to encounter heparan sulfates 
than heparin. For this reason, the ability of both commercial 
heparan sulfates and heparan sulfates purified from BCE 
cells to increase the radius of diffusion of 12SI-bFGF in 
agarose was investigated. Fig. 5 shows that commercial 

heparan sulfate increased the radius of diffusion of bFGF in 
agarose in a dose-dependent manner. The measurements of 
peak height and relative area demonstrate that the density of 
radioactivity at the 12~I-bFGF source decreases as the area 
of diffusion increases. Heparan sulfate also increased the 
diffusion of 12SI-bFGF on a cellular monolayer (data not 
shown). The dose of heparan sulfate necessary to yield an 
increased radius of diffusion is ~100-fold greater than the 
doses of heparin necessary to achieve a similar increase 
(data not shown). As shown in Table I, glycosaminoglycans 
and proteoglycans purified from BCE cells increased the 
diffusion of bFGF agarose. Presumably, heparan sulfate acts 
as heparin does: by binding to the residues of the bFGF mole- 
cule that interact with sulfate moieties in the agarose. How- 
ever, the heparan sulfate is less effective than heparin proba- 
bly because of its lower degree of sulfation. 

Increased Radius of  Cellular Stimulation 
with bFGF-Heparin 

One consequence of bFGF stimulation is a characteristic 
change in cell morphology. Upon exposure, cells become 
elongated and develop long, thin processes. Fig. 6 demon- 
strates that the 125I-bFGF-heparin complex stimulates mor- 
phological change at a greater radius from its source than 
bFGF alone. In these experiments, ~2SI-bFGF was released 
from a Millicell with a radius of 6 mm placed in the center 
of a cellular monolayer. Under these conditions, ~2SI-bFGF 
alone elicited a morphologic change only in those cells that 
were in contact with the filter or <4 mm from the edge of 
the filter. In contrast, 12SI-bFGF released in the presence of 
heparin stimulated the entire monolayer of a 60-mm dish. 
No change in cell morphology was observed in experiments 
in which heparin alone (100/xg/ml) was added to the Mil- 
licell (data not shown). Previous work demonstrated that 
heparin does not increase the ability of bFGF to elicit mor- 
phological changes when both are added to the culture 
medium (Moscatelli, 1987). Subsequent autoradiography of 
the culture dish indicated that the distribution of radioactiv- 
ity correlated with the pattern of morphological change. 
125I-bFGF did not diffuse beyond 4 mm from the edge of the 
Millicell. In contrast, the diffusion of 12SI-bFGF in the pres- 
ence of heparin was limited only by the wall of the culture 
dish. Therefore, these results suggest that heparin increases 
the radius of stimulation by bFGF released from a central 
source by 10-fold compared to the radius of stimulation by 
bFGF alone. 

Table L n51-bFGF Diffusion in the Presence of 
Glycosaminoglycans and Proteoglycans Isolated 
from BCE-Conditioned Medium 

Addition Area of diffusion 

c m  2 

N o n e  1.4 + 0.1 

D E A E  eluate  (425 /xg/ml) 3.1 -t- 0 .2  

Hepa r in  (50 t tg /ml)  3 .9  + 0.1 

Heparan sulfate glycosaminoglycans and proteoglycans were isolated from 
conditioned medium as described in Materials and Methods. The effect of this 
material on the diffusion of ~2Sl-bFGF was assayed using diffusion experi- 
ments as described in Fig. 2. The autoradiograms were scanned across four 
different diameters. The values represent the means and standard deviations of 
the measurements. 
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Figure 6. Heparin increases the radius of morphologic alterations induced by bFGF on a cellular monolayer. Diffusion experiments were 
carried out as described in Fig. 4. After a 36-h incubation, the cells were fixed and stained and the monolayer was partitioned into concentric 
circles of increasing distance away from the source of bFGE The monolayer was examined under a light microscope and photographs 
were taken from each section. The rows of photographs show the effects of 15 ng bFGF diffusing alone and in the presence of 10 #g/ml 
heparin. The distance from the center of the monolayer is indicated on top of each column of photographs. 

D i s c u s s i o n  

Many characteristics of the bFGF molecule suggest that it re- 
mains cell and/or ECM-associated in vivo. (a) bFGF is one 
of the few known growth factors whose cDNA does not code 
for a classical signal sequence (Abraham et al., 1986a,b). 
It is thought not to be actively secreted by cells and the only 
mechanism of bFGF release thus far documented is cell 
death or injury (Gajdusek and Carbon, 1989; McNeil et al., 
1989). (b) bFGF has a high positive charge (Lobb et al., 
1986a) and may therefore interact with negatively charged 
matrix molecules abundant in the extracellular environment. 
(c) bFGF interacts strongly with heparin (Gospodarowicz et 
al., 1984; Shing et al., 1984) and has been demonstrated to 
bind specifically and avidly (KD = 2 nM) to heparan sul- 
fates in the ECM (Moscatelli, 1987). (d) bFGF has been 
shown to bind to mouse embryonic and Engelberth Holm 
Swarm sarcoma basement membranes (Jeanny et al., 1987; 
Vigny et al., 1988) and has been isolated from the basement 
membrane of cultured endothelial cells (Vlodavsky et al., 
1987a) and bovine cornea basement membrane (Folkman et 
al., 1988). Conversely, bFGF has not been purified success- 
fully from serum or culture medium (Gauthier et al., 1987; 
Vlodavsky et al., 1987b), indicating the absence of signifi- 
cant amounts of soluble bFGE Thus, the vast majority of 
bFGF in an organism is either intracellular or bound to ECM. 

The data presented in this paper support the conclusion 
that bFGF added exogenously to a cell monolayer associates 
with the ECM. In these experiments, exogenous bFGF was 

released from a well cut in an agarose gel or a from a Mil- 
licell. Although the mechanism by which bFGF is released 
in vivo remains unknown, bFGF released from cells by in- 
jury has been shown to associate predominantly with the 
ECM (Gajdusek and Carbon, 1989). Our results suggest that 
bFGF released from a source would be bound by immobi- 
lized anionic molecules in the matrix in the immediate vicin- 
ity of the location of release. Yet, it is difficult to understand 
how this growth factor, bound to the matrix adjacent to its 
point of release, could stimulate cells at distant sites. In par- 
ticular, how can bFGF bound to the matrix of the cells which 
synthesize it stimulate angiogenesis in vascular endothelial 
cells some distance away? 

Several groups (Nakajima et al., 1981; Bar-Ner et al., 
1985; Mignatti et al., 1986) have explored the importance 
of matrix solubilization and degradation preceding the onset 
of tumor growth and metastasis. Baird and Ling (1987) have 
shown that heparan sulfate degradation decreases the bind- 
ing of bFGF to the ECM. They proposed that such degrada- 
tion might mobilize growth factor stored in the matrix. Other 
work has demonstrated that matrix-bound bFGF retains its 
biological activity (Flaumenhaft et al., 1989; Presta et al., 
1989) and that bFGF-heparan sulfate complexes released 
from the ECM by plasmin degradation are capable of 
stimulating vascular endothelial cells (Saksela and Rifldn, 
1990). The mobilized bFGF-heparan sulfate complex is not 
only active, but it is also protected from protease degradation 
by plasmin (Saksela et al., 1988; Sommer and Rifldn, 1988). 
Thus, the ECM potentially acts as a reservoir of bound bFGF 
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that can be released by enzymatic degradation as a complex 
that is active and protected from proteolytic degradation. 

The results presented here suggest an additional property 
of the bFGF-heparan sulfate complex released from the 
ECM: the enhanced ability to diffuse in the extracellular en- 
vironment. We have demonstrated that heparin increases the 
radius of diffusion of ~25I-bFGF in agarose and fibrin gels, 
and on a cellular monolayer. Heparan sulfates appear to have 
a similar, though less pronounced, effect to heparin on the 
diffusion of bFGE Saksela et al. (1988) have shown that 
~ 2 - 5  % of heparan sulfates bind bFGF as strongly as hepa- 
rin. We suggest that heparan sulfate proteoglycan fragments 
released by proteolytic degradation of the proteoglycan core 
protein may act as binding molecules that enable bFGF to 
diffuse from a point source to a vascular supply to stimulate 
angiogenesis. The masking of the heparin-binding site of 
bFGF in such complexes allows the growth factor to remain 
in the soluble phase rather than binding to the insoluble 
ECM. Thus, even though the complex has a larger size than 
free bFGF, it diffuses further because of greater partitioning 
into the fluid phase. It may be a bFGF-heparan sulfate com- 
plex, rather than bFGF alone, which stimulates angiogenesis 
in vivo. 

An interesting set of observations that are in accord with 
the model relate to the progression of malignant melanomas. 
Malignant melanomas <0.7 cm in thickness can remain 
quiescent for years (Breslow, 1970). Such lesions, however, 
can grow rapidly, become invasive, and metastasize once 
they become vascularized (Srivastava et al., 1986). Though 
the stimulus for angiogenesis is not known, bFGF has been 
found in melanoma cell lysates (Lobb et al., 1986b; 
Moscatelli et al., 1986) and autocrine production of bFGF 
has been implicated in the pathophysiology of malignant 
melanoma (Halaban et al., 1987). Furthermore, both mast 
cell activity (Starkey et al., 1988) and increased proteolytic 
activity at the tumor site (Nakajima, 1981; Hearing et al., 
1988) have been documented in the transition of melanoma 
to a highly malignant state. It is possible that heparin, 
secreted by mast cells (Kessler et al., 1976; Azizkhan et al., 
1980), or soluble heparan sulfates, released from matrix by 
hydrolysis (Nakajima et al., 1981; Baird et al., 1987; Saksela 
et al., 1988), mobilize bFGF bound to the matrix at the tu- 
mor site enabling bFGF to diffuse to a blood supply and 
stimulate angiogenesis. Recent studies using mast cell- 
deficient mice injected with melanoma cells demonstrate 
that the angiogenic response is slower and less intense and 
the number of metastases lower in these mice than in wild- 
type mice (Starkey et al., 1988). The vascularization of 
melanomas in mast cell-deficient mice may occur later be- 
cause bFGF bound to matrix is not mobilized as readily in 
these mice as in mice with normal, heparin-secreting mast 
cells. 

Thus, while bFGF has properties that make it an effective 
angiogenic stimulator in vitro, it seems likely that bFGF is 
unable to diffuse freely in its microenvironment in vivo. The 
ability of an angiogenic factor to diffuse to its target vascular 
supply, however, is essential for the factor to be active. It is 
possible that bFGF acquires this diffusion property by as- 
sociating with heparin secreted by mast cells or by binding 
heparan sulfates in the ECM and being solubilized as a 
bFGF-heparan sulfate complex. 
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