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GRHL2 motif is associated with intratumor heterogeneity
of cis-regulatory elements in luminal breast cancer
Kohei Kumegawa1,8, Yoko Takahashi2,8, Sumito Saeki2,3,8, Liying Yang3, Tomoyoshi Nakadai3, Tomo Osako 4, Seiichi Mori5,
Tetsuo Noda6, Shinji Ohno 7, Takayuki Ueno 2 and Reo Maruyama 1,3✉

In breast cancer patients, tumor heterogeneity is associated with prognosis and therapeutic response; however, the epigenetic
diversity that exists in primary tumors remains unknown. Using a single-cell sequencing assay for transposase-accessible chromatin
(scATAC-seq), we obtained the chromatin accessibility profiles of 12,452 cells from 16 breast cancer patients including 11 luminal, 1
luminal-HER2, 1 HER2+, and 3 triple-negative subtypes. Via this profiling process, tumors were classified into cancer cells and the
tumor microenvironment, highlighting the heterogeneity of disease-related pathways including estrogen receptor (ER) signaling.
Furthermore, the coexistence of cancer cell clusters with different ER binding motif enrichments was identified in a single ER+

tumor. In a cluster with reduced ER motif enrichment, we identified GRHL2, a transcription factor, as the most enriched motif, and it
cooperated with FOXA1 to initiate endocrine resistance. Coaccessibility analysis revealed that GRHL2 binding elements potentially
regulate genes associated with endocrine resistance, metastasis, and poor prognosis in patients that received hormonal therapy.
Overall, our study suggests that epigenetic heterogeneity could lead to endocrine resistance and poor prognosis in breast cancer
patients and it offers a large-scale resource for further cancer research.

npj Breast Cancer            (2022) 8:70 ; https://doi.org/10.1038/s41523-022-00438-6

INTRODUCTION
The biological characteristics of cancer vary greatly depending on
the patient. In breast cancer, the hormone receptor (HR) and HER2
expression states are currently utilized to decide on clinical
management strategies; however, therapeutic outcomes some-
times differ between patients with the same receptor status. For
example, most HR-positive breast cancer patients respond well to
endocrine therapy, but some cases are refractory to treatment or
may experience late recurrence after dormancy1,2. Such diver-
gence in the effectiveness of endocrine therapy may be associated
with the heterogeneity of estrogen receptor (ER) expression in
breast cancer tissue3. At present, however, little is known about
the differences in cellular properties between ER-expressing and
non-expressing cells in a single HR-positive tumor. Thus, as
indicated by the example of ER expression, it is necessary to
investigate tumors at single-cell resolution to better understand
breast cancer heterogeneity and optimize therapeutic options.
The development of techniques by which to measure

transcriptomes (scRNA-seq) or multiple proteins (mass cytometry)
at single-cell resolution has enabled researchers to determine
gene expression landscapes and cellular diversity in breast cancer
cells and the tumor microenvironment (TME)4–7. However, gene
expression reflects not only cell identity but also cell state and cell
cycle8, complicating precise discrimination between cell lineages.
In addition, single-cell expression profiling is often affected by
batch effects9,10.
The assay for transposase-accessible chromatin using sequen-

cing (ATAC-seq) is an established method used to profile genome-
wide chromatin accessibility. Single-cell ATAC-seq (scATAC-seq) is
a suitable method for the analysis of complex mixtures of cells

from clinical tumor samples because it allows the identification of
gene regulatory programs, i.e., enhancers, at the single-cell
level11,12. In addition, recent progress in scATAC-seq data analysis
has led to the minimization of batch effects and enabled
estimations of gene amplification, gene expression, cis-regulatory
element activity, and transcription factor (TF) motif
enrichment13,14.
In the present study, we demonstrate that scATAC-seq of

human breast cancer samples can be used to successfully classify
each cell type composing the tumor, i.e., cancer cells, immune
cells, and fibroblasts. We also describe breast cancer cell diversity
within and across patients. In our in-depth analysis utilizing
chromatin accessibility, we determine the intratumor heteroge-
neity of breast cancer cells with a focus on ER signaling, and we
identify distinct cell populations potentially driven by GRHL2 that
may contribute to intrinsic resistance to endocrine therapy.
Overall, this study describes breast cancer heterogeneity accord-
ing to multiple features, such as gene activity, regulatory DNA
elements, and trans-acting transcription factors; moreover, it
provides a valuable resource that will facilitate further studies in
the cancer research community.

RESULTS
Single-cell chromatin accessibility profiling of human breast
cancer tissue
We performed single-cell chromatin accessibility profiling by
droplet-based scATAC-seq of 16 prospectively collected samples,
including 11 luminal, 1 luminal-HER2, 1 HER2-positive, and 3 triple-
negative breast tumors (Table 1). These included 15 primary
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breast tumors and 1 lymph node metastasis (P20N). Because
ATAC-seq requires low inputs, we were able to use breast cancer
samples collected by core needle biopsies from surgical speci-
mens (Fig. 1a). We obtained genome-wide chromatin accessibility
data from 12,452 cells with sufficient quality, i.e., (i) transcription

start site (TSS) score ≥8, (ii) unique nuclear fragments per cell
≥3000, and (iii) an adequate density of fragment size and TSS
enrichment profiles (Supplementary Fig. S1a–e).
To classify and visualize cell types according to their chromatin

accessibility profile, we conducted latent semantic indexing

UMAP1

U
M

AP
2

P20N
P33
P34
P35
P38
P39
P40
P41
P44
P49
P50
P51
P52
P54
P64
P93

0
7
7
8
8
8
7
0
0
8
8
0
0
8
8
6

0
5
4
8
8
8
7
0
0
8
0
3
0
4
8
7

0
1
0
0
1
1
1
0
1
2
1
2
3
1
1
3

ER

H
ER

2
PG

R

TN
LM
LM
LM
LM
LM
LM
TN
TN
LM
LM
LM
HR
LM
LM
LH

IHC
score

Su
bt

yp
e

b

Cluster annotation
1-13 
14
15-16
17-21
22
23
24-25

Epithelial
Endothelial
Fibroblast
T cell
B cell
Plasma
Myeloid

UMAP1

U
M

AP
2 1

2

6

13

11 12

5

10
8

9 3

4

14

23
22

25

24

20

16

15

17

7

18
19

21

ca

CD38
IGLL5 PAX5
ITGAM
FAP
VIM
PDCD1

CD4

CD8A
CD3D

FOXP3

CXCL12
THY1 PECAM1
KDR
EPCAM
ERBB2
FOXA1

ESR1
KRT8

KRT14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Gene activity score

Motif score
NF1
TEAD

AR

ERE
AP2
E2A

AP1

BACH1

ETS

ETV2

PU.1

ATF3

FOXA1

EPCAM VIM KRT18 FLT4 THY1 CD3D PAX5 IGLL5 ITGAX

Epithelial

Endothelial

Fibroblast

T cell

B cell
Plasma

Myeloid

M
ea

n 
m

ot
if 

sc
or

e
-5

5
M

ea
n 

G
S 

z−
sc

or
e

−2
2

d e

Pathological diagnosis
IHC scoring

ATAC-seq

16 patients

surgical
removal

c
v

Normalized enrichment
−log10(P−adj) [0−Max]

0 100

47,406 cell type specific CREs
(FDR < 0.01, log2FC ≥ 1)

Epithelial

Endothelial

Fibroblast

T cell

B cell

Plasma

Myeloid

20,233

5,879

11,037

2,409

4,659

737

7,864

mammary gland development
cell junction assembly
placenta development

0 25 50 75

0 5 10 15

blood vessel development
cardiovascular system development

vasculature development

0 20 40 60 80
vasculature development

extracellular matrix organization
extracellular structure organization

0 20 40 60
immune response

leukocyte activation
cell activation

0 20 40 60 80
regulation of immune response

regulation of immune system process
immune response

0 5 10 15
regulation of immune response

B cell receptor signaling pathway
immune response

0 25 50 75 100
regulation of immune system process

myeloid leukocyte activation
immune response

-log10(FDR)Top 3 enriched GO terms

f g
h

AP
1

R
U

N
X1

R
U

N
X2

ET
S1

PU
.1

Et
v2

Fo
x:

Eb
ox

AP
2α

E2
A

BA
C

H
1

ATAC Z−score
−2 2

Nu
m

be
r o

f
CR

Es

K. Kumegawa et al.

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    70 



clustering and uniform manifold approximation and projection
(UMAP) using a high-quality set of scATAC-seq cells and ArchR14;
we identified 25 distinct clusters (Fig. 1b, c and Supplementary
Table 1). According to the gene activity scores of marker genes,
we annotated the clusters as epithelial cells (C1–C13: EPCAM+ and
KRT+), endothelial cells (C14: KDR+, ENG+, and PECAM1+),
fibroblasts (C15–C16: CXCL12+, and THY1+), T cells (C17–C21:
CD3D+), B cells (C22: PAX5+), plasma cells (C23: CD38+ and
IGLL5+), and myeloid cells (C24-25: ITGAM+ and ITGAX+)
(Fig. 1d, e). The fraction of TME cells was diverse across patients,
suggesting that breast cancer TME is highly heterogeneous across
patients (Supplementary Fig. S1f, g). Several samples contained a
high number of TME cells, especially tumor-infiltrating leukocytes
(TILs; T, B, and plasma cells); therefore, we validated the quantity
of TILs using pathological assessment based on the International
TILS Working Group Scoring15 for each sample. The pathological
TILs score and proportion of TILs identified via scATAC-seq
revealed a significant correlation (Pearson’s correlation coefficient
= 0.71, P= 0.0032; Supplementary Fig. 1h). We then conducted an
unbiased identification of uniquely active genes for each cell type
annotated by our knowledge-based approach. Most top-ranked
active genes were well-known markers for each cell type: ENG for
endothelial cells, COL6A1 for fibroblasts, BCL11B for T cells,
TNFRSF13C for B cells, and IGLL5 for plasma cells (Supplementary
Fig. S1i, j). We also observed the consistency of motif enrichment
patterns with cell annotation such as ERE, FOXA1, androgen
receptor (AR), and TEAD motifs in the epithelial clusters and ETS
family motifs in the immune cell clusters (Fig. 1d).
We next identified cell type-specific cis-regulatory elements

(CREs). By performing peak calling in ArchR based on the creation
of pseudo-bulk replicates, we detected 166,233 reproducible
peaks (Supplementary Fig. S1k–m). Approximately 76.8% of peaks
were distal CREs, highlighting the importance of distal elements
for cellular identity (Supplementary Fig. S1m). Only half of the
peaks overlapped between our peaks and a set of peaks identified
via bulk ATAC-seq for 74 samples in The Cancer Genome Atlas
Breast Invasive Carcinoma (TCGA-BRCA) cohort16; this result
emphasizes the divergent activity of CREs across breast cancer
patients and it extended the set of CREs identified in this study
(Supplementary Fig. S1n). Finally, we determined 47,406 cell-type-
specific differentially accessible regulatory elements (FDR <0.01;
log2FC ≥ 1; Fig. 1f and Supplementary Table 2). Motif analysis for
each set of cell type-specific elements revealed the enrichment of
lineage-specific TF motifs: RUNX1/2 and the ETS family were
enriched for immune cells, whereas the FOX family, Ebox, and E2A
motifs were enriched only for epithelial cell clusters (Fig. 1g and
Supplementary Table 3). GREAT17 GO enrichment analysis
identified cell type-specific GO term enrichment for each set of
regulatory elements: mammary gland development for epithelial
cells, blood vessel development for endothelial cells, extracellular
matrix organization for fibroblasts, and immune response for
immune cells (Fig. 1h). These results support the consistency of
our gene score-based cell type assignment and offer cell-type-
specific CREs in breast cancer TMEs.

Chromatin accessibility landscape of breast cancer cells
To describe the epigenetic heterogeneity of breast cancer cells,
we performed subclustering of the 4141 epithelial cells and
identified 18 clusters (Ep1–18) (Fig. 2a, b and Supplementary Table
3). Only three clusters (Ep12, 16, and 17) were derived from
multiple samples, although most clusters were derived from single
patients. This observation was consistent with previously reported
scRNA-seq studies indicating that cancer cells were prone to be
clustered as per patient samples but that noncancer cells were
clustered by cell types regardless of the patient of origin18–21.
To determine malignant epithelial clusters, we applied an

estimation method for copy number alterations from scATAC-
seq;11 specifically, we identified the clusters with or without
inferred copy number variations (CNVs). After calculating the CNV
score for epithelial and TME clusters (Supplementary Fig. 2a), we
normalized epithelial CNV scores by TME scores as background
(See Method; Fig. 2c). Consistent with a previous report22,
chromosomes 1q and 8q were frequently amplified in CNV+

clusters (Ep1–11, 13–15, and 18). These genomic regions in CNV−

clusters (Ep12, 16, and 17) were less frequently amplified, similar
to that in immune and stromal cell clusters (Fig. 2c and
Supplementary Fig. 2a). CNV− clusters comprised cells from
multiple samples across subtypes, suggesting that they were
juxtatumoral epithelial cells. Few epithelial cells were obtained
from HER2+ patient P52, and these were distributed only to CNV−

clusters, implying that sampling difficulties could be attributed to
tumor size reduction by neoadjuvant therapy in P52 (Table 1 and
Supplementary Table 3). Although the numbers of epithelial cells
derived from two luminal samples (P38 and P54) were very low, a
sufficient number of cells (>50 cells) was obtained from
13 samples, indicating that the sampling method, i.e., core needle
biopsy of surgical specimens, was viable, to a certain extent, for
the analysis of primary tumors via single-cell ATAC-seq.
After excluding CNV− clusters as juxtatumoral cells, we

evaluated gene activity and motif enrichment scores in each
cancer cell. TNBC-derived clusters (Ep1–3 and 6) and luminal-
derived clusters (Ep4, 5, 7–11, 13–15, and 18) typically had
different gene activity patterns. Basal cell markers (VIM, EGFR, and
KRT5/17) were highly activated in TNBC-derived clusters, whereas
luminal cell markers (KRT8/18 and FOXA1) were active in luminal-
derived clusters (Fig. 2d–e and Supplementary Fig. 2b). Addition-
ally, differential motif analysis revealed a heterogeneous pattern
of motif enrichment for each cluster, e.g., Sox family in Ep3, AP-1
and TEAD motifs in Ep9, and FOXA1 in Ep14 and Ep18
(Supplementary Table 5). Ep5 from a luminal-HER2-type tumor
showed a luminal-specific pattern of gene activity (KRT8/18) as
well as greater ERBB2, GRB7, and MYC activities, which are often
coamplified in breast cancer23,24 (Fig. 2f). We also observed an
increased activity of epithelial-mesenchymal transition markers
(ZEB1, ZEB2, SNAI1, SNAI2, and FOXC2) as well as the high
enrichment of metastasis-associated TFs (TEAD and Sox) in TNBC-
derived clusters (Fig. 2g, h). In the lymph node-derived cluster Ep6,
CDH2 and ZEB2 were strongly activated, which may have been
associated with metastatic features (Fig. 2g and Supplementary

Fig. 1 Single-cell chromatin accessibility of human breast cancer tissues. a Schema of collecting samples and analysis. b Uniform manifold
approximation and projection (UMAP) after iterative latent semantic indexing of 12,452 cell scATAC-seq profiles from 16 human breast cancer
patients. Each dot represents a single cell colored by its corresponding cluster. Each cluster number is presented on the UMAP. Each cluster
annotation is labeled to the right of the UMAP. c The same UMAP projection is shown in a but with each cell colored by its corresponding
patient. Immunohistochemistry scores and breast cancer subtypes are presented on the right of the UMAP. Allred score was used for estrogen
and progesterone receptors: ≥3 is considered positive. P20N data were from the primary site diagnosis. Pathological subtypes of each patient
are shown as follows: TN triple-negative, LM luminal, HR HER2-positive, and LH luminal-HER2. dMarker gene activity score and TF motif scores
for each cluster. e Aggregated ATAC signal tracks showing the chromatin accessibility peaks of approximate transcription start sites of marker
genes for each cluster. Positive-strand genes are colored in red and negative-strand genes are colored in blue. f Heatmap of Z-score of 47,406
cell-type-specific CREs for each cluster. g Heatmap of adjusted P value of motif enrichment for each CREs in f. h Bar plots of top three enriched
GO terms calculated by GREAT for each CREs in f.
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Fig. 2b). Ep4, which was derived from a P51 tumor pathologically
assigned to the luminal type because of their weakly positive
progesterone receptor (PR) without ER expression (Allred scores:
ER, 0; PR, 3; Fig. 2b), had low VIM activity but the high activity of
EGFR and relatively low activity of luminal keratins (Fig. 2d, e and
Supplementary Fig. 2b). Additionally, AR gene activity and motif
enrichment were high in Ep4 (Fig. 2h and Supplementary Fig. 2c),
which suggests that Ep4 was a “luminal-AR”-like tumor which was
an AR-driven TNBC with luminal-like expression profiles25.
Immunohistochemistry revealed that AR and FOXA1 expression
was high in the P51 sample, confirming the results of chromatin
accessibility profiling (Supplementary Fig. 2d). Then, we clearly

described the heterogeneity of breast cancer cells across patients,
which was consistent with the pathological assessment. This
suggests that single-cell epigenome profiling can reveal not only
the heterogeneity of regulatory element activity but also cancer
cell diversity, including copy number alterations, gene regulatory
programs, and TF activities.

Chromatin accessibility is consistent with the transcriptome in
primary breast cancer and TMEs
To validate chromatin accessibility-based single-cell profiling for
primary breast cancer, we reanalyzed recently published large-
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scale scRNA-seq data26. Of the 184,116 transcriptome profiles
obtained from 38 primary breast or metastatic lymph node
samples of 32 patients, we identified 32 clusters using Seurat27,
which enabled clear classification of breast cancer and TME cells
(Supplementary Fig. 3a–b). By subclustering TME cells, we
identified the following: T (TME1, 4, and 9; CD3+), B, and plasma
(TME5, 6, 11, 12, and 15; CD19+) cells; macrophages and myeloid
(TME2, 7, 16, and 17; ITGAM+); dendritic cells (TME14; Toll-like
receptor signaling genes); endothelial (TME8; PECAM+), fibroblast
(TME3; FAP+), pericyte (TME10; MCAM+, PDGFRB+, NOTCH3+), and
contaminated (TME13; KRT8/18+ ) breast cells (Supplementary
Fig. 1c–e and Supplementary Table 6). Based on the observations
from a shared expression program for TMEs among patients (Fig.
1c and Supplementary Fig. 3d; refs. 17–20), we integrated the
chromatin profiling with the transcriptome in TME cells by
comparing the gene score matrix from our scATAC-seq with the
gene expression matrix from the scRNA-seq; accordingly, we
identified a similar same cell type annotation (Supplementary Fig.
3f). Thus, scATAC-seq-based estimation for gene expression (i.e.,

gene score) was consistent with actual gene expression levels
when determining TME properties.
Subsequently, we performed subclustering of 118,231 epithelial

cells, identifying 30 clusters (Fig. 3a). Consistent with our scATAC-
seq profiling, epithelial cells tended to be clustered per patient
(Fig. 3b and Supplementary Table 7); expression of basal cell
markers (VIM, EGFR, and KRT5/17) was high in TNBC-derived
clusters, whereas luminal cell markers (KRT8/18 and FOXA1) were
highly expressed in luminal-derived clusters (Fig. 3c, d). We also
examined the gene expression levels of keratins, ERBB2-related
genes, and EMT markers in the epithelial cells of each sample. We
found that basal keratins (KRT5/17), EGFR, and VIM were highly
expressed in TNBC samples, whereas ERBB2 and GRB7 expression
were commonly high in HER2+ and some luminal tumor samples;
MYC was coupregulated in some tumors, and EMT markers were
relatively highly expressed in TNBC samples compared with their
expression in other subtypes (Fig. 3e). In addition to TME cell
analysis, we performed cross-platform integration between
scATAC-seq and scRNA-seq for epithelial cells (Fig. 3f). Although
the linkage between cells partially reflected breast cancer

GSM4909281_TN_MH0126
GSM4909282_TN_MH0135
GSM4909283_TN_SH0106
GSM4909284_TN_MH0114_T2
GSM4909285_TN_B1_MH4031
GSM4909286_TN_B1_MH0131
GSM4909287_TN_B1_Tum0554
GSM4909288_TN_B1_MH0177
GSM4909289_HER2_AH0308
GSM4909290_HER2_PM0337
GSM4909291_HER2_MH0031
GSM4909292_HER2_MH0069
GSM4909293_HER2_MH0161
GSM4909294_HER2_MH0176
GSM4909295_ER_AH0319
GSM4909296_ER_MH0001
GSM4909297_ER_MH0125
GSM4909298_ER_PM0360
GSM4909299_ER_MH0114_T3

GSM4909300_ER_MH0032
GSM4909301_ER_MH0042
GSM4909302_ER_MH0025
GSM4909303_ER_MH0151
GSM4909304_ER_MH0163
GSM4909305_ER_MH0029_7C
GSM4909306_ER_MH0029_9C
GSM4909307_ER_MH0040
GSM4909308_ER_MH0040_LN
GSM4909309_ER_MH0043_T
GSM4909310_ER_MH0043_LN
GSM4909311_ER_MH0056_T
GSM4909312_ER_MH0056_LN
GSM4909313_ER_MH0064_T
GSM4909314_ER_MH0064_LN
GSM4909315_ER_MH0167_T
GSM4909316_ER_MH0167_LN
GSM4909317_ER_MH0173_T
GSM4909318_ER_MH0173_LN

RNA_Ep1
RNA_Ep2
RNA_Ep3
RNA_Ep4
RNA_Ep5
RNA_Ep6
RNA_Ep7
RNA_Ep8
RNA_Ep9
RNA_Ep10
RNA_Ep11
RNA_Ep12
RNA_Ep13
RNA_Ep14
RNA_Ep15

RNA_Ep16
RNA_Ep17
RNA_Ep18
RNA_Ep19
RNA_Ep20
RNA_Ep21
RNA_Ep22
RNA_Ep23
RNA_Ep24
RNA_Ep25
RNA_Ep26
RNA_Ep27
RNA_Ep28
RNA_Ep29
RNA_Ep30

U
M

A
P

2

FOXA1
ESR1
AR
PGR
SCUBE2
BAG1
BCL2
CD68
CCND1
CD44
MMP11
TP53
GRHL2
EPCAM
EGFR
GSTM1
CDH2
ERBB2
GRB7
CDH1
AURKA
MYBL2
MKI67
BIRC5
CCNB1
ACTA2
VIM
KRT17
KRT5
CTSV
MYC

R
N

A
_E

p1
0

R
N

A
_E

p1
4

R
N

A
_E

p2
0

R
N

A
_E

p2
5

R
N

A
_E

p2
2

R
N

A
_E

p5
R

N
A

_E
p2

4
R

N
A

_E
p3

R
N

A
_E

p2
R

N
A

_E
p1

3
R

N
A

_E
p1

8
R

N
A

_E
p7

R
N

A
_E

p2
6

R
N

A
_E

p1
6

R
N

A
_E

p3
0

R
N

A
_E

p2
7

R
N

A
_E

p1
7

R
N

A
_E

p1
1

R
N

A
_E

p2
1

R
N

A
_E

p9
R

N
A

_E
p4

R
N

A
_E

p1
2

R
N

A
_E

p2
8

R
N

A
_E

p2
9

R
N

A
_E

p1
9

R
N

A
_E

p1
R

N
A

_E
p6

R
N

A
_E

p2
3

R
N

A
_E

p1
5

R
N

A
_E

p8

KRT18
KRT8
KRT5
KRT17
EPCAM
VIM
EGFR

Keratins, subtype markers

MYC
GRB7
ERBB2

CDH2
SNAI2
FOXC1
ZEB1
ZEB2
SNAI1

ERBB2 and related genes

EMT markers

Epithelial cells from 38 samples

Subtype
ER
HER2
TN

Sample site

LN
Primary

Scaled
expression

−2
−1

0
1
2

100

Pe
rc

en
t

50

0
ER HER2 TN

E
p1

E
p2

E
p3

E
p4

E
p5

E
p6

E
p7

E
p8

E
p9

E
p1

0
E

p1
1

E
p1

2
E

p1
3

E
p1

4
E

p1
5

E
p1

6
E

p1
7

E
p1

8

100

Su
bt

yp
e 

pe
rc

en
t o

f 
in

te
gr

at
ed

 s
cR

N
A-

se
q 

ce
lls

 
on

to
 s

cA
TA

C
-s

eq
50

0

scATAC-seq clusters and
derived sample subtype

Integration of scATAC-seq 
with scRNA-seq

T
N

T
N

T
N

LM LH T
N

LM LM LM LM LM M
ix

LM LM LM M
ix

M
ix

LM

a b

c

d

e

f g

UMAP1 UMAP1

scRNA-seq (Pal et al, 2021)
Epithelial cells (N = 118,231)

U
M

A
P

2

UMAP1

Fig. 3 Integrative analysis of previously reported scRNA-seq results and our scATAC-seq data. a, b UMAP of subclustering of the epithelial
cell transcriptome reported in a previous scRNA-seq study (Pal et al., 2021), colored according to the corresponding epithelial clusters in a and
corresponding samples in b. c Heatmap of scaled expression of marker genes. d Breast cancer subtype composition of each epithelial cluster,
according to the scRNA-seq. e Heatmap of scaled expression of genes corresponding to the results in Fig. 2e–g. Unlike panel in c, the cells are
grouped by sample and average scaled expression is presented. f UMAP visualization of 4,141 epithelial chromatin profiles, colored according
to the linked scRNA-seq clusters presented in panel a. Based on gene activity scores, scATAC-seq cells were linked to scRNA-seq exhibiting a
similar expression pattern. g Subtype composition of scRNA-seq cells associated with each scATAC-seq cluster.

K. Kumegawa et al.

6

npj Breast Cancer (2022)    70 Published in partnership with the Breast Cancer Research Foundation



subtypes (Fig. 3g), there was no one-to-one correspondence
between patients, indicating that the gene expression and gene
regulatory program in cancer cells have strong intertumor
heterogeneity. Taken together, these results suggest that chro-
matin accessibility is consistent with but does not have exactly the
same layer of cellular heterogeneity, as the transcriptome in
primary breast cancer.

ER motif enrichment was heterogeneous but ER target genes
were commonly activated in luminal tumors
FOXA1 and ER are luminal-lineage TFs associated with breast
cancer proliferation, progression, and drug resistance28–30. Con-
sistently, FOXA1 activity and motif enrichment were high in
luminal-derived clusters but low in TNBC-derived clusters (Fig. 4a
and Supplementary Fig. 4a, c). However, ER activity and motif
enrichment showed divergent patterns within luminal-derived
clusters (Fig. 4b and Supplementary Fig. 4b), which were less
correlated (Supplementary Fig. 4c). To explore the heterogeneity
of ER binding CREs across patients, we integrated previously
reported ER cistrome data31 with the epithelial CREs. Our ER motif-
containing peaks had 77 overlapping CREs with 2750 previously
identified ER-bound sites in normal breast samples (seven
overlapping CREs), tumor and normal samples (19 overlapping
CREs), and tumor samples (51 overlapping CREs) (Supplementary
Fig. 5a). We observed various activities of ER-associated CREs
across epithelial clusters (Supplementary Fig. 5b), emphasizing
that the accessibility of ER binding elements is highly hetero-
geneous, even in luminal breast cancers.
To investigate whether the heterogeneity of FOXA1 and ER

motif activity influences downstream target transcriptional reg-
ulation, we next evaluated the activities of their target genes using
a signature score, i.e., an overall activity (inferred expression)
measure of each TF target genes calculated via VISION32. To
calculate the signature score, we used a gene list of breast cancer-
specific FOXA1 or ER targets with positive expression correlations
of each TF and its target genes as well as a regulatory potential of
≥0.5 in Cistrome Cancer33. We obtained 432 genes as FOXA1
targets and 227 genes as ER targets with 115 overlaps
(Supplementary Fig. 6a).
Consistent with motif enrichment scores, FOXA1 target

signature scores were high in luminal-derived clusters but low in
TNBC-derived clusters (Fig. 4c). Although ER motif enrichment was
heterogeneous across luminal-derived clusters (Fig. 4b), ER target
signature scores were commonly high in luminal-derived clusters
but low in TNBC-derived clusters (Fig. 4d). Because FOXA1 and ER
targets were partially overlapped, we examined the gene activity
scores of mutually exclusive and common targets of FOXA1 and
ER (Supplementary Fig. 6b). High activity genes were not biased in
the common gene set and the signature scores of each gene set
were high in luminal-derived clusters and low in TNBC-clusters,
suggesting that the common targets of FOXA1 and ER do not
affect the signature scores of each target (Supplementary Fig. 6b,
c). We also examined the association between the ER IHC score
and ER motif enrichment or ER target signature score; signature
scores increased in accordance with ER IHC scores, although the
ER motif score was variable even in samples with high IHC scores
(Supplementary Fig. 7).
These results suggest that ER-mediated transcription is main-

tained but gene regulatory elements regulated by ER are
heterogeneously activated or inactivated across luminal patients.
We speculated that the reprogramming of the ER-mediated gene
regulatory program might have occurred in some cases of luminal
breast cancer without altering the ER downstream transcriptional
output; epigenome could be an essential factor for preexisting
heterogeneity in luminal breast cancer.

GRHL2 emerges as a key TF in decreased ER motif enrichment
and targets CREs potentially regulating genes leading to
endocrine resistance and poor outcome
To explore the intratumor epigenome heterogeneity of luminal
breast cancer, we assessed the luminal tumors P50 and P64
containing two distinct clusters. P50 and P64 had two major
clusters (Ep10 and Ep11) as well as major (Ep7) and minor (Ep8)
clusters, respectively (Fig. 2a, b and Supplementary Table 4).
Differential motif analysis revealed that the ER motif differed most
significantly between Ep10 and Ep11 (Fig. 4a and Supplementary
Table 8) and that several motifs, including ETS, Elk1, and Ptf1a,
were differentially enriched between Ep7 and Ep8 (Supplementary
Fig. 8a and Supplementary Table 9). This suggested that the
epigenetic divergence between Ep10 and Ep11 was based on the
intratumor heterogeneity of the ER-mediated gene regulatory
program. Following this, we focused on the P50-derived clusters
to determine epigenome diversity associated with ER signaling. TF
footprinting analysis also showed that the flanking accessibility of
ER motif in Ep10 was decreased compared with that of the ER
motif in Ep11. (Supplementary Fig. 8b), suggesting that the
subpopulation of cancer cells with the decreased accessibility of
ER binding motifs exists within a single luminal tumor. By contrast,
Ep10 had significant enrichment of the GRHL2 motif, implying that
GRHL2 is associated with reduced ER motif enrichment and
expanding intratumor heterogeneity (Fig. 5a and Supplementary
Table 8).
To identify GRHL2-binding elements specific to Ep10, we next

performed a differential analysis of the accessible regions
between Ep10 and Ep11. We identified 7398 Ep10-specific CREs
and 8325 Ep11-specific CREs (log2FC > 1; P < 0.01), and GRHL2-
binding motifs were significantly enriched in Ep10-specific CREs
(P= 10−68, hypergeometric test); 669 (9.04%) of Ep10-specific
CREs had GRHL2-binding motifs (Fig. 5b and Supplementary
Tables 10, 11). To investigate gene regulatory programs by GRHL2-
binding elements in Ep10, we calculated peak coaccessibility and
determined genes that are potentially regulated by these 669
elements; we identified 3917 significant peak-gene associations
(within ±25 kb around TSSs, correlation >0.6; Fig. 5c). As our peak-
gene associations were based on chromatin accessibility data
alone, we also confirmed the association between peak signal and
gene expression using the patient-matched profiling of chromatin
accessibility (ATAC-seq) and transcriptomes (RNA-seq) in the TCGA
database16 (i.e., matched profiling for 74 patients with breast
cancer). Finally, 1006 genes (1268 peak-gene pairs) were identified
as potential targets by the GRHL2 motif-containing Ep10-specific
CREs (ATAC–RNA correlation >0.2; Fig. 5d and Supplementary
Table 12). In these genes, we found protumorigenic genes,
including KCNN4 (R= 0.78; Fig. 5e), inducing cell proliferation in
breast cancer34, and IGF1R (R= 0.74; Fig. 5f), promoting ER+ breast
cancer metastasis and endocrine resistance by modulating multi-
ple kinase activities35–37, suggesting that the gene regulatory
elements are possibly associated with cellular programs for cancer
progression. The signature score of putative target genes was
significantly high in Ep10 than in Ep11 (Fig. 5g). In the METABRIC
database38,39, overexpression of putative GRHL2 target genes was
significantly associated with poor prognosis in luminal patients
who received endocrine therapy; however, associations were not
detected in luminal patients that did not receive endocrine
therapy (Fig. 5h, i). Thus, high-level expression of these genes
could lead to poor outcomes after endocrine therapy.
Taken together, these data suggest that specific CREs were

reprogrammed by the master regulator’s shift from ER to GRHL2
within a single luminal tumor, which led to the establishment of
tumor subpopulations with potential for intrinsic endocrine
resistance and ultimately poor outcomes.
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DISCUSSION
In this study, we describe the epigenetic landscape of the cancer
cells and TME in human primary breast cancer. Our integrative

framework utilized multiple analytical tools to not only indicate
intertumor and intratumor heterogeneity but also provide lists of
marker genes and regulatory DNA elements in each breast cancer
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or TME cell cluster. These sets of features should be useful
resources for further studies, such as those including integrative
analysis with GWAS data, bulk ATAC-seq data, and other single-cell
omics data.
We identified two cancer cell groups with different epigenetic

states in a single luminal tumor. Although one had the typical
features of a luminal type, the other had distinct CREs with the
unique enrichment of TF motifs, especially GRHL2. Overexpression
of potential genes targeted by GRHL2-binding CREs, containing
metastasis- or endocrine resistance-related genes, was associated
with poor prognosis 5 years after diagnosis. GRHL2 has been
reported as a TF that reprograms ER signaling during ER+ breast
cancer tumorigenesis31 and also cooperates with FOXA1 to
establish endocrine therapy resistance40. A recent study revealed
that FOXA1 cistrome reprogramming occurred in the develop-
ment of neuroendocrine prostate cancer after endocrine treat-
ment of prostate adenocarcinoma41. According to these reports
and our results, we anticipated that although Ep10 has luminal

features at the transcriptome level, a subset of FOXA1 changed its
partners, i.e., from ER to GRHL2, which reprogrammed cistrome to
a less ER-dependent state. This process, in turn, might have caused
the intrinsic resistance to endocrine therapy.
This study has several limitations. First, sampling bias and the

collection of a low number of cells, which were caused by our
sampling procedure, i.e., core needle biopsy. We confirmed that
the proportion of TILs in the scATAC-seq profile was strongly
correlated with the TILs score in a pathological assessment
(Supplementary Fig. 1h); we were able to evaluate the intertumor
and intratumor epigenome heterogeneity of epithelial cells from
13 samples, indicating that our sampling method enabled
assessment of breast cancer heterogeneity despite relatively low
throughput. However, the number of cells per sample varied, and
three samples did not have sufficient epithelial cells to enable
interpretation (Supplementary Table 4). These limitations make it
difficult to (i) compare cell proportions and clinical information,
e.g., the effects of a high number of exhausted T cells on patient
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a 2 kb window, divided according to a significantly higher signal in Ep11 or in Ep10. Pie charts show the numbers of Ep10- or Ep11-specific
peaks with or without GRHL2-binding motifs. The bar plot represents hypergeometric tests of GRHL2 motif enrichment in each CRE set.
c Schema for identifying peak-gene associations (left), and genome accessibility track of the FGFR2 region with peak coaccessibility (right). The
red band indicates the Ep10-specific element with GRHL2 motif potentially interacting FGFR2 coding region. d Pearson’s correlation between
TCGA-BRCA ATAC-seq normalized counts and RNA-seq transcripts per million of each peak-gene pair. e, f RNA-seq gene expression of KCNN4
in e or IGF1R in f and normalized ATAC-seq signal of paired peaks in 74 TCGA-BRCA samples. Each dot represents each patient. g Signature
scores of putative target genes by Ep10-specific CREs with GRHL2 motifs in Ep10 (N= 281) and Ep11 (N= 327). Wilcoxon rank-sum test was
used for significant analysis (p < 2.2e-16). h, i Kaplan–Meier analysis of overall survival of the METABRIC ER+HER2− patient cohort (n= 1,355)
with (n= 968, h) or without (n= 387, i) hormone therapy stratified by putative GRHL2 target genes; top 33% versus the bottom 33%, mean of
Z-score of expression.
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outcomes and (ii) uncover the interaction between cancer cells
and TME cells. To overcome these issues, more input cells, i.e.,
mass tumor samples must be analyzed or the procedures used in
the scATAC-seq experiment must be improved. Second, our
findings are based on the analysis of only 16 patient samples, and
those on GRHL2 are from a single patient (P50). The low number
of patient samples potentially reduces the robustness of our
findings. Therefore, extensive research is warranted before we can
generalize our results. Studies should include more patient
samples and functional analysis. Third, although we analyzed
primary tumors to reflect real clinical settings, we did not
determine how the epigenetic heterogeneity described above
was able to emerge. It will be necessary to observe epigenetic
changes over the time course of disease development using
several approaches including sampling tumor cells before and
after treatment by core needle biopsy and establishing (then
testing) patient-derived organoids.
In summary, we demonstrated large-scale single-cell chromatin

accessibility profiling of human primary breast cancer. We also
provided a data-rich resource, which includes cell type-specific
gene sets, CREs, and coaccessibility between regulatory elements
in human breast cancer or the TME. By highlighting cistrome
heterogeneity, our results help to explain the diversity of
therapeutic responses or late recurrence rate in ER-positive breast
cancer patients. Finally, we postulate that reprogramming of
chromatin accessibility might be a hallmark of breast cancer in a
similar manner to genetic alterations or transcriptome changes.

METHODS
Clinical specimens
Breast cancer specimens were obtained by core needle biopsy of surgically
removed tumors. Specimens were dissociated into single cells using a
MACS Tumor Dissociation Kit and a gentle MACS dissociator (Miltenyi
Biotec) according to the manufacturer’s instructions. All participants gave
written informed consent before the collection of specimens. The protocol
was approved by the institutional ethical committee of Cancer Institute
Hospital, Japanese Foundation for Cancer Research (No. 2018-1168).

ATAC-seq library preparation
Single-cell ATAC-seq libraries were prepared using a SureCell ATAC-Seq
Library Prep Kit (Bio-Rad) and a SureCell ddSEQ Index Kit (Bio-Rad)
according to the manufacturer’s instructions. Libraries were loaded at 1.5
pM on a NextSeq 550 (Illumina) and sequencing was performed using the
following read protocol: Read 1: 118 cycles; i7 index read: 8 cycles; and
Read 2: 40 cycles. FASTQ files were processed using the ATAC-Seq Analysis
Toolkit (Bio-Rad) to generate debarcoded and aligned read data.

Pathological assessment
Unstained formalin-fixed paraffin-embedded tissue sections (4-μm thick)
were used for hematoxylin-and-eosin (H&E) staining and immunostaining.
The antibodies used in this study are listed as follows: ER (SP1, ready to use;
Ventana), PgR (1E2, ready to use; Ventana), HER2 (4B5, ready to use;
Ventana), AR (AR441, 1/200; Dako), and FOXA1 (EPR10881-14, 1/1000;
Abcam). To assess the proportion of TILs in samples, International TILs
Working Group15 scoring was used.

scATAC-seq analysis—ArchR
We used ArchR v.1.0.2 for scATAC-seq analysis14,26. All analyses were
performed with the hg19 genome assembly using ArchR’s “addArchRGen-
ome(“hg19”)” function. We assessed ATAC-seq quality using by enrichment
of ATAC-seq accessibility at tran14 scription start sites. ArchR’s “create-
ArrowFiles()” function calculated TSS enrichment score and unique nuclear
fragments. We filtered the cells using cut-off of TSS enrichment score of
eight and 3000 unique fragments per cell to exclude low-quality cells. To
filter out doublets, ArchR’s “addDoubletScores()” with “k= 10, knnMethod
= “UMAP”, LSIMethod =1” parameters was used. Quality plots were made
by “plotGroups()”, “plotFragmentSizes()”, and “plotTSSEnrichment()”.

ArchR’s “addIterativeLSI()” function with genome-wide 500-bp tile matrix
was used for calculating iterative LSI information. We clustered the cells by
ArchR’s “addClusters()” with Seurat’s “FindClusters()” and default para-
meters. To run uniform manifold approximation and projection (UMAP), we
used ArchR’s “addUMAP()” function with 40 nearest neighbors.
We visualized gene activity scores in the UMAP overlay by ArchR’s

“plotEmbedding()” function. We also obtained a gene score matrix using
“getMatrixFromProject()” for getting pre-imputed matrix, “imputeMatrix()”
for matrix imputation with MAGIC, and log2(Imputed gene score + 1) for
normalization.
For calling peaks on scATAC-seq binary data, pseudo-bulk replicates

were made using ArchR’s “addGroupCoverages()” function. Then, MACS2
v2.2.7.1 was called by ArchR’s “addReproduciblePeakSet()” function with
parameter of “shift=−40, extsize= 80, --nomodel --nolambda”. The
“addPeakMatrix()” was used for adding the merged peak set to ArchR
project. We obtained cluster-specific peaks using ArchR’s “getMarkerFea-
tures()” and “getMarkers()” functions (FDR <0.01 and log2FC ≥1, Wilcoxon
rank-sum test). For motif enrichment analysis of these regions, “peakAn-
noEnrichment()” and “plotEnrichHeatmap()” were used. For subclustering
of epithelial cells, we conducted peak call again to obtain cancer cell-
specific peaks.
We measured TF activities by two computational approaches in ArchR:

ChromVAR deviation scores and TF footprinting. For ChromVAR analysis,
the raw insertion counts for all peaks were used as input. HOMER motif
annotations were added by ArchR’s “addMotifAnnotations()” function. We
computed the GC bias-corrected motif deviation scores using ArchR’s
“addDeviationsMatrix()”. We also obtained the motif score matrix as same
as the gene score matrix described above. For TF footprint analysis, we first
obtained the positions of HOMER motifs using “getPositions()” function.
We then computed footprints of the motifs of interest by “getFootprints()”.
To correct Tn5 bias and visualization, ArchR’s “plotFootprints()” function
with ‘normMethod= “Subtract”’ was used.
We obtained a peak coaccessibility profile using ArchR’s “addCoAcces-

sibility()” with “maxDist= 1e+ 06”, meaning the maximum window size
for detecting coaccessibility. We used the coaccessibility information with
correlation cut-off of 0.6 and 1-bp resolution.

scATAC-seq analysis—copy number estimation
We inferred DNA copy number amplification from scATAC-seq data using a
method as described in Satpathy et al., 2019 (“08_Run_scCNV_v2.R” script
from https://github.com/GreenleafLab/10x-scATAC-2019). We first con-
structed the 10 kb genome windows using “makeWindows(genome=
BSgenome.Hsapiens.UCSC.hg19, blacklist= blacklist)” with a hg19 blacklist
bed file from ENCODE portal (ENCFF001TDO.bed). We next obtained CNA
profiles using “scCNA()” function with the parameters “neighbors= 100,
LFC= 1.5, FDR= 0.1, remove= c(“chrM”, “chrY”)”. This script computes the
mean log2(fold change) of ATAC-seq read counts (CNV score) for each
window against the GC-matched 100 nearest neighbors to estimate
whether an amplification exists. To visualize cancer-specific CNV scores, we
subtracted mean scores of TME cells from scores of each cancer cell as
“Normalized CNV score”.

scRNA-seq analysis—Seurat and ArchR
scRNA-seq data by Pal et al., 2020 was downloaded from GEO Accession
Viewer (GSE161529). We used Seurat v4.0.5 for scRNA-seq analysis27. Each
data were read by the Seurat function Read10x(), and merged int a single
Seurat object. The data was filtered to remove cells with fewer 500 unique
genes per cell and over 20% of mitochondrion RNAs. We processed the
data with Seurat’s standard pipeline following steps: (1) NormalizedData()
was run using “LogNormalize” method with scale.factor of 10,000, (2)
Highly variable features were identified by FindVariableFeatures() using
“vst” method and 2,000 features, (3) scaling the data and computing
principal components were performed by ScaleData() and RunPCA(), (4)
Clustering the cells was conducted by FindNeighbors() function with 1–50
dimensions and FindClusters() function with a resolution of 0.2, (5) the cells
were projected onto UMAP embedding space by RunUMAP() with 1–50
dimensions. In subclustering of TME and epithelial cells, the same
parameters were used. To integrate scRNA-seq with scATAC-seq, ArchR’s
addGeneIntegrationMatrix() function was used. The RNA epithelial clusters
were classified into each subtype derived cluster with over 80% cells from
a single subtype. The clusters with over 80% cells from a single subtype
sample were determined as “mixed clusters”.
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scATAC-seq analysis—VISION
To calculate gene signature score, the R package VISION32, a signature-
based analytical tool for scRNA-seq was used. We applied the log2
normalized gene score matrix as input to VISION with annotated gene sets
in publicly available transcription factor target gene sets in Cistrome
Cancer33. The functions of “Vision()” for making a vision object, “analysis()”
for a signature-based analysis, “getSignatureScores()” for extracting
signature scores were used.

scATAC-seq analysis—Homer
We used HOMER42 v.4.10 for identifying differential peaks between Ep10
and Ep11. To obtain differential peaks, we first used “makeTagDirectory”
for creating tag directories from each pseudo-bulk bam files. We next
merged ArchR’s reproducible peak sets of Ep8 and Ep9 after conversion
from GRanges objects to bed files. The “getDifferentialPeaks” was used
with “-size given -F 2.0 -P 0.01” options.

TCGA data analysis—ATAC-seq
We downloaded TCGA chromatin accessibility profiles from National
Cancer Institute Genomic Data Commons websites via browser (https://
gdc.cancer.gov/about-data/publications/ATACseq-AWG). BRCA specific
normalized counts matrix and called peaks were used in this study
(BRCA_log2norm.txt and BRCA_peakCalls.txt). The peak position is
annotated by hg38 assembly, so we lifted over hg38 to hg19 using UCSC
Genome Browser Lift Genome Annotations (https://genome.ucsc.edu/cgi-
bin/hgLiftOver). We found overlap peaks between our scATAC-seq peaks
and TCGA-BRCA peaks lifted over hg38 to hg19 using “findOverlaps()” in
the GenomicAlignments package.

TCGA data analysis—RNA-seq
TCGA-BRCA RNA-seq data was downloaded using the R package
“TCGAbiolinks”43. For the generation of an expression matrix, the HTSeq
counts data for each primary tumor was used. After selecting samples
matching to the TCGA case IDs with matched ATAC-seq, we computed the
exon lengths for each gene following steps: (i) reading a downloaded exon
annotation file “gencode.v38.annotation.gtf” using “makeTxDbFromGFF()”
in GenomicFeatures package, (ii) obtaining an exon list using “exonBy(by
= ‘gene’)”, and (iii) summing the non-overlapping exons by “lapply(x,
function(x){sum(width(reduce(x))”). We excluded all genes mapping to
“chrM”, and converted length normalized the RNA-seq data to transcripts
per million (TPM).

TCGA data analysis—Integration for ATAC-seq and RNA-seq
PAM50-based subtype profile was obtained using “PanCancerAtlas_sub-
type()” function in TCGABiolinks. We calculated pearson’s correlation
between patient-matched RNA-seq TPM and ATAC-seq normalized counts
for each peak-gene pairs using “cor.test(method= “pearson”)” function.

METABRIC data analysis
METABRIC38,39 microarray expression data (Z-score to all samples) was
downloaded using the R package “cBioPortalData”44. We selected the luminal
patients with positive “ER_STATUS” and negative “HER2_STATUS”, the TNBC
patients with negative of “ER_STATUS”, “PR_STATUS”, and “HER2_STATUS”.
Hormone therapy status was obtained “HORMONE_THERAPY” column.
“OS_STATUS” and “OS_MONTHS” were used for survival analysis. For
Kaplan–Meier analysis, we stratified patients by average expression of
common genes (n= 813) between GRHL2 target genes we identified (n=
1006) and METABRIC expression genes (n= 24,360) to top 33% and bottom
33%, and then used “survfit()” and “survdiff()” in the “survival” package.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Processed scATAC-seq data have been deposited at GEO (Accession ID: GSE198639).

CODE AVAILABILITY
All analysis code is available from the lead contact upon request. Data analysis was
performed by R version 4.0.5, ArchR version 1.0.2, MACS2 version 2.2.7.1, Seurat
version 4.0.5, and Homer version 4.10. The default variables or parameters were used
unless otherwise mentioned in the Method section.
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