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Abstract: In the current study, a 2D similarity/docking-based study was used to predict the potential
binding modes of icotinib, almonertinib, and olmutinib into EGFR. The similarity search of icotinib,
almonertinib, and olmutinib against a database of 154 EGFR ligands revealed the highest similarity
scores with erlotinib (0.9333), osimertinib (0.9487), and WZ4003 (0.8421), respectively. In addition,
the results of the docking study of the three drugs into EGFR revealed high binding free energies
(∆Gb =−6.32 to−8.42 kcal/mol) compared to the co-crystallized ligands (∆Gb =−7.03 to−8.07 kcal/mol).
Analysis of the top-scoring poses of the three drugs was done to identify their potential binding
modes. The distances between Cys797 in EGFR and the Michael acceptor sites in almonertinib and
olmutinib were determined. In conclusion, the results could provide insights into the potential
binding characteristics of the three drugs into EGFR which could help in the design of new more
potent analogs.

Keywords: icotinib; almonertinib; olmutinib; similarity search; docking

1. Introduction

Currently, many of the computational approaches are widely used in the discovery and
development of new drug candidates [1,2]. Most of these approaches were supported by the
advances in macromolecular X-ray crystallography. To date, more than 180,000 biological
macromolecules are available on the protein data bank. These crystals provide crucial
information about the druggable proteins and their co-crystallized ligands, which were
used in the discovery of new drug candidates [3,4].

Among these computational techniques, the 2D similarity search is the fast and
popular similarity search [5]. It includes different methods such as substructure and
fingerprint similarity search. To quantify the degree of similarity between molecules,
several metrics such as Tanimoto, Dice, and Cosine coefficient are being used [6]. Among
these metrics, Tanimoto coefficient [7] was the most popular.

Molecular docking is one of the most commonly used computational techniques in
medicinal chemistry and drug design [8]. Evaluation of the binding affinity, and interac-
tions are among the valuable results that could be obtained from molecular docking [9]. In
addition, the prediction of the binding modes of the new drug candidates could also be
achieved using molecular docking studies [10].
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Different computational techniques were also applied in the production of the ratio-
nally designed kinase inhibitors [11,12]. Targeting the oncogenic kinases was in focus in
the last two decades supported by the high rates of cancer incidence and mortality [13].
Among these kinases, the epidermal growth factor receptor (EGFR) attracted considerable
attention as a valid target in cancer chemotherapy [14]. Since the approval of the first
EGFR inhibitor (gefitinib) by the FDA in 2003, huge efforts were conducted using com-
putational chemistry to design new kinase inhibitors [15]. The great success in this area
was confirmed by the development of many small molecules with potent inhibitory activi-
ties [15]. More than ten of these inhibitors were also approved as EGFR-targeting anticancer
agents [16]. Among these inhibitors, icotinib (Figure 1) is a potent and selective EGFR inhibitor
(IC50 = 5 nM) that was approved for the treatment of non-small cell lung cancer (NSCLC) [17].
In addition, almonertinib is a third-generation EGFR-TKI that was approved in 2020 in
China for advanced EGFR T790M mutation-positive NSCLC [18,19]. Almonertinib showed
higher inhibitory activities against several mutant EGFR than the wild-type EGFR.
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Olmutinib (Figure 1) was also approved for the treatment of advanced EGFR T790M
mutation-positive NSCLC in South Korea [20]. It acts as an irreversible inhibitor of EGFR,
where it forms a covalent bond with the cysteine residue (Cys797) in the kinase. The kinase
inhibition assay of olmutinib revealed inhibitory activity at an IC50 value of 0.01 µM against
EGFR (790M/L858R) [21].

However, none of the three drugs (Figure 1) was co-crystallized with any of the
target kinases. In addition, very little work was conducted to investigate their binding
modes and interactions into their target kinases. Accordingly, investigation of the potential
binding modes and interactions of the three drugs into EGFR could help in understanding
their biological activities and could also support the design of more potent analogs in the
future. Based on the previous reports, it was generally expected that in the same target,
the ligands with high structural similarity exhibit similar binding interaction [22,23]. In
the current study, a 2D similarity/docking-based study was used to predict the binding
modes/interactions of each of the three drugs. The similarity search of the three drugs was
performed against a database of 154 EGFR ligands obtained from the protein data bank
(https://www.rcsb.org/ accessed on 28 July 2021). The ligand with the highest similarity
(Tanimoto > 0.8) was identified and its binding mode into EGFR was used as a reference
for the test compounds.

2. Results and Discussion
2.1. Similarity Search

Similarity search is a commonly used approach in drug research to identify a com-
pound in the database with the highest similarity to the query molecules [24,25]. In
the current study, the 2D similarity of the three drugs, icotinib, almonertinib, and olmu-
tinib was evaluated against a database of 154 EGFR ligands obtained from the protein

https://www.rcsb.org/


Molecules 2021, 26, 6423 3 of 16

data bank (supplementary data, Table S1). The similarity workbench in ChemMine tools
(https://chemminetools.ucr.edu/) [26] was used to calculate the maximum common sub-
structure (MCS) similarities between the compound pairs (MCS Tanimoto). The results in
the form of similarity scores were used in the ranking of the compound database. The simi-
larity search was performed for each of the three compounds, icotinib, almonertinib, and
olmutinib, separately against EGFR-ligands. The search results were ranked in descend-
ing order to identify the ligand with the highest similarity. Discovery studio visualizer
(v16.1.0.15350) [27] was used to generate the overlay figures of the tested drugs. More-
over, the molecular properties of these compounds were calculated using Molsoft L.L.C.
(http://molsoft.com/mprop/ accessed on 7 August 2021) [28].

2.1.1. Similarity Search for Icotinib

The results of the 2D similarity search of icotinib revealed the highest similarity score
with erlotinib (MCS Tanimoto = 0.9333), Figure 2. Icotinib is a cyclized analog and is
considered as a me-too drug of erlotinib [29]. An overlay view of the 3D representations of
icotinib and erlotinib also showed superposition of the equivalent fragments in the two
compounds, Figure 2.
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Figure 2. Structural similarity of icotinib and erlotinib: (A) 2D representations showing the equivalent
fragments indicated by the same color; (B) overlay view of the two molecules (3D representations).

The high similarity score between the two drugs was matched with their closely
related molecular properties, supplementary data, Figure S1. The two compounds have
comparable molecular volumes and closely related physicochemical properties. In addition,
the number of hydrogen bond donors (HBDs) and acceptors (HBAs) are the same in the
two molecules.

2.1.2. Similarity Search for Almonertinib

The results of the similarity search of almonertinib revealed a similarity score of
0.9487 (MCS Tanimoto) with osimertinib, Figure 3. The high structural similarity score
between almonertinib and osimertinib was matched with the structural analysis of the
two compounds, whereby almonertinib could be obtained by replacement of the methyl
group at N1 of the pyrrole ring in osimertinib by cyclopropyl moiety. Based on this small
difference in the chemical structures of the two compounds, almonertinib can also be
considered a “me too” drug of osimertinib.

https://chemminetools.ucr.edu/
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The molecular properties of almonertinib and osimertinib were calculated using
Molsoft molecular property prediction. The results are provided in the supplementary
data, Figure S2. The results revealed a slight increase in molecular volume (~7%) that was
observed in the replacement of the methyl group in osimertinib by cyclopropyl group in
almonertinib. However, there was no change in the molecular polar surface area, number
of HBAs, or HBDs. The two molecules are also active against EGFR T790M and are used in
the treatment of EGFR T790M +ve NSCLC.

2.1.3. Similarity Search for Olmutinib

The results of the similarity search of olmutinib also revealed a similarity score
of 0.8421 (MCS Tanimoto) with WZ4003, an EGFR T790M inhibitor, Figure 4. The 5-
chloropyrimidine in WZ4003 was replaced by thieno[3,2-d]pyrimidine in olmutinib. The
molecular properties of olmutinib and WZ4003 were also calculated using Molsoft molec-
ular properties prediction. The results are provided in the supplementary data, Figure
S3. These results revealed nearly equal molecular volumes for the two compounds. The
number of HBAs and HBDs are also identical in the two compounds. The two compounds
are also effective against EGFR T790M.
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2.2. Docking Study into EGFR

The docking studies of icotinib, almonertinib, and olmutinib were performed using
AutoDock 4.1 [30]. Erlotinib, osimertinib, and WZ4003 were used as reference drugs in
these studies based on the results of the 2D similarity search. Visualization of the binding
modes of the three compounds was performed by discovery studio visualizer [27,31].

2.2.1. Docking Study of Icotinib

The crystal structure of EGFR tyrosine kinase domain in complex with erlotinib (pdb:
1M17) [32] was selected for this study. Selection of this crystal was based on the high
similarity score of icotinib and erlotinib (MCS Tanimoto = 0.9333). To validate the docking
procedures, erlotinib was redocked into the active site of EGFR. The results revealed
superposition of the redocked erlotinib with the co-crystallized ligand with RMSD of
1.45 Å, Figure 5.
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binding mode of the redocked erlotinib overlaid with the co-crystallized ligand (yellow sticks); (B) 2D binding mode of the
co-crystallized erlotinib showing different types of binding interactions with amino acids in the active site of EGFR.

The redocked erlotinib showed similar binding interaction with those of the co-
crystallized erlotinib. Each of the two molecules exhibited one conventional hydrogen
bond with the key amino acid Met769. In addition, similar hydrophobic interactions with
the hydrophobic residues in EGFR were also observed, Figure 6.

To identify the equivalent binding interactions formed by the two molecules, LigPlot
view was generated. The superposed LigPlot view revealed that most of the key binding
interactions were preserved. Each of the two molecules exhibited one conventional hy-
drogen bond with Met769. In addition, the two molecules exhibited similar hydrophobic
interactions with Ala719, Lys721, The766, Gln767, Leu768, Gly772, Leu694, Phe771, Leu820,
and Asp831, Figure 6.

Icotinib was also docked into the crystal structure of EGFR (pdb: 1M17). The results
revealed a binding affinity of −8.42 kcal/mol compared to −7.26 kcal/mol for erlotinib.
The higher affinity of icotinib toward EGFR may be matched with its higher inhibitory
activity against EGFR [17,33]. The binding modes/interactions of the top-scoring ten
conformations of icotinib into EGFR were investigated to identify the pose which has
similar orientation and binding interactions with the key amino acids like erlotinib. The
results revealed that the seventh-ranked conformation superposed nicely over the co-
crystallized erlotinib, where the quinazoline nuclei of the two compounds were located in
the same plane and superposed each other, Figure 7.
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The two ethynyl phenyl moieties in icotinib and erlotinib superposed each other into
the back pocket of EGFR, whereby each moiety displayed one hydrophobic interaction with
Lys721, Figure 7. The tetraoxacyclododecane ring in icotinib also adopted an orientation
into the front pocket of EGFR like the two methoxyethoxy moieties in erlotinib. The
similar orientation of the two molecules allowed the N2 in the quinazoline nucleus of
icotinib to form one conventional H-bond with the key amino acid Met769. However, this
hydrogen bond was longer (2.14 Å) compared to the corresponding hydrogen bond formed
by erlotinib (1.64 Å), Figure 8.
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ing interactions to those of co-crystallized erlotinib. The quinazoline nucleus in the two 
compounds also exhibited one carbon hydrogen bond with Gln767. Both icotinib and er-
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bond lengths (Å).

Investigation of the binding interactions of icotinib into EGFR revealed similar binding
interactions to those of co-crystallized erlotinib. The quinazoline nucleus in the two
compounds also exhibited one carbon hydrogen bond with Gln767. Both icotinib and
erlotinib also showed similar hydrophobic interactions with the hydrophobic residues in
EGFR. To illustrate the equivalent interactions of the two compounds, a superposed LigPlot
view of the two compounds was generated, Figure 9.
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2.2.2. Docking Study of Almonertinib

To investigate the potential binding mode of almonertinib, the crystal structure of
the wild-type EGFR bound to the osimertinib (pdb: 4ZAU) inhibitor was used [34]. The
selection of this crystal was based on the high similarity score (0.9487) between almonertinib
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and the co-crystallized ligand, osimertinib. The study was performed using AutoDock
4.2. Validation of the docking procedures was also performed whereby the co-crystallized
ligand was redocked into the active site of EGFR. The results also revealed the superposition
of the redocked osimertinib with the co-crystallized ligand with RMSD of 1.14 Å, Figure 10.
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The binding interactions of the redocked osimertinib were also investigated in com-
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docked osimertinib exhibited two conventional hydrogen bonds with Met793 and Cys797. 
The two molecules also showed similar hydrophobic interactions with the same amino 
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Figure 10. Binding mode/interactions of osimertinib into the active site of EGFR (pdb: 4ZAU): (A) 3D binding mode of
the redocked osimertinib (shown as sticks colored by element) overlaid with the co-crystallized ligand (yellow sticks);
(B) 2D binding mode of the co-crystallized osimertinib showing the binding interactions with amino acids in the active site
of EGFR.

The binding interactions of the redocked osimertinib were also investigated in compar-
ison with those of the co-crystallized ligand. Like the co-crystallized ligand, the redocked
osimertinib exhibited two conventional hydrogen bonds with Met793 and Cys797. The
two molecules also showed similar hydrophobic interactions with the same amino acids in
EGFR, Figure 11.
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To identify the equivalent binding interactions of the redocked and co-crystallized
osimertinib, a superposed LigPlot view of the two molecules was generated, Figure 11. The
figure showed that the two molecules have two equivalent hydrogen bonds with Met 793
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and Cys797. In addition, similar hydrophobic interactions were formed by each of the two
molecules with Leu792, Pro794, Leu718, Gly719, Val726, Ala743, and Gly796 amino acids
in EGFR.

Almonertinib was docked into the active site of EGFR (pdb: 4ZAU) and the results
obtained were compared with those of the co-crystallized osimertinib. The results revealed
binding free energy of −6.32 kcal/mol compared to −7.03 kcal/mol for osimertinib. The
top-scoring ten conformations of almonertinib were investigated to identify the best one
which superposes with the co-crystallized osimertinib and exhibits similar binding interac-
tions with the key amino acids in EGFR. Among these, the second-ranked pose showed
superposition with the co-crystallized osimertinib and exhibited similar interactions with
EGFR, Figure 12.
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Investigation of the binding mode of the docked almonertinib revealed superposition
of its pyrrole ring with the pyrrole ring in osimertinib. In addition, superposition of the
pyrimidine rings in the two molecules was also observed, Figure 12.

Investigation of the binding interactions of almonertinib revealed three conventional
hydrogen bonds with Met793 and Cys797. In addition, multiple hydrophobic interac-
tions were also observed. To compare these interactions with those of the co-crystallized
osimertinib, a LigPlot view of the two compounds was generated, Figure 13.

However, almonertinib and osimertinib are classified as third-generation EGFR in-
hibitor which also binds to the cysteine residue (Cys797) in EGFR kinase domain through a
covalent bond [18,35]. Herein, the distances between the thiol group in Cys797 in EGFR and
β-carbon of the Michael acceptor site in each of the two compounds were measured. The
results revealed a distance of 4.765 Å for almonertinib compared to osimertinib (3.350 Å),
Figure 14.

In conclusion, almonertinib exhibited lower binding free energy (∆Gb = −6.32 kcal/mol)
compared to osimertinib (∆Gb = −7.03 kcal/mol). In addition, the β-carbon of the Michael
acceptor site in almonertinib was located at a longer distance from the Cys797 in EGFR
compared to osimertinib. However, almonertinib exhibited higher inhibitory activity
against the wild-type EGFR [18,35]. This controversy could be attributed partially to the
multi-target activity of the two compounds and to the different assay methods used in the
biological evaluation of the kinase inhibitory activity of the two drugs.
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Figure 13. Binding interactions of almonertinib (shown as purple sticks) into EGFR (pdb: 4ZAU):
(A) the docked almonertinib; (B) superposed LigPlot view of the docked almonertinib overlaid with
the co-crystallized osimertinib (gray sticks), red circles/ ellipses show the equivalent interactions of
the two molecules, hydrogen bond interactions are shown in olive green dotted lines (Met793, and
Cys797) and hydrophobic interactions are shown in brick red dotted lines.
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2.2.3. Docking Study of Olmutinib

In the docking study of olmutinib, the crystal structure of T790M- mutant EGFR (pdb:
5X2K) was used [36]. The selection of this crystal was based on the results of the similarity
search which revealed the highest similarity (MCS Tanimoto = 0.8421) with WZ4003, the
co-crystallized ligand in this crystal. Validation of the docking study was first done by
redocking of WZ4003 into the EGFR T790M kinase domain. The results of the docking
revealed the superposition of the redocked WZ4003 over the co-crystallized ligand with
RMSD of 1.17 Å, Figure 15.
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conventional hydrogen bonds with the key amino acid Met793 with bond lengths of 1.62 
and 2.11 Å. WZ4003 also exhibited multiple hydrophobic interactions Leu718, Val726, 
Ala743, Met790, Arg841, and Leu844, Figure 16. However, one unfavorable interaction of 
the acceptor-acceptor type was observed between the oxygen atom of the methoxy group 
in WZ4003 and the oxygen atom of the carbonyl group in Met793. The redocked WZ4003 
also showed similar binding interactions with those of the co-crystallized WZ4003. One 
conventional hydrogen bonding interaction was observed between the NH group of the 
redocked WZ4003 and Met793 with bond length of 2.84 Å. In addition, the redocked 
WZ4003 also showed multiple hydrophobic interactions similar to those of the co-crystal-
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To identify the equivalent binding interactions between the redocked and co-crystal-
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793. In addition, they showed equivalent hydrophobic interactions with Leu718, Ala743, 
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Figure 15. Binding mode/interactions of WZ4003 (shown as ticks colored by element) into EGFR T790M (pdb: 5X2K):
(A) 3D binding mode of the redocked WZ4003 overlaid with the co-crystallized ligand, WZ4003 (yellow sticks); (B) 2D
binding mode of the co-crystallized WZ4003 showing different types of the binding interactions with amino acids in the
active site of EGFR.

Investigation of the binding interactions of the co-crystallized WZ4003 revealed two
conventional hydrogen bonds with the key amino acid Met793 with bond lengths of 1.62
and 2.11 Å. WZ4003 also exhibited multiple hydrophobic interactions Leu718, Val726,
Ala743, Met790, Arg841, and Leu844, Figure 16. However, one unfavorable interaction of
the acceptor-acceptor type was observed between the oxygen atom of the methoxy group in
WZ4003 and the oxygen atom of the carbonyl group in Met793. The redocked WZ4003 also
showed similar binding interactions with those of the co-crystallized WZ4003. One conven-
tional hydrogen bonding interaction was observed between the NH group of the redocked
WZ4003 and Met793 with bond length of 2.84 Å. In addition, the redocked WZ4003 also
showed multiple hydrophobic interactions similar to those of the co-crystallized ligand.

To identify the equivalent binding interactions between the redocked and co-crystallized
WZ4003, a superposed LigPlot view of the two molecules was generated, Figure 16. The
figure illustrated that the two molecules have an equivalent hydrogen bond with Met
793. In addition, they showed equivalent hydrophobic interactions with Leu718, Ala743,
Leu792, Pro794, and Gly796.
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The binding interactions of olmutinib were also visualized by LigPlot+, where two 
conventional hydrogen bonds with Met793 and Cys797 were present, Figure 18. In addi-
tion, a third hydrogen bond between N1 of the pyrimidine ring in olmutinib and Met793 
was detected by LigPlot+. This hydrogen bond could account even partially for the higher 
binding free energy of olmutinib compared to WZ4003. The superposed LigPlot view of 
olmutinib and WZ4003 revealed two equivalent hydrogen bonds with Met793. The two 
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Figure 16. Binding interactions of the redocked WZ4003 (shown as purple sticks) into EGFR T790M
(pdb: 5X2K): (A) redocked WZ4003; (B) superposed LigPlot view of the redocked WZ4003 (purple
sticks) overlaid with the co-crystallized ligand (gray sticks), the red circles/ellipses show the equiva-
lent binding interactions of the two molecules, hydrogen bond is shown in olive green dotted lines
(Met793), and hydrophobic interactions are shown in brick red dotted lines.
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Olmutinib was also docked into the crystal structure of EGFR T790M (PDB: 5X2K)
to identify the potential binding mode and interactions. The results of the docking study
of olmutinib revealed a binding free energy of −8.40 kcal/mol compared to WZ4003
(−8.07 kcal/mol). The top ten scoring conformations of olmutinib were analyzed and their
binding modes and interactions were compared with those of the co-crystallized WZ4003.
The results also revealed that the sixth-ranked pose superposed with WZ4003 and formed
two hydrogen bonds with Met793 and Cyc797, Figure 17.
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The binding interactions of olmutinib were also visualized by LigPlot+, where two
conventional hydrogen bonds with Met793 and Cys797 were present, Figure 18. In addition,
a third hydrogen bond between N1 of the pyrimidine ring in olmutinib and Met793 was
detected by LigPlot+. This hydrogen bond could account even partially for the higher
binding free energy of olmutinib compared to WZ4003. The superposed LigPlot view of
olmutinib and WZ4003 revealed two equivalent hydrogen bonds with Met793. The two
molecules also exhibited equivalent hydrophobic interactions with Leu718, Ala743, Gln791,
Leu792, Gly796, and Leu844.
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Olmutinib was also reported to act as an irreversible EGFR mutant inhibitor [20]. The
irreversible inhibition of EGFR depends on the presence of the Michael acceptor site which
can bind covalently to the cysteine residue in EGFR. Accordingly, we investigated the
binding mode of olmutinib to identify the location of the Michael acceptor site of olmutinib
into the active site of EGFR T790M, Figure 19. The results revealed that the β-carbon of the
acrylamide moiety in olmutinib is located at 4.087 Å away from the thiol group of Cys797
in EGFR compared to 4.120 Å for WZ4003.
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3. Conclusions

During the last two decades, the discovery and development of EGFR inhibitors
attracted a great attention of many researchers around the world. Among these inhibitors,
icotinib, almonertinib, and olmutinib were approved for the treatment of cancers. However,
they have not been yet co-crystallized with any of their target kinases. Accordingly,
investigation of the potential binding affinities, modes, and interactions of the three drugs
into EGFR could help in understanding the biological activities and support the design
of more potent analogs. In the current study, a 2D similarity/docking-based study was
performed to predict the potential binding modes of the three drugs. The 2D similarity
of the three drugs were evaluated against a database of 154 EGFR ligands obtained from
the protein data bank. Icotinib, almonertinib, and olmutinib showed similarity scores
(MCS Tanimoto) of 0.9333, 0.9487, and 0.8421 with erlotinib, osimertinib, and WZ4003,
respectively. The three drugs were docked into EGFR (pdb: 1M17, 4ZAU, and 5X2K), where
the results revealed binding free energies (∆Gb) in the range of −6.32 to −8.42 kcal/mol
compared with the co-crystallized ligands, erlotinib, Osimertinib, and WZ4003 (∆Gb = −7.03
to −8.07 kcal/mol). The top 10 scoring poses of each compound were analyzed to identify
the potential binding poses which superposed with the reference ligand and exhibited
equivalent interactions. Moreover, the distance between the thiol group of Cys797 in EGFR
and the β-carbon in the Michael acceptor site in almonertinib and olmutinib were also
determined (4.765 and 4.087 Å, respectively). In conclusion, the results of this study could
provide insights into the binding characteristics of icotinib, almonertinib, and olmutinib
into EGFR which could help in the understanding of their inhibitory activities as well as
assisting in the design of new more potent analogs.

4. Experimental
4.1. Similarity Search

A database of 154 of the EGFR ligands were downloaded from the protein data bank,
supplementary data, Table S1. The isomeric smiles of these compounds were uploaded to
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ChemMine Tools (https://chemminetools.ucr.edu/ accessed on 26 August 2021) [26]. The
similarity search was performed using Similarity workbench in ChemMine tools. The three
drugs, icotinib, almonertinib, and olmutinib were uploaded (smiles) to the webpage. Each
of the three drugs was compared with each compound in the database. The 2D similarity
scores (MCS Tanimoto) were calculated and the results are provided in the supplementary
data, Table S1.

The molecular properties of icotinib, almonertinib, and olmutinib and the corre-
sponding EGFR inhibitors, erlotinib, osimertinib, and WZ4003 were calculated using the
molecular property prediction in Molsoft L.L.C. (http://molsoft.com/mprop/ accessed on
7 August 2021) [28]. The results are provided in supplementary data, Figures S1–S3.

4.2. Molecular Docking

The docking study of icotinib, almonertinib, and olmutinib was performed in AutoDock
4.2 [30]. The docking study was performed into the crystal structure of EGFR (pdb:
1M17) [32], (pdb: 4ZAU) [34], and EGFR T790M (pdb: 5X2K) [36] of X-ray resolution
2.60, 2.80, and 3.20 Å, respectively. The crystal structures were downloaded from the
protein data bank (https://www.rcsb.org/ accessed on 28 July 2021). Preparation of
the ligand and protein files was done following the previous reports [37,38]. The dock-
ing procedures was performed following the previous reports [39,40]. A 3D grid box of
40 × 40 × 40 Å size (x, y, z) with the spacing of 0.375 Å centered at 22.01, 0.25, and 52.79 Å
for docking into EGFR (pdb: 1M17). In addition, a 3D grid box of 45 × 45 × 45 Å size
(x, y, z) with the spacing of 0.375 Å centered at −0.21, −50.29, and 17.98 Å for docking
into EGFR (pdb: 4ZAU). Moreover, a 3D grid box of 45 × 45 × 45 Å size (x, y, z) with the
spacing of 0.375 Å centered at −52.76, −1.11, and −20.6 Å for docking into EGFR (pdb:
5X2K). Validation of the docking study was performed by redocking of the co-crystallized
ligand. Visualization of the binding modes and interactions of the tested compounds was
done using Discovery Studio Visualizer [27] and LigPlot+ (v.2.1) [31].

Supplementary Materials: The similarity scores of icotinib, almonertinib, and olmutinib with
the compound database (Table S1) and the calculated molecular properties of the three drugs
(Figures S1–S3) are included in the supplementary data file.
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