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Abstract: Hypertension (HTN) is considered one of the most important and well-established reasons
for cardiovascular abnormalities, strokes, and premature mortality globally. This study was designed
to explore possible differentially expressed genes (DEGs) that contribute to the pathophysiology of
hypertension. To identify the DEGs of HTN, we investigated 22 publicly available cDNA Affymetrix
datasets using an integrated system-level framework. Gene Ontology (GO), pathway enrichment,
and transcriptional factors were analyzed to reveal biological information. From 50 DEGs, we ranked
7 hypertension-related genes (p-value < 0.05): ADM, ANGPTL4, USP8, EDN, NFIL3, MSR1, and
CEBPD. The enriched terms revealed significant functional roles of HIF-1-α transcription; endothelin;
GPCR-binding ligand; and signaling pathways of EGF, PIk3, and ARF6. SP1 (66.7%), KLF7 (33.3%),
and STAT1 (16.7%) are transcriptional factors associated with the regulatory mechanism. The expres-
sion profiles of these DEGs as verified by qPCR showed 3-times higher fold changes (2−∆∆Ct) in
ADM, ANGPTL4, USP8, and EDN1 genes compared to control, while CEBPD, MSR1 and NFIL3 were
downregulated. The aberrant expression of these genes is associated with the pathophysiological
development and cardiovascular abnormalities. This study will help to modulate the therapeutic
strategies of hypertension.

Keywords: cDNA datasets; hypertension; differentially expressed genes; enrichment analysis; qPCR;
expression profiling

1. Introduction

Hypertension is considered one of the most important and well-established causes
of cardiovascular abnormalities, stokes, and premature mortality globally [1]. It has been
reported that more than 1.39 billion individuals around the world are suffering from
hypertension [2]. By the end of 2025, it is expected that the percentage of hypertensive
patients will reach up to 60% of the total population. The hypertension prevalence among
different regions may be explained by reasons such as improper diet, obesity, and lack of
exercise [3]. Therefore, it is a priority for scientists to critically investigate the causes and
processes involved in this disease to prevent the risks effectively [4].

DNA microarrays provide prevailing and efficient techniques for simultaneously
exploring the expression patterns of thousands of different genes. A common use for
microarrays is to study changes in gene expression under various experimental conditions
of interest (e.g., cases vs. control). A common approach to data analysis is to use a set of spe-
cific important genes to predict biological or therapeutic outcomes. Pharmacogenomics is a
vital approach for microarray gene expression profiles. A subset of the known genes will be
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used in the development of candidate genes or biomarkers. In drug development, the gene
candidate is based on the patient’s genomic profile and helps to define how the benefits and
side effects of a drug differ in the target patient population based on the germline of the
patient and the genomic attributes of the affected tissue. By identifying groups of patients
who are likely to benefit from the therapeutic effect and avoiding serious adverse events,
the drug therapeutic index can be drastically enhanced. Gene selection is considered the
first step in development. The universal principle of gene selection is to identify the genes
that explain the underlying mechanism of disease progression, known as disease marker
genes, their pathways or modes of action, and known interpretations. Choosing a subset of
genes from the original thousands of genes increases the computational challenges [5,6].
The genetic basis of hypertension is gaining attention and the variations in alleles, gene
expression, and protein level changes are important genomic factors [7,8]. Several studies
have proven the role of differentially expressed genes in disease development. Most of the
genes involved in hypertension have been reported as potential therapeutic drug targets.
WNK kinases and angiotensin-converting enzyme 2 expression levels influence the devel-
opment of hypertension in humans. Recent reports have shown significant variations in
endothelin 1 (ET)-1 during cardiovascular diseases. It has been observed that higher levels
of ET-1 are found in the plasma samples of hypertensive individuals. ET-1 also contributes
to pulmonary vascular resistance [9]. Based on genomic transcriptomic level studies vali-
dated by qPCR, it has been identified that the differential expressed genes TcTex1, Myadm,
Lisch7, Axl-like, Fah, PRC1, and Serpinh1 are associated with hypertension [10]. The
renin–angiotensin–aldosterone system (RAAS) maintains blood pressure and hemostasis in
the human body [11]. The genes influencing the RAAS ultimately affect blood pressure,
including angiotensin-converting enzyme (ACE), angiotensin-1 (AGT), angiotensin-II type
1 receptor (AGTR1), and aldosterone synthase (CYP11B2) genes [12]. These genes are key
targets in the hypertension therapeutic strategy, which increases blood pressure through
arteriolar vasoconstriction, salt and water retention, and cardiac remolding or hypertro-
phy [13]. Quantitative real-time PCR (RT qPCR) is considered as the method of choice in
the profiling of gene expression (mRNA levels) and follow-up validation with extended
dynamic range and sensitivity based on its high accuracy rate [14,15]. The 2-∆∆CT method
is a useful approach to investigate the relative variations in gene expression from qPCR
experiments [16].

In this study, we aimed to identify the possible candidate genes of hypertension
followed by experimental validation. The system-level analysis screened out the key
genes from cDNA datasets. Based on the robust multi-array analysis and differential
studies, the functional-level associations of hypertension-related DEGs were studied. The
qPCR analysis verified the dysregulation of these genes and their pathological role in
hypertension. These findings will help to understand the genetic basis of the disease and
will modulate the therapeutic strategies against hypertension.

2. Results
2.1. Normalization, Meta-Analysis, and Cross-Validation of Gene Expression Data

We used a publicly available human cDNA dataset to investigate the differentially ex-
pressed values of hypertension. We retrieved 22 Affymetrix cDNA datasets of hypertension
for differential expression analysis. Each dataset has a different number of samples and
genes derived through mRNA expression profiling using different Affymetrix platforms for
hypertension. The data were normalized and missing values were imputed. The normal-
ized distance between the array of DNA chips and the individual arrays of each dataset for
the median expression level indicates the quality of the arrays. The gene–gene covariance
matrix across all arrays in each dataset when ignoring missing values was computed to
check sure whether they were on the same scale and to log-transform the arrays. The
quantile normalization of the probes showed a quality histogram indicating normalized
intensity between arrays of the entire DNA chip. The patterns in this smoothed histogram
revealed the distribution of the arrays, having similar shapes and ranges (Figure 1). A meta-
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analysis of differential expression showed 07 DEGs of hypertension at p < 0.05. These genes
presented directional uniformity in the cohorts under study. All DEGs showed correlations
with hypertension. ADM, EDN1, ANGPTL4, NFIL3, MSR1, CEBPD, and USP8, based on
their FDR values (Table 1) (<0.05, p-values (≤0.05)), were the top DEGs for hypertension
(Supplementary Table S1).

Figure 1. Normalization of differentially expressed genes. The figure shows a density plot of the
standard deviation of the intensities across arrays on the y-axis versus the rank of their mean on the
x-axis. The red dots, connected by lines, show the running median of the standard deviation. After
normalization and transformation to a logarithm(-like) scale, one typically expects the red line to be
approximately horizontal; that is, to show no substantial trend. In some cases, a hump on the right
hand of the x-axis can be observed, which is symptomatic of the saturation of the intensities.

Table 1. Common and related differentially expressed genes of each microarray dataset in hypertension.

Probe ID Gene Symbol Uniport ID Protein Name

203973_s_at CEBPD CEBPD_HUMAN CCAAT/enhancer-binding protein delta (CEBPD)
222802_at EDN1 EDN1_HUMAN Endothelin 1(EDN1)
203574_at NFIL3 NFIL3_HUMAN Nuclear factor, interleukin-3-regulated (NFIL3)

221009_s_at ANGPTL4 ANGL4_HUMAN Angiopoietin-related protein 4 (ANGPTL4)
202912_at ADM ADML_HUMAN Adrenomedullin (ADM)

208423_s_at MSR1 MSRE_HUMAN Macrophage scavenger receptor 1(MSR1)
202745_at USP8 H0YM17_HUMAN Ubiquitin-specific peptidase 8(USP8)

We excluded any subgroup without repetition from comparisons of accuracy and
verification of differential analysis, and the generalized linear model’ ‘cv.glm’ method
measured the error of the cross-validation prediction. The Gaussian dispersion criterion
was 0.00509, indicating the degree of confidence (Table 2). With K-fold estimation we
obtained the same delta value of 0.00501, as we used the LOOCV approach (during raw
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cross-validation and afterward during modified cross-validation). The substantial codes
(0.1, 0.01, 0.001, and 0.05) with residuals of limited deviance suggested the consistency
of the differential analysis. To verify the dataset reliability for identification of variation
at the transcriptional level in the original samples, the normalization process was used
to standardize sample handling techniques and to assess the optimal RNA variability
threshold using discrimination measures for statistical and algorithmic analyses.

Table 2. K-fold cross-validation using the Bioconductor “Boot” package based on Gaussian
dispersion parameters.

Estimate Std. Error t. Value Pr (>|t|)

(Intercept) 0.000116 0.000312 3.99 <1.00 × 10−11 ***
x1 0.040024 0.001702 19.018 <1.00 × 10−10 ***
x2 −0.01042 0.001105 −4.017 <1.96 × 10−9 ***
x3 0.120113 0.003201 27.015 <1.00 × 10−10 ***
x4 0.210420 0.001412 20.200 <1.00 × 10−12 ***
x5 0.026013 0.002140 29.003 <1.00 × 10−13 ***
x6 0.231420 0.003263 25.012 <1.00 × 10−11 ***
x7 −0.01601 0.001561 −27.112 <1.00 × 10−9 ***
x8 0.001412 0.002211 19.115 <1.00 × 10−11 ***
x9 0.102122 0.003602 61.0716 <1.00 × 10−13 ***

x10 0.010010 0.000511 4.001 <1.00 × 10−11 ***
x11 0.030821 0.001403 21.003 <1.00 × 10−10 ***
x12 −0.01109 0.002014 −2.014 0.0078 *
x13 −0.14522 0.002919 −49.023 <1.00 × 10−8 ***
x14 0.010051 0.001240 1.312 5.28 × 10−9 ***
x15 −0.017581 0.001200 −18.102 <1.00 × 10−10 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1; number of Fisher scoring iterations: 2; $K: [1] 10; $delta:
[1] 0.00501 = 0.00509; null deviance: 101602.1 with 49103 degrees of freedom; residual deviance: 2504.1 with
40119 degrees of freedom.

2.2. Gene Ontology and Pathway Enrichment Analyses

The Gene Ontology analysis of DEGs showed significantly enriched terms. These genes
showed enrichment significantly linked to endothelin A receptor binding, adrenomedullin
binding, regulation of urine volume, responses to corticosteroids and glucocorticoids, and
positive regulation of the developmental process (p-value < 0.05). The function of the gene
and its regulation, subtypes, and cellular processes play key roles in understanding its
biology and the dysregulation of these biological processes causing hypertension and other
cardiovascular diseases (CVS) (Figure 2). The genes were further examined to estimate
the molecular mechanism involved in hypertension. The pathway enrichment analysis
revealed the roles of the HIF-1-α transcription; endothelin; GPCR-binding ligand; and
signaling pathways of EGF, PIk3, Arf6, S1P1, and PGDF in hypertension (Table 3). The
network created after reconstruction demonstrated that a number of pathways participated
in the pathogenesis of hypertension. This analysis highlighted the genes and pathways in
the molecular and cellular functions and other signaling components of CVS (Figure 3).

2.3. Transcription and Motif Analysis

We identified the transcriptional factors of DEGs with substantial p-values (<0.05),
including SP1 (66.7%), KLF7 (33.3%), STAT1, DBX2, PRRX1, DLX5, and CEBPD (16.7%),
(Figure 4A). We observed a greater number of motifs (15 motifs) in enhancer-binding
protein (CEBPD), followed by 9 motifs in macrophage scavenger receptor (MSR1). The
motifs were scanned with a significant cutoff value of <0.0002 under default parameters
(Figure 4B).



Genes 2022, 13, 187 5 of 23

Table 3. Pathway enrichment analysis of DEGs using FunRich tools, showing enriched pathways
associated with hypertension.

Pathway Description Count Strength False Discovery Rate

hsa04710 Circadian rhythm 6 of 30 2.02 3.75 × 10−9

hsa04979 Cholesterol metabolism 6 of 48 1.82 2.43 × 10−8

hsa03320 PPAR signaling pathway 4 of 72 1.47 0.00021

hsa04270 Vascular smooth muscle contraction 5 of 119 1.35 7.85 × 10−5

hsa04926 Relaxin signaling pathway 3 of 130 1.09 0.0200

hsa04020 Calcium signaling pathway 3 of 179 0.95 0.0412

hsa04144 Endocytosis 4 of 242 0.94 0.0157

hsa04080 Neuroactive ligand receptor interaction 4 of 272 0.89 0.0200

Reactome pathways

Pathway Description Count Strength False discovery rate

hsa400253 Circadian clock 3 of 8 2.6 4.55 × 10−6

hsa1368108 BMAL1: activates circadian gene expression 3 of 11 2.16 6.66 × 10−6

hsa1227986 Signaling by ERBB2 3 of 22 1.86 3.11 × 10−5

hsa162582 Signal transduction 15 of 1358 0.77 8.60 × 10−8

Annotated keywords (UniProt)

Keywords Description Count Strength False discovery rate

KW-0839 Vasoconstriction 4 of 5 2.63 3.59 × 10−8

KW-0162 Chylomicron 5 of 9 2.47 3.83 × 10−9

KW-0380 Hyperlipidemia 2 of 4 2.42 0.00037

KW-0850 VLDL 4 of 10 2.33 1.92 × 10−7

KW-0427 LDL 3 of 9 2.25 1.44 × 10−5

KW-0367 Hirschsprung disease 3 of 10 2.2 1.70 × 10−5

KW-0897 Waardenburg syndrome 2 of 7 2.18 0.00078

KW-0345 HDL 2 of 16 1.82 0.0028

KW-0730 Sialic acid 2 of 20 1.72 0.0038

KW-0027 Amidation 4 of 44 1.68 1.76 × 10−5

KW-0090 Biological rhythms 7 of 138 1.43 1.92 × 10−7

KW-0372 Hormones 4 of 87 1.39 0.00021

KW-0445 Lipid transport 4 of 110 1.28 0.00041

KW-0358 Heparin binding 3 of 87 1.26 0.0033

KW-0442 Lipid degradation 3 of 102 1.19 0.0047

KW-0165 cleavage on pair of basic residues 7 of 277 1.13 1.05 × 10−5

KW-0443 Lipid metabolism 6 of 447 0.85 0.0011

KW-0964 Secreted 6 of 1814 0.67 8.00 × 10−7

KW-0675 Receptor 11 of 1423 0.61 0.00034
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Figure 2. Gene Ontology (GO) analysis of differentially expressed genes. The GO analysis indicates
important molecular functions and includes the top-ranked GO categories classified according to the
levels of differentially expressed genes enriched in the three major classifications.

2.4. Mutation Analysis

Ubiquitin carboxyl–terminal hydrolase 8 (USP8) has six modification types, including
phosphothreonine methylation, phosphotyrosine, phosphoserine, N6-acetyllysine, and
ubiquitination, with recurrent mutations of 57 modified residues. The mutation visualiza-
tion plot shows that USP8 has a direct network-rewiring mutation and that the modified
amino acids Y, R, S, K, and T appeared throughout the various sites of the protein sequence,
indicating a significant disordered region (57%). Similarly, CCAAT/enhancer-binding
protein delta protein (CEBPD) has six phosphothreonine N-acetyl serine, phosphotyrosine,
phosphoserine, N6-acetyllysine, and SUMOylation modification types, with the modified
amino acids of Y, K, S, and T. The protein encoded by this intron gene is a bZIP transcription
factor that can bind as a homodimer to certain DNA regulatory regions. There are 8 modi-
fied residues predicting that 8% of the sequence is disordered. Adrenomedullin (ADM) is a
52 AA peptide with several functions, including vasodilation, regulation of hormone secre-
tion, and promotion of angiogenesis, indicating that 45.41% of the sequence is predicted to
be disordered. This protein has 5 modification types, including phosphoserine, tyrosine
amide, arginine amide, ubiquitination, and phosphotyrosine. The angiopoietin-related
protein 4 (ANGPTL4) isoform is a precursor that encodes a glycosylated, secreted protein
containing a C-terminal fibrinogen domain. The encoded protein is induced by peroxisome
proliferation activators and functions as a serum hormone that regulates glucose homeosta-
sis, lipid metabolism, and insulin sensitivity. Here, 16.75% of the sequence is predicted to be
disordered with PTM types of phosphoserine, N-glycosylation, and methylation (Figure 5).
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Figure 3. Integrative genome pathway remodeling study was used to map the possible mechanisms
of the DEGs.

2.5. Protein Product Co-Expression Network Analysis

The differentially expressed genes (ADM, EDN1, ANGPTL4, NFIL3, MSR1, CEBPD,
and USP8) were investigated for possible interactions with each other using STRING
biological data. It was posited that the most differentially expressed genes would have
strong interactions with each other. The protein–protein interaction (PPI) network contains
17 nodes (each node indicates proteins) and 23 edges (present interaction). The protein
network indicates the enriched co-expressed genes (PPI enrichment p-value: 0.00355) func-
tionally associated with circadian rhythm, cholesterol metabolism, vascular smooth muscle
contraction, the PPAR signaling pathway, relaxin, and the calcium signaling pathway. We
obtained the Pfam protein domains, namely calcitonin/CGRP/IAPP family, endothelin
receptor activity-modifying family, PAS domain, PAS fold, and hormone receptor domain
(FDR < 0.05), which were mostly associated with the differentially expressed genes. Based
on the protein product co-expression data, we analyzed the expression levels of CEBPD,
MSR1, and NFIL3 genes and observed that these were downregulated. The RNA expres-
sion pattern and protein co-regulation results indicate the significant association levels of
co-expressed genes with annotated keywords, namely vasoconstrictor, hyperlipidemia,
VLDL, LDL, blood pressure, HDL, lipid metabolism, disease mutation, and calcitonin
(Figure 6).
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Figure 4. (A) Transcriptional factors of hypertension-related DEGS, identifying SP1, KLF7, STAT1,
DBX2, PRRX1, and other regulatory factors. (B) Motif analysis highlighting a significant number of
functional motifs associated with important biological functions.

2.6. Clinical Description of Samples

Out of the selected patients, 28 individuals were males and 22 were females in each
control and case. For hypertensive patients, the BMI values of 22 individuals were recorded
within the range of 25–30 kg/m2, indicating overweight, while 22 were obese as compared
to the control. The mean systolic and diastolic BP values of hypertensive patients were
152.2 ± 11.2 mmHg and 94.9 ± 4.23 mmHg, respectively, compared to control, while the
mean systolic and diastolic BP values were 125.7 ± 5.32 mmHg and 82.8 ± 2.8 mmHg,
respectively (Table 4).
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Figure 5. Mutation analysis of hypertension-related DEGs indicating post-translational modifications
with significant cutoff parameters. It highlights the significant disordered regions of the proteins with
a pathophysiological role in disease development.

Figure 6. Protein product co-expression network analysis using STRING database version 11.0. The
protein network was calculated based on the neighborhood score with higher confidence (confidence
score > 0.99). Nodes represent proteins and edges indicate interactions. The co-expression scores
based on RNA expression patterns and protein co-regulation were studied through the STRING
database and annotated keywords (FDR < 0.05) were observed.
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Table 4. Clinical descriptions of individuals involved in the study.

Variables Cases (n = 50) Control (n = 50)

Age group
18–65 50 50

Gender
Male 28 28

Female 22 22
BMI (kg/m2)

Normal 6 28
Overweight 22 16

Obese 22 6
Mean blood pressure

Systolic BP (mean ± SD) 152.2 ± 6.02 125.7 ± 7.42
Diastolic BP mean ± SD) 94.9 ± 4.23 82.8 ± 3.65

2.7. Validation of qRT-PCR Assay and Expression Profiling

The 260/280 ratios between 1.5 and 2.7 indicated the high-quality RNA, while the
quantity range for our samples was about 800 to 1250 ng/µL. The RNA quantification
showed a significant level for further cDNA synthesis. The relative expression levels of
7 hypertension-related differentially expressed genes shown by qPCR were analyzed and
calculated according to the relative expression quantity 2−∆CT formula, where ∆CT = CT
value of target gene–CT value of the internal reference gene (GAPDH). CT values were
generated from the absolute quantification, indicating the quality of the results and provid-
ing information on the actual levels. The probe for the RT-PCR was constant enough, as
no enhanced fluorescence signal was seen after the reaction. The relative expression levels
showed that ADM, ANGPTL4, USP8, and EDN1 were upregulated, with significant fold
changes (2−∆∆Ct) compared to control. The substantial aberrant expression of ADM and
ANGPTL4 correlated with disease development and progression. However, CEBPD, MSR1,
and NFIL3 were downregulated (Figure 7a). Based on the −∆∆Ct method, we observed a
significant level (R2 = 0.87; p-value < 0.05) of correlation between the expression levels of
hypertension-related DEGs measured by array analysis and expression levels measured by
individual qRT-PCR (Figure 7b).

The cluster analysis indicated the gene expression profiles of the two groups (cases and
controls), with significant expression level differences. The columns represent samples and
the rows represent differentially expressed genes. Figure 7 shows that most of the samples
have differential expression profiles compared to the left-hand dendrogram, where some
genes have similar expression patterns (Figure 8). These genes may have similar functions
or participate in the same biological process. Genes with the highest differential expression
were named as a gene cluster. We observed significant gene clusters, including ADM,
ANGPTL4, and USP8 expressed differentially in a number of samples (fold change ≥2 and
p-value < 0.05).
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Figure 7. (a) Aberrant expression levels of differentially expressed genes in hypertension cases and
controls based on the fold changes of gene expression. (b) The qRT-PCR array validation of the
differentially expressed genes. The plot graph shows the correlation between the expression levels of
hypertension-related DEGs measured by array analysis and expression levels measured by individual
qRT-PCR. The −∆∆Ct method was applied for this analysis.

Figure 8. Hierarchical cluster analysis heatmap indicating expression profiles of differentially ex-
pressed genes (ADM, ANGPTL4, USP8, EDN1, NFIL3, MSR1, and CEBPD). The columns in the figure
represent the samples and the rows represent the differentially expressed genes.
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3. Discussion

Hypertension risk factors are commonly reported in developing countries. The inci-
dence of hypertension is frequently rising, but its control is inadequate worldwide [17,18].
Gene expression in humans has proven significant for identifying genetic determinants of
phenotypic traits and for pinpointing genes related to complex traits. The most common
diseases found in humans are due to the interactions of many genes; therefore, a more
consolidative approach of biology is needed to resolve the intricacies and reasons behind
such diseases [19]. In this study, we used various approaches by utilizing the system-level
framework in the meta-analysis of the cDNA Affymetrix dataset in CELL format presented
publicly on NCBI to extract the most common genes involved in hypertension. The ad-
vancement in the microarray analysis empowered scientists to investigate a large number
of genes at once and to find genetic evidence for various diseases [20].

The gene ontology and pathway enrichment analyses showed critical associated
pathophysiological development in hypertension. We found the pathways such as HIF-1-α
transcription; endothelin; GPCR-binding ligand; and signaling pathways of EGF, PIk3,
Arf6, S1P1, and PGDF were involved in biological processes. HIF-1alpha is a transcriptional
factor that acts in response to hypoxia. Studies reported that HIF-1alpha and ARF6 regulate
the role of vascular endothelial growth factors in pulmonary arteries, showing a vital part
of the pathogenesis of hypertension and hypoxic artery remodeling [21,22]. The endothelin
production is enhanced during hypertension, which simulates inflammation and vessel
constriction. Therefore, the blockage of endothelin was an effective and promising target in
the management of hypertension [23]. GPCR ligands are still considered a relevant drug
target in CVS disease, as a number of GPCR-binding drugs with sympathomimetic effect
cause vasoconstriction and smooth muscle proliferation of pulmonary arteries [24]. PIK3
contributes to the vascular response via its action on the L-type calcium, which affects
the regulation of blood pressure [25]. Age was found to be a critical hazard calculator
for hypertension. As the age increased, the predominance of hypertension increased
among both genders. Comparative findings were reported by other studies, showing that
progressing age was positively related to hypertension [26]. In our study, we found that
at ages over 50, more hypertension cases appear (31 subjects). With advancing age, the
aorta and coronary artery wall will stiffen, and this contributes to hypertension [26]. Out
of 50 cases of hypertension, 28 were males and 22 were females. Different studies have
suggested a higher prevalence rate of hypertension in males than females [26,27]. One of
the conceivable reasons for this gender dissimilarity in hypertension predominance could
be due to natural sex distinctions, while behavioral hazard components such as smoking
and alcohol consumption may also be more common in males. However, females are more
curious about their wellbeing, so they are more likely to have better health [28]. Similarly,
BMI is another major risk factor involved in hypertension progression, as also reported in
other studies [29,30]. We found that the percentage of overweight and obese subjects was
greater in hypertensive samples than in the control.

Real-time (RT) PCR analyses were used to confirm the results of the microarray
datasets, which demonstrate the true changes. We identified the potential genes, including
ADM, EDN1, ANGPTL4, NFIL3, MSR1, CEBPD, and USP8 (p < 0.05), via differential anal-
ysis (DEGs). Furthermore, we investigated these DEGs for the expression level changes
in our population and observed the findings in cases and controls. A significant fold
variation was observed during the RT-PCR analysis in the target samples using the 2−∆∆Ct

method [31]. The real-time PCR of the ADM gene demonstrated 20.83 times greater gene
expression in target samples compared to control. Hypertension is regulated mainly by
the autonomic nervous system, the renin–angiotensin system, and nitric oxide (NO) [32].
Recent studies suggested the role of neurohumoral factors in the development of hyper-
tension. Adrenomedullin (ADM) can be produced by numerous tissues, including the
myocardium, adrenal medulla, and central nervous system, and has various pathophys-
iological functions [33]. ADM shows prominent effects, including dilation of vessels,
natriuresis, and NO production. The level of ADM plasma concentration was significantly



Genes 2022, 13, 187 13 of 23

higher in hypertensive patients, representing its protective and therapeutic role in cardio-
vascular abnormalities [34,35]. The role of the ADM gene mechanism was found in clinical
research related to hypertension. The findings suggested that ADM showed vasodila-
tor effects mediated via cyclic adenosine 3,5-monophosphate and nitric-oxide-dependent
mechanisms [36]. The cardioprotective role of ADM against cell death in heart diseases is
through disruption of mitochondrial metabolism and by reducing renin–aldosterone sys-
tem levels, thereby improving cardiac output and vascular smooth muscle resistance [37].
Similarly, the ANGPTL4 gene was found to be upregulated compared to control, indicating
a substantial level of variation [38]. It has been shown that the ANGPT4 gene was involved
in angiogenesis, leading to vascular disease [39,40]. Studies have confirmed the association
of ANGPTL4 with lipid metabolism and it has been observed that the inhibition of this gene
significantly decreases the triglyceride level, which ultimately reduces cardiac issues [41,42].
ANGPTL4 is highly expressed in the endothelial cells, leading to hyperlipidemia [43,44]. It
has been reported that hyperlipidemia and hypertension are linked in many aspects, shar-
ing certain potential common risk factors [45]. In some studies, the amounts of ANGPTL4
were increased in both plasma and adipose tissues of hypertensive samples as compared to
control, highlighting its probable contribution and therapeutic worth in the mechanism
of hypertension, having a role in the regulation of lipid metabolism by constraining the
activity of lipoprotein lipase [40,46].

The absolute quantitative analysis showed that the USP8 gene is another important
gene, which is expressed with a fold difference 3 times higher than controls. Studies
published in 2013 indicated the potential role of this gene in the trafficking of the sodium
channel [47]. The higher sodium channel endocytosis might be the reason for hyperten-
sion [48]. USP8 is considered a novel therapeutic drug target in Cushing disease (CD). CD
induced a series of complications such as hypertension, obesity, and diabetes mellitus [49].
Hypertension is notably associated with the length of hypercortisolism and outcomes from
the interplay among several pathophysiological mechanisms. Glucocorticoids trigger hy-
pertension through numerous mechanisms, including their core mineralocorticoid action,
through renin–angiotensin system activation, by augmentation of vasoactive properties,
and by inhibiting the vasodilatory mechanism [50]. Therefore, we proposed that USP8 tar-
get drug therapies will play a vital role in hypertension treatment. Endothelins-1 (EDN1) is
present in abundant quantities in blood vessels and is a potent vasoconstrictor peptide [51].
In our hypertension cases, the EDN1 gene was found to be over-regulated compared to
control. EDN1 induces vascular hypertrophy and endothelial dysfunction. Endothelin
receptor blockers reduce blood pressure and vascular hypertrophic remodeling [52,53].
The possible reported mechanism of the EDN1 genes in hypertension is that the higher
transcription of EDN1 increases the ET-1 production by the endothelial cells in the blood
vessels, causing powerful constriction in the vascular smooth muscle cells and increasing
peripheral resistance mediated via smooth vascular muscle subtype receptors (ETAR and
ETBR) during pathological conditions [54]. Therefore, EDN1 is considered a potential ther-
apeutic drug target in hypertension [55]. Nuclear factor, interleukin-3-regulated (NFIL3)
was constantly expressed at a high level with the low-sodium diet, although the expression
became downregulated along with the progression in the sodium-loaded diet [56], and
parallel findings were observed in our study [57]. Circadian rhythms influence transcrip-
tional levels, affecting cell metabolic pathways. Alterations in circadian rhythm increase
the risk of hypertension. Recently, another possible method of hypertension was proposed,
namely perivascular inflammation, which participates in the vascular inflammatory re-
sponse [58]. NFIL3 could be a possible target, as it is a circadian clock regulator gene
that might be involved in hypertension and lipid metabolism [59,60]. We observed that
macrophage scavenger receptor 1 (MSR1) and CEBPD are downregulated in hypertension
cases compared to control [61]. MSR1genetic polymorphisms are significantly associated
with hypertension [62]. The expression of the MSR1 gene in atherosclerotic vessels increases
the accumulation of fatty acids and lipoproteins in the blood, which in turn causes hyperten-
sion and ultimately damages the basement membrane of arteries [63]. Furthermore, MSR1
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is considered a potential marker in hypertension, in addition to other traditional risk fac-
tors [62]. CEBPD encodes transcription factors such as CCAAT and platelet-derived growth
factor-α receptor (PDGF-αR) expression, causing vascular smooth muscle cell proliferation
and migration, resulting in genetic hypertension [64]. Moreover, CEBPD has a facilitatory
role in binding with other transcription factors and contributes to the vibrant alteration of
the chromatin architecture, with recognized effects in hypertension [65,66]. Based on its
significant role, CEBPD is considered a molecular marker of blood pressure [67]. These
findings demonstrate that the dysregulated expression of selective genes is correlated with
the pathophysiological role of hypertension.

4. Materials and Methods
4.1. Normalization and Differential Expression Analysis

We retrieved publicly available microarray datasets from the Gene Expression Om-
nibus (GEO) database in a compatible (CEL) format using the key term “hypertension” to
download related datasets accessible until 1 June 2019, based on the following parameters:
(i) tissue specificity; (ii) sample size; (iii) array size and pattern: 712 × 712, 1050 × 1050 and
1164× 1164; (iv) platform, i.e., “Affymetrix U133Plus2.0”, annotation probe “HGU133plus2”
(Table 5).

Various Bioconductor packages with the R platform were used (Affy, AffyQCReport,
AffyRNADegradation, AnnotationDbi, Annotate, Biobase, Lima, and HGU133a2cdf) to
assess the quantifiable outcomes. Robust multi-array analyses (RMA) were used to quantify
perfect matches (PM) and mismatches (MM). For the RNA degradation analysis of the
samples, AffyRNAdeg, summary AffyRNAdeg, and plotAffyRNAdeg were used to check
the quality of RNA.

Normalization was used to compare microarray datasets. The pheno-data files of these
datasets were organized in an identifiable format [68]. Background correction, i.e., for a
perfect match (PM) and mismatch (MM), was calculated as given in the equation. Robust
multi-array analysis (RMA) was used to remove local artifacts and noise [69,70]:

PMijk = BGijk + Sijk (1)

where PM is a perfect match with the background (BG) caused by optical noise and
nonspecific binding (S); ijk is the signal for probe j of probe set k on array i.

BG(PMijk) = E[Sijk|PMijk] > 0 (2)

Sijk∼Exp(λijk) BGijk∼N(βi,σ2) (3)

Here, PM-data combines a background (BG) and a signal or expression (E). The
Bioconductor “Array Quality Metrics” package was used to analyze the dataset, which was
normalized to the median expression level of each gene [69,71,72]. The expression value
of a transcript with a p-value < 0.05 was considered a marginal log transformation and
the quantile normalization of the arrays brought them to the same scale. The gene–gene
covariance matrix of each dataset, ignoring the missing values, was calculated across all
arrays (54,675 affyIDs). The formula for the transformation was:

Xnorm = F2−1(F1(x)) (4)

where F1 and F2 are the distribution functions of the actual and reference chips, respectively.
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Table 5. Phenotype characteristics data for cDNA datasets.

S. No. Dataset Accession AffyIDs Total Samples Size of Arrays Tissues Conditions

1 GSE6489 54675 6 1164 × 1164 Endothelial cells
Hypertensive

vs.
normatensive

2 GSE6573 54675 6 1164 × 1164 Adipose tissue
Hypertensive

vs.
normatensive

3 GSE10767 54675 7 1164 × 1164 Endothelial Cell
Hypertensive

vs.
normatensive

4 GSE17814 54675 18 1164 × 1164 Endothelial cells
Hypertensive

vs.
normatensive

5 GSE19136 54675 12 1164 × 1164 lLft mammary artery
Hypertensive

vs.
normatensive

6 GSE22255 54675 40 1164 × 1164 Blood cells
Hypertensive

vs.
normatensive

7 GSE22356 54675 38 1164 × 1164 Blood cells
Hypertensive

vs.
normatensive

8 GSE24752 54675 6 1164 × 1164 Blood cells
Hypertensive

vs.
normatensive

9 GSE37455 54675 41 1164 × 1164 Kidney
Hypertensive

vs.
normatensive

10 GSE38783 54675 24 1164 × 1164 Endothelial cell
Hypertensive

vs.
normatensive

11 GSE28345 32321 8 1050 × 1050 Kidney
Hypertensive

vs.
normatensive

12 GSE71994 32321 40 1050 × 1050 Blood cells
Hypertensive

vs.
normatensive

13 GSE87493 32321 32 1050 × 1050 Blood cells
Hypertensive

vs.
normatensive

14 GSE113439 32321 26 1050 × 1050 Lung tissue
Hypertensive

vs.
normatensive

15 GSE124114 32321 18 1050 × 1050 Endothelial Cell
Hypertensive

vs.
normatensive

16 GSE3356 22283 9 712 × 712 Smooth muscle
Hypertensive

vs.
normatensive

17 GSE11341 22283 12 712 × 712 Endothelial cells
Hypertensive

vs.
normatensive
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Table 5. Cont.

S. No. Dataset Accession AffyIDs Total Samples Size of Arrays Tissues Conditions

18 GSE28360 32321 14 1050 × 1050 Kidney
Hypertensive

vs.
normatensive

19 GSE42955 32321 29 1050 × 1050 Heart
Hypertensive

vs.
normatensive

20 GSE67492 32321 6 1050 × 1050 Heart
Hypertensive

vs.
normatensive

21 GSE69601 32321 6 1050 × 1050 Blood cells
Hypertensive

vs.
normatensive

22 GSE70456 49495 16 732 × 732 Endothelial Cell
Hypertensive

vs.
normatensive

We used the RMA algorithm to calculate the averages between probes in a probe set
to obtain a summary of intensities. The Bioconductor “AffyRNADegradation” package
was used for the RNA degradation analysis and to measure the quality of RNA in these
samples [73,74]. In this study, we identified differentially expressed genes of each dataset by
pairwise comparison [75] by selecting two tissues or cell types (indicating cases vs. control).
After a baseline and normalized median expression, significant DEGs were selected based
on the following threshold parameters: FDR < 0.05, logFC > 1, p-value ≤ 0.05, and average
expression level (AEL) ≥ 40%. The list of genes was further studied for significant overlap
with various gene sets for functional annotation.

4.2. Meta-Analysis

We performed a meta-analysis of the twenty-two Affymetrix cDNA datasets (cohorts)
related to hypertension. We conducted this analysis using random effects models of R
package Meta (http://cran.r-project.org/web/packages/meta/index.html, accessed on
14 November 2021). For the p-value significance (p < 0.05), Cochran’s Q statistic was used to
test the heterogeneity of each gene. We used the Benjamini–Hochberg method to calculate
the FDR for differentially expressed genes in relation to hypertension following the meta-
analysis. The Benjamini–Hochberg method was used for multiple testing corrections [76].
DEGs and duplicated pots along with the measurements of quality weights were shortlisted
through the Limma package, a modified statistic method. The moderated statistics were
calculated; genes were ranked, and p-values were measured [77].

4.3. K-Fold Cross-Validation

We used K-fold cross-validation and bootstrap tests to evaluate the accuracy in differ-
ential analysis. This approach has the advantage of ultimately using all data samples for
training and research [78]. This was used to estimate the simulation analysis and to equate
and choose the right model for predictive modeling errors. Usually, this method makes it
is easier to calculate the estimated average error and is used to validate the differentiated
genes with the Bioconductor Boot package. In molecular analysis, boot trapping is effec-
tively used to correct the bias. The generalized Gaussian linear models were applied and
the ‘cv.glm’ method was employed to test the k-fold cross-validation. It approximates the
true error as the average error:

E = 1/K ∑K
i=K Ei (5)

http://cran.r-project.org/web/packages/meta/index.html
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The Gaussian rule remains in leave-one-out cross-validation (LOOCV). The LOOCV
approach is called the test set and the remainder of the data are used as a training set [79].
For training and other testing, we used N-1 subsets. Increasing the number of plugs would
reduce and make valid the distraction of the true error rate estimator [80]. As the average
error rate in test cases, the true error is evaluated:

E = 1/N ∑N
i=K Ei (6)

4.4. Gene Ontology (GO) and Pathway Enrichment Analyses

To identify the functional genes and biological pathways significantly involved in
selected DEGs, Gene Ontology analyses were performed using the g:Profiler online server,
representing gene product properties and biological functions [81]. GO is a standard
classification system used to determine the significant signaling pathways for biological
and molecular functions and cellular components of differential expressed genes. We
analyzed the pathway enrichment of DEGs using the FunRich tool version 3.1.3 with
significant p-values < 0.05 [82]. PathVisio3tool was utilized to find and reconstruct the
cellular pathways of potential candidate genes and possible mechanisms of DEGs were
studied based on the available clinical research literature and databases [83].

4.5. Examination of Transcription and Regulatory Motifs of DEGs

We predicted the potential regulators of differentially expressed genes using the
FunRich tool, as cells evolved a related transcription network composed of transcription
factors (TFs) and other signaling molecules. These gene regulators are associated with
various biological and pathological functions [84]. In proteins, the motive defines the
connection between the secondary structural elements, and in all instances the spatial
sequences of residues of the amino acids, encoded by genes in any order, may be similar.
We used the Motif Search online tool to analyze the link between the primary sequence
and the tertiary structure for the structural motives of differentially expressed genes (https:
//www.genome.jp/tools/motif/, accessed on 14 November 2021).

4.6. Mutation Analysis

Mutations resulting from a pathological, environmental, inherited disease process
and other related conditions can be understood to decode genetic variations by genotype–
phenotype associations. The human genome contains thousands of SNVs (single-nucleotide
variants), and many are known for the progression of the disease. Approximately 21 per-
cent of amino acid substitutions are known to be associated with disease progression in
correspondence with missense single-nucleotide variants located at PTM (post-translation
modification) protein sites. The chemical modification of the amino acid, thus, extends the
functionality of the associated protein [85]. Mutations of differentially expressed genes were
analyzed using the online ProteomeScout Portal [78]. The needle plot mutation analysis
provided a visual overview of the position, frequency, and functional significance of all
identified mutations in our DEGs. PTM sites with the types of mutations and the predicted
disordered region of protein sequences were observed.

4.7. Protein Product Co-Expression Network Analysis

To investigate the interactions between the protein products of the top-ranked dif-
ferentially expressed genes related to hypertension, STRING database version 11.0 (https:
//string-db.org/, accessed on 14 November 2021) was used to construct a protein co-
expression network with nodes consisting of genes and edges derived from experimentally
validated protein–protein interactions. The protein network calculated based on the neigh-
borhood score (nscore) was computed from the interactive nucleotide count with higher
confidence and true positive values. The co-expression score based on RNA expression
patterns and protein co-regulation was studied using the STRING database, and annotated
keywords (FDR < 0.05) were observed.

https://www.genome.jp/tools/motif/
https://www.genome.jp/tools/motif/
https://string-db.org/
https://string-db.org/
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4.8. Ethical Approval, Collection of Blood Samples, and Clinical Description

The approval of the study and informed consent were obtained from the Research Ethi-
cal Committee, Riphah Institute of Pharmaceutical Sciences (Ref. No. REC/RIPS/2017/015).
We collected a total of 100 individual blood samples with an equal ratio of controls to cases
(n = 50). Blood samples of hypertension patients were collected randomly from Khyber
Pakhtunkhwa, a Province of Pakistan. The blood pressure (BP) values of selected partici-
pants were checked twice on the resting phase using a digital automatic electronic monitor
(OMRON M2 basic) before sampling. The BMIs of the selected individuals were calculated
as per WHO-approved guidelines [86].

4.8.1. Inclusion Criteria

Inclusion criteria were as follows: (1) pathologically confirmed cases of hypertension;
(2) new patients diagnosed by the Khyber Pakhtunkhwa Hospital for the first time; (3) pa-
tients aged ≥18 years; (4) a random sampling technique was used to collect blood samples
for each case and control from different individuals and prior consent from subjects of
some families (especially for females). Patients and their family members agreed to provide
blood samples for scientific research and consent to the publication of research data.

4.8.2. Exclusion Criteria

Exclusion criteria were as follows: (1) pathologically confirmed local vascular invasion;
(2) cases with multiple and complex diseases; (3) cases with diabetes, cancer, or immune
disorders; (4) patients with a history of surgery in the past 3-years.

4.9. RNA Extraction and Quantification

Here, 300 µL of each blood sample was transferred into a 1.5ml Eppendorf tube
containing 700 µL triazole. These tubes were gently mixed and incubated at 25 ◦C for 5 min.
Next, 400 µL of chloroform was added into these tubes and kept for 3 min. The mixture
was centrifuged at 12,000 rpm for 10 min at 4 ◦C for phase separation. The aqueous upper
layer was transferred into a new 1.5ml tube while keeping it on ice, then isopropanol was
added in equal proportions. Tubes were kept on ice (−20 ◦C) for 10 min in a horizontal
position to precipitate RNA. Samples were centrifuged at 12,000 rpm at 4 ◦C for 10 min,
then the supernatant was discarded. The pellet was washed twice with 1 ml of 70% ethanol
at 7500 rpm for 5 min and was air-dried. Next, 40 µL of RNase-free water was added and
RNA samples were stored at −80 ◦C [79,80]. RNA was quantified at 260, 280, and 320 nm
by Nanodrop (Skanit RE 4.1, Thermo Scientific, Waltham, MA, USA) [87].

4.9.1. cDNA Synthesis

The extracted RNA was converted into cDNA using a cDNA synthesis kit (Vivantis
cDSK01-050). Next, 10 µL of the cDNA synthesis mix was added to each RNA–primer
mixture. After centrifugation at 10,000 rpm, the samples were incubated at 42 ◦C for 60 min.
The reaction was terminated by incubating the tubes at 85 ◦C for 5 min. The tubes were
chilled on ice and centrifuged under the same conditions. The synthesized cDNA was
directly used for further analysis [1,88].

4.9.2. Quantitative Real-Time PCR Analysis

The PrimerBank server was used to design primers of differentially expressed genes [89]
(Table 6). Polymerase chain reactions were performed on a Galaxy XP Thermal Cycler
(BIOER, PRC) [90]. To validate the differentially expressed genes of hypertension, qRT-PCR
was performed using MIC-PCR (BioMolecular System) under recommended conditions [91].
We selected the 7 top-ranked genes during the system-level analysis and observed that
their correlation with the etiology of hypertension was not well studied. Reactions were set
up to a final volume of 10 µL using 2.6 µL of cDNA (1:10), 5 µL of SYBR Green Master Mix,
and 0.4 µL of each gene-specific reverse and forward primer. The final compositions of the
reaction mixture remained the same for differentially expressed genes and reference genes.
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The GAPDH was used as an internal reference and a two-step procedure was applied, while
qPCR was used to detect the expression of GAPDH. The relative expression level of each
differential gene in each blood sample was calculated with the GAPDH expression level as
the “1” standard value. The cycling conditions included: 95 ◦C for 12 min, 40 cycles of 95 ◦C
of 15 s, 57 ◦C for 20 s, and 72 ◦C for 20 s. A final extension step was carried out at 72 ◦C for
10 min [92]. The PCR products were analyzed via melting analysis graph [93]. In the PCR
process, during each cycle, the specifically amplified products are doubled in exponential
form. The CT (cycle threshold) is a logarithmic value converted to a relative quantity [94].
The average CT values were calculated for both the target and reference genes. In the next
step, the ∆Ct (delta threshold) values were calculated for the target and reference genes
using this formula: ∆Ct = CT value of the target–CT value of the reference gene.

Table 6. Primer sequences and amplicon sizes of selected genes used in the real-time qPCR reaction.

Gene Symbol Forward Primer Reverse Primer Amplicon Sizes (bp)

ADM ATGAAGCTGGTTTCCGTCG GACATCCGCAGTTCCCTCTT 146
EDN1 AAGGCAACAGACCGTGAAAAT CGACCTGGTTTGTCTTAGGTG 237

ANGPTL4 GTCCACCGACCTCCCGTTA CCTCATGGTCTAGGTGCTTGT 212
NFIL3 AGAACAAACTAATTGCACTGGGA GCTCGTCCACAAATGAACTCAC 192
MSR1 CCAGGTCCAATAGGTCCTCC CTGGCCTTCCGGCATATCC 94

CEBPD CGCCATGTACGACGACGAGA TGCTGTTGAAGAGGTCGGCG 116
USP8 GTCCAGGAGTCACTGCTAGTT AGGAGCCAGTTTTCATAGCCT 238

GAPDH (Reference gene) GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCAACTTCTCATGG 197

The ∆∆Ct (delta threshold) value indicates the differences between the expression lev-
els of differentially expressed genes and the reference gene [95]. Finally, 2∆∆Ct values were
calculated, presenting the fold differences in gene expression of DEGs with controls [96].
We estimated the absolute correlation of these DEGs to allow a complete description of the
expression profiles. The hierarchical clustering analysis of genes regarding their expression
was evaluated [97] using an online one-matrix CIMminer tool [98].

5. Conclusions

This study helps to provide new insights into the discovery of new gene variants
related to hypertension. Here, we found the significant association of ADM, EDN1,
ANGPTL4, USP8, NFIL3, MSR1, and CEBPD genes with hypertension. The qPCR analysis
and expression profiling highlighted the differential expression levels of these genes in
cases compared to controls, revealing their pathological role in disease development. These
molecular entities would be considered as potential drug targets that would help to modify
the therapeutic strategies of hypertension and other cardiovascular diseases.
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