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Abstract: Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney
injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and
urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely
on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and
filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1,
exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion
injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis,
and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone
modifications, non-coding RNAs) regulating genes critical for mitochondrial homeosta-
sis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER
crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the
selective clearance of damaged mitochondria, plays a dual role in kidney disease. While
PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by prevent-
ing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis
and CKD progression. For instance, macrophage-specific loss of mitophagy regulators
like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-
dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflam-
masome activation. In diabetic nephropathy, impaired mitophagy correlates with declin-
ing eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential.
Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants
(e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial
transplantation, which mitigates AKI by restoring bioenergetics and modulating inflamma-
tory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded
nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions,
including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic
reprogramming and fibrosis. These advances underscore mitochondria as central hubs
in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mito-
chondrial transplantation—hold transformative potential to mitigate kidney injury and
improve clinical outcomes. Additionally, dietary interventions and novel regulators such
as adenogens are emerging as promising strategies to modulate mitochondrial function
and attenuate kidney disease progression. Future research should address the gaps in
understanding the role of mitophagy in CAKUT and optimize targeted delivery systems
for precision therapies.
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1. Introduction
Mitochondria are double membrane-bound organelles with distinct morphological

features that regulate signaling pathways, energy metabolism, cell differentiation, prolifera-
tion, and apoptosis [1–7]. Additionally, mitochondria are essential for energy production
and serve as signaling hubs that regulate cellular responses to stress, including oxidative
damage and inflammation. More than 40% of mitochondrial proteins are associated with
human diseases, underscoring the crucial role of mitochondria in overall health. Mitochon-
drial diseases can manifest at any age and affect any organ system, either tissue-specific
or multisystemic, with various inheritance patterns [8–10]. Due to their genetic material,
mitochondria differ from nuclear components, and their dysfunction is associated with
numerous diseases, including those affecting the kidneys [9].

The kidney is one of the body’s most vital organs, playing a crucial role in maintaining
homeostasis within the human body. The kidneys comprise a complex three-dimensional
nephron structure that responds to various extracellular, inflammatory, neurological, and
hormonal signals [11–13]. Kidney diseases are frequently present as syndromes in clinical
settings, and they have various pathological classifications. Common symptoms include
unusual urination, swelling, and fatigue [14–16]. The percentage of deaths attributed
to kidney disease has consistently risen over the last twenty years. Kidney dysfunction
has now become the seventh leading risk factor for mortality [17–19]. One in ten people
globally suffers from chronic kidney disease (CKD), which is the tenth leading cause
of death worldwide. Diabetic kidney disease (DKD) and hypertensive kidney disease
(HKD) account for over 75% of CKD cases. This increasing burden is further intensified
by considerable disparities in treatment outcomes, with minority groups and individuals
living in poverty facing limited access to renal replacement therapies and experiencing
disproportionately poorer health outcomes [20–24].

After the heart, the kidneys have one of the highest demands on the body’s mitochon-
drial content and oxygen consumption. The reabsorption of solutes by the tubule cells
is an energy-intensive process that requires a large amount of ATP, primarily generated
through oxidative phosphorylation. This results in these cells having the highest mito-
chondrial content in the kidney [19,25,26]. Mitochondrial dysfunction generates excessive
reactive oxygen species (ROS), disturbing redox balance and promoting oxidative stress,
contributing to inflammation, fibrosis, and progressive kidney damage (Figure 1) [27]. In
parallel, damaged mitochondria release mtDNA and other damage-associated molecular
patterns (DAMPs) that trigger immune responses, e.g., via the cGAS-STING pathway,
thereby promoting inflammation and immune cell recruitment and contributing to kidney
injury and disease progression [26,28]. Furthermore, impaired mitochondrial function
drives myofibroblast activation and extracellular matrix accumulation, contributing to
tubulointerstitial fibrosis—a key pathological feature in the progression of chronic kidney
disease (CKD) [29,30]. In addition, kidney diseases are correlated with impaired mito-
chondrial homeostasis, which encompasses the dysregulation of mitochondrial biogenesis,
fusion dynamics, proteolytic activity, and mitophagy-mediated degradation [31,32].
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Figure 1. This figure summarizes the mechanisms of mitochondrial quality control, including mi-
tophagy, dynamics (fusion and fission), biogenesis, and the consequences of mitochondrial dysfunc-
tion. Fusion, mediated by OPA1, maintains mitochondrial function by merging membranes, while
fission, mediated by DRP1, separates damaged mitochondria for removal. Mitophagy selectively
eliminates dysfunctional mitochondria through pathways involving PINK1, PARKIN, NIX, BNIP3,
FUNDC1, LC3B, and P62. Biogenesis, regulated by TFAM and SIRT1, replenishes mitochondria. Mi-
tochondrial dysfunction leads to increased ROS, disturbed Ca2+ signaling, decreased ATP production,
and activation of apoptosis. Created with Biorender (accessed on 1 May 2025). Abbreviations: NIX,
NIP3-like protein X; BNIP3, BCL2/Adenovirus E1B 19 kDa protein-interacting protein 3; FUNDC1,
FUN14 domain-containing protein 1; PINK1, PTEN-induced kinase 1; PARKIN, Parkin RBR E3
ubiquitin protein ligase; P62, Sequestosome 1 (also called SQSTM1); LC3B, Microtubule-associated
protein 1A/1B-light chain 3B; OPA1, Optic atrophy 1 protein; DRP1, dynamin-related protein 1;
TFAM, mitochondrial transcription factor A; SIRT1, Sirtuin 1; ROS, reactive oxygen species; ATP,
adenosine triphosphate.

Given the mitochondria’s central role in kidney health and disease, targeting mito-
chondria for the treatment of kidney disease is crucial. A recent review by Takasu et al.
provides a comprehensive overview of mitochondrial dysfunction in diabetic kidney dis-
ease, with a particular emphasis on altered mitochondrial dynamics, oxidative stress, and
impaired mitophagy. They also discuss the therapeutic potential of agents such as SGLT2
inhibitors and GLP-1 receptor agonists in restoring mitochondrial function in DKD [33].
While their review focuses specifically on diabetic nephropathy, our article expands this
discussion to encompass a broader range of kidney diseases, including AKI, CKD, and
CAKUT anomalies, and further explores emerging mechanisms such as epigenetic regula-
tion and mitochondrial-ER crosstalk. This broader perspective underscores the centrality of
mitochondria in diverse renal pathologies and highlights additional therapeutic avenues.

2. Mitochondria in Kidney Health and Disease
The mitochondrion is a double-membrane organelle rich in enzymes, porins, and

translocases in the outer mitochondrial membrane (OMM). These molecules are essential
for exchanging metabolites and cations with the cytosol. In addition, apoptosis is closely
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linked to the OMM, as pro-apoptotic factors can be released from the intermembrane
space (space between the outer and inner mitochondrial membranes) when the OMM is
excessively permeabilized. In the process of apoptosis, the permeability of the OMM to a
variety of pro-apoptotic proteins increases, releasing the lethal proteins into the cytoplasmic
matrix and promoting apoptosis. The inner mitochondrial membrane (IMM) contains
highly impermeable lipid patterns, such as the phospholipid cardiolipin. There are more
proteins in the IMM (about one-fifth of all proteins contained in mitochondria) than in
the OMM. Hence, the IMM is responsible for complex biochemical reactions, including
transporting glutamic acid, ornithine, and nucleotides, oxidative phosphorylation, ATP
synthesis, and regulating mitochondrial fission and fusion [34,35].

Mitochondrial dynamics, i.e., the balance between fusion and fission of mitochondria,
is a tightly regulated process that plays a crucial role in maintaining cellular homeostasis.
This dynamic system is essential for key physiological functions such as cell cycle pro-
gression, programmed cell death, and the maintenance of mitochondrial integrity. Under
normal conditions, fusion and fission are well coordinated and ensure proper mitochondrial
form and function. However, this balance often shifts towards excessive fission in patholog-
ical conditions, leading to mitochondrial fragmentation and subsequent cell damage. A key
result of disrupted mitochondrial dynamics is the excessive generation of reactive oxygen
species (ROS), which, when sustained, can lead to oxidative harm to proteins, lipids, and
DNA, thereby playing a significant role in advancing kidney disease [36–41].

The kidneys receive around 20% of the heart’s output, processing roughly 180 liters of
glomerular filtrate daily. Due to their role in waste removal, nutrient reabsorption, fluid
and electrolyte balance, acid–base regulation, and blood pressure control, kidneys have
a high metabolic demand and are rich in mitochondria. Mitochondria play a central role
in kidney function, reflecting the organ’s high metabolic demands [42,43]. The kidney
ranks just behind the heart in mitochondrial density and oxygen consumption, as large
amounts of ATP are required to fuel active transport processes essential for filtration,
reabsorption, and secretion. The renal cortex, densely packed with proximal and distal
tubules, is particularly rich in mitochondria due to its role in reabsorbing water, ions,
and nutrients. Proximal tubular cells, which perform most of this task, rely heavily on
mitochondrial energy and must dynamically adjust to fluctuations in energy availability to
maintain metabolic efficiency. In contrast, fewer mitochondria are present in the collecting
duct cells and specific segments of the Henle loop. However, intercalated cells in the
collecting duct still depend on mitochondrial activity for acid–base and electrolyte balance.
In addition to ATP production, renal mitochondria are involved in apoptosis regulation,
calcium and iron homeostasis, and steroid synthesis, underscoring their critical role in
maintaining cellular and organ-level homeostasis [42–47].

While much of the focus on mitochondrial dysfunction in kidney disease has centered
on tubular epithelial cells, emerging evidence highlights the critical role of mitochondria in
glomerular podocytes, which are essential for maintaining the filtration barrier. Podocytes
have high energy demands and rely heavily on mitochondrial ATP production to sustain
their complex cytoskeletal architecture and slit diaphragm integrity. Disruptions in mito-
chondrial dynamics, including altered fusion and fission processes, as well as impaired
mitophagy, contribute to podocyte injury, leading to proteinuria and glomerulosclerosis—
hallmarks of chronic kidney disease (CKD) [48,49]. Moreover, mitochondrial damage can
lead to the release of mitochondrial DNA (mtDNA) into the cytosol and extracellular space,
acting as a damage-associated molecular pattern (DAMP). The recognition of mtDNA by
innate immune receptors, such as Toll-like receptor 9 (TLR9) and the cGAS-STING pathway,
triggers sterile inflammatory responses in podocytes and tubular cells, thereby exacerbating
renal injury and fibrosis. This mtDNA-driven inflammation highlights a crucial connec-
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tion between mitochondrial dysfunction and immune activation in the pathogenesis of
kidney disease. Incorporating these insights broadens our understanding of mitochondrial
contributions beyond tubular segments and highlights potential therapeutic targets for
preserving mitochondrial integrity and modulating mtDNA-induced inflammation [50–54].

Mitochondrial dysfunction is closely associated with several kidney diseases, includ-
ing acute kidney injury (AKI) and chronic kidney disease (CKD) [48,49]. AKI can occur due
to ischemic, toxic, or inflammatory insults that impair mitochondrial energy production,
increase oxidative stress, and lead to the apoptosis or necrosis of tubular cells. Disrupted
mitochondrial dynamics, characterized by imbalances in fission and fusion and defec-
tive mitophagy, worsen AKI by allowing damaged mitochondria to accumulate, further
intensifying oxidative damage and inflammation. In CKD, ongoing mitochondrial dysfunc-
tion contributes to renal fibrosis through metabolic reprogramming, persistent oxidative
stress, and damage to mitochondrial DNA (mtDNA), particularly in diabetes and IgA
nephropathy [19,26,55,56].

Emerging evidence also suggests that mitochondrial dysfunction plays a role in con-
genital anomalies of the kidney and urinary tract (CAKUT). Genetic mutations that affect
mitochondrial proteins or metabolic pathways can disrupt nephrogenesis, leading to struc-
tural malformations such as hypoplastic kidneys or urinary tract obstructions. For instance,
mutations in genes related to coenzyme Q10 biosynthesis or components of the mitochon-
drial electron transport chain have been linked to tubular dysgenesis and cystic kidney
phenotypes, emphasizing the importance of mitochondrial integrity in early kidney devel-
opment [57–59].

Mitochondrial dysfunction is increasingly recognized as a key factor in the patho-
genesis and progression of acute kidney injury (AKI) and chronic kidney disease (CKD)
(Figure 2).

2.1. AKI

Acute kidney injury (AKI), formerly known as acute renal failure, is a sudden decline
in kidney function that develops within hours to days and results in the kidney’s inability
to filter waste products and maintain the body’s fluid, electrolyte, and acid–base balance.
AKI can range from the mild impairment of kidney function to complete kidney failure
and is often triggered by another serious illness, surgery, infection, or certain medications
rather than by direct physical injury to the kidneys. The leading causes of AKI are classified
as pre-renal (reduced blood flow to the kidneys), intrinsic (direct damage to kidney tissue),
and post-renal (obstruction of urine flow due to conditions such as kidney stones or an
enlarged prostate) [60–65].

Diagnosis usually involves blood tests to measure creatinine and urea levels, urine
tests, and imaging tests such as ultrasound or CT scans to determine the underlying
cause and assess the extent of kidney damage. In some cases, a kidney biopsy may be
performed [66,67].

2.2. CKD

In chronic kidney disease (CKD), the persistent dysregulation of mitochondrial home-
ostasis, including defects in mitochondrial structure, dynamics, and biogenesis, results in
impaired energy metabolism, the increased production of reactive oxygen species (ROS),
and heightened oxidative stress. These factors contribute to renal inflammation, tubular
atrophy, and interstitial fibrosis. Reduced mitochondrial function in renal tubular cells,
particularly the shift from oxidative phosphorylation to glycolysis, has been linked to
tubular injury and fibrosis, the primary features of CKD progression. In addition, changes
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in the shape and structure of mitochondria are closely related to their loss of function,
further exacerbating kidney damage [68,69].

 

Figure 2. This figure highlights mitochondrial dysfunction in different kidney diseases: AKI, CAKUT,
and CKD. In AKI, oxidative stress, mitochondrial fragmentation, and impaired ATP production
are key pathological features. In CAKUT, developmental defects and abnormal nephrogenesis are
associated with mitochondrial metabolic deficiencies. In CKD, persistent mitochondrial dysfunction,
increased ROS production, fibrosis, and metabolic reprogramming drive disease progression. Key
regulatory proteins involved in each condition are also indicated. Created with Biorender (Accessed
on 1 May 2025). Abbreviations: AKI, acute kidney injury; DRP1 (DNM1L), Dynamin-1-like pro-
tein; PGC-1α (PPARGC1A), peroxisome proliferator-activated receptor gamma coactivator 1-alpha;
MFN2, Mitofusin-2; SIRT3, Sirtuin-3; BAX, Bcl-2-associated X protein; BAK, Bcl-2 homologous antag-
onist/killer; NDUFS1/NDUFS4, NADH:ubiquinone oxidoreductase core subunit S1/S4; CAKUT,
congenital anomalies of the kidney and urinary tract; HNF1B, Hepatocyte nuclear factor 1-beta; PAX2,
Paired box gene 2; PKD1/PKD2, polycystic kidney disease 1/2 proteins; TFAM, mitochondrial tran-
scription factor A; CKD, chronic kidney disease; SIRT1, Sirtuin-1; NRF1/NRF2, Nuclear respiratory
factor 1/2; UCP2, Uncoupling protein 2; TOMM20/TIMM23, Translocase of outer mitochondrial
membrane 20/Translocase of inner mitochondrial membrane 23; COX4I1, Cytochrome c oxidase
subunit 4 isoform 1.

The diagnosis of CKD typically involves blood tests to measure creatinine and calculate
the estimated glomerular filtration rate (eGFR), which assesses how well the kidneys filter
waste from the blood. Urine tests are also used to check for the presence of protein or
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blood, which can indicate kidney damage. Imaging studies such as ultrasound may be
performed to evaluate the size and structure of the kidneys and rule out other causes
of kidney dysfunction. Sometimes, a kidney biopsy may be necessary to determine the
underlying cause and extent of kidney damage. Early detection and regular monitoring are
crucial for managing CKD and slowing its progression [70–72].

2.3. CAKUT

Additionally, mitochondrial dysfunction has been identified as a crucial factor in the
pathogenesis of congenital anomalies of the kidney and urinary tract (CAKUT). CAKUT
encompasses a broad spectrum of developmental malformations of the kidneys and uri-
nary tract that result from impaired embryonic development. CAKUT is characterized by
developmental defects and abnormal nephrogenesis related to mitochondrial metabolic
deficiencies, involving proteins such as HNF1B, PAX2, PKD1/PKD2, and TFAM, although
this area is less well studied. These mitochondrial abnormalities can disrupt critical devel-
opmental pathways, including branching morphogenesis and nephron formation, leading
to structural abnormalities such as renal agenesis or hypoplasia/dysplasia. Understanding
the role of mitochondrial defects in CAKUT provides insight into disease mechanisms. It
opens potential avenues for targeted therapies to restore mitochondrial health to prevent
or attenuate congenital renal malformations [73–75].

3. How Does Epigenetics Shape Mitochondrial Function in
Renal Pathology?

Epigenetic mechanisms, including DNA methylation, post-translational modifications
of histone proteins, and non-coding RNA (ncRNA) regulations, significantly influence
mitochondrial function in renal pathology by regulating genes involved in mitochondrial
dynamics, oxidative stress responses, and organelle interactions [76].

DNA methylation can alter the expression of key mitochondrial genes such as PMPCB,
AU RNA binding protein/enoyl-CoA hydratase, and TSFM, which are involved in mito-
chondrial protein processing, translation, and elongation. This can impact mitochondrial
morphology, energy production, and ROS generation [40]. Changes in DNA methylation
patterns can either upregulate or suppress these genes, influencing mitochondrial dynamics
and function in kidney cells.

Histone modifications, such as acetylation and methylation, further regulate mitochon-
drial biogenesis and fission–fusion processes. For example, the acetylation of mitochon-
drial transcription factor A (TFAM) by GCN5L1 impairs its translocation to mitochondria,
reducing mtDNA replication and transcription and exacerbating kidney injury [77]. Ad-
ditionally, increased histone H3K27 acetylation and phosphorylation of Drp1 at serine
616 (p-Drp1S616) promote mitochondrial fission and fibroblast activation, leading to fi-
brosis and oxidative stress in diabetic nephropathy [78]. Conversely, phosphorylation of
Drp1 at serine 637 (p-Drp1S637) inhibits fission, favoring mitochondrial elongation and
longevity. Histone methylation also influences mitochondrial gene expression; for instance,
EZH2-mediated H3K27 methylation contributes to tubular damage and mitochondrial
dysfunction, while mitochondrial S-adenosylmethionine (SAM) levels regulate histone
methyltransferases involved in these processes [79,80].

Furthermore, ncRNAs, such as microRNAs (miRNAs), modulate mitochondrial dy-
namics by targeting transcripts like MTP18 and PPAR-α, affecting mitochondrial fission
and fatty acid oxidation, respectively. For example, miR-668 inhibits MTP18 to prevent
excessive mitochondrial fission and protect tubular cells from apoptosis during ischemic
injury [81,82], whereas miR-17 downregulates PPAR-α, impairing mitochondrial energy
metabolism and promoting cyst formation in polycystic kidney disease [83].



Cells 2025, 14, 794 8 of 20

Collectively, these epigenetic modifications disrupt mitochondrial homeostasis, lead-
ing to increased oxidative stress, impaired bioenergetics, and progression of kidney disease.
This highlights their potential as therapeutic targets.

4. Mitophagy in Kidney Disease
Autophagy is present in all body tissues as a means of discarding old organelles

through lysosomal degradation and recycling of cellular components [84]. However, a
special form of autophagy that specifically targets mitochondria is known as mitophagy.
Mitophagy occurs either when mitochondrial damage exceeds the cell’s reparatory mecha-
nisms or as a controlled process of maintaining cellular metabolic homeostasis [85]. The first
mention of mitophagy dates back to 2008. In a study focusing on the ubiquitin ligase Parkin,
known for its role in Parkinson’s disease, researchers discovered that Parkin is selectively
recruited to dysfunctional mitochondria with low membrane potential in mammalian cells,
thereby triggering the engulfment of autophagosomes [86]. A previous review article por-
trays a detailed summary of the known signaling pathways of mitophagy and their effector
molecules [87]. Briefly, there are two signaling cascades which lead to mitophagy, namely
serine/threonine PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy
and PINK1/Parkin-independent mitophagy through [87]. In the former, PINK1 accumu-
lates on depolarized mitochondria, recruits Parkin to ubiquitinate outer membrane proteins,
and signals autophagosome recruitment via adaptors like OPTN/NDP52 that bind LC3. In
the latter, the primary effectors are E3 ubiquitin ligases (e.g., ARIH1, MUL1) and autophagy
receptors (e.g., BNIP3, FUNDC1, PHB2), which directly recruit autophagosomes, often
bypassing ubiquitination [87].

Given the previously mentioned implication of mitochondria in kidney disease, the
process of mitophagy in this context should be discussed. When talking about acute
kidney injury (AKI), several studies on sepsis, cisplatin toxicity, and ischemia–reperfusion
injury models have observed the protective effect of mitophagy in kidney disease [55].
For instance, research on cisplatin, a widely used chemotherapeutic drug with notorious
toxicity in the kidneys, showed that PINK1/Parkin-mediated mitophagy is activated in
cisplatin nephrotoxicity to protect against kidney injury. The results of one study show
that PINK1 or Parkin gene knockout mice, compared to wild-type littermates, show more
severe renal functional loss, tissue damage, and apoptosis during cisplatin treatment [87].
Interestingly, the level of mitophagy was reduced in the knockout mice even during basal
conditions, without cisplatin treatment. Furthermore, a study published in 2024 discovered
a novel protein of interest in mitophagy-related kidney disease research. It presented
macrophage migration inhibitory factor (MIF) as a suppressor of mitophagy through the
disruption of PINK1–Parkin protein interactions in sepsis-associated acute kidney injury,
thereby promoting renal damage. This was in line with previous research that reported
increased serum levels of MIF in SA-AKI [88]. In a study by Lin and coworkers, which
investigated the pathogenic mechanism of contrast-induced acute kidney injury (CI-AKI),
NLR family pyrin domain-containing 3 (NLRP3)-driven inflammation came into focus.
It was proven on a mouse model that the inhibition of NLRP3 inflammasome attenuates
apoptosis in CI-AKI through the upregulation of Hypoxia-inducible factor 1-alpha (HIF1A)
and BCL2 Interacting Protein 3 (BNIP3)-mediated mitophagy [88].

On the other hand, dysregulated mitophagy correlates with disrupted mitochondrial
dynamics in AKI and contributes to the development and progression of acute to chronic
kidney disease (CKD). Most recent clinical studies on CKD have shown that mitochondrial
function decline is associated with the degree of kidney fibrosis in CKD [89]. In line with
this, in patients with diabetic nephropathy (DN), urinary mtDNA, which is an indirect
indicator of impaired mitophagy, correlated inversely with the estimated glomerular fil-
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tration rate (eGFR) and positively with interstitial fibrosis [90]. Furthermore, Cui and
colleagues found that the Mitofusin 2 (MFN2) downregulation in macrophages enhances
ROS and inhibits mitophagy, driving renal fibrosis [91]. Interestingly, no studies have
investigated the influence of mitophagy on CAKUT pathophysiology so far. An indirect
implication of the autophagy process has been observed in hypoplastic kidneys (HYP),
where a significantly smaller proportion of autophagy marker-positive cells, specifically
immunoglobulin heavy chain binding protein (BiP)-positive cells, was found [92]. The
PI3K-AKT signaling pathway has also been implicated in CAKUT development through
integrative multi-omics data analysis [93]. Since this pathway also regulates mitophagy, a
potential mechanistic link between mitophagy and CAKUT warrants exploration.

Mitochondrial dysfunction drives both AKI and CKD through distinct mechanisms.
Both conditions feature oxidative stress from ROS overproduction, but mitophagy plays
divergent roles—protective in AKI vs. maladaptive in CKD. Unresolved AKI-related
mitochondrial damage promotes transition to CKD through persistent inflammation and
fibrotic signaling. In summary, mitophagy is a double-edged sword in the context of kidney
disease. More specifically, its precise regulation is essential for preventing mitochondrial
damage-driven kidney injury, while its dysfunction accelerates disease progression.

5. Feeding the Mitochondria: Can Diet Slow Kidney Disease?
Obesity and metabolic syndrome dramatically raise the risk of diabetic nephropathy

and chronic kidney disease (CKD) [94–96]. A diet designed explicitly for the kidney
can promote health and slow its progression to failure [95]. Although mitochondrial
dysfunction is a well-known pathway in obesity-related organ damage, its specific impact
on the kidney is unclear.

The kidney responds early to a high-fat diet (HFD) in mice, showing increased body
weight, reduced plasma adiponectin, and early renal inflammation, including elevated
MCP-1 and urinary H2O2 levels, observed after just one week of exposure. This initial
inflammation precedes albuminuria and may drive obesity-related kidney damage. HFD
exerts a biphasic effect on renal mitochondrial function [96–99]. In the short term, HFD
may induce an adaptive response characterized by enhanced mitochondrial antioxidant de-
fenses, such as increased manganese superoxide dismutase (MnSOD) activity and preserved
respiratory capacity despite elevated oxidative stress. Upregulated redox-regulating path-
ways to maintain cellular homeostasis primarily drive this temporary resilience [94,100].
However, these compensatory mechanisms wane with prolonged HFD exposure, typically
observed after 16 weeks in rodent models. Mitochondrial copy number declines, biogenesis
is impaired due to suppressed PGC-1α expression, and ATP production is significantly
reduced. Mitochondrial dysfunction worsens over time, resulting in excessive leakage of
reactive oxygen species (ROS), lipid peroxidation, and a heightened vulnerability to further
injuries, such as ischemia–reperfusion injury. These maladaptive changes eventually lead
to renal fibrosis, glomerular hypertrophy, and damage to tubular epithelial cells, ultimately
speeding up the progression of kidney disease [94,100–102].

Dietary interventions such as protein and salt restriction are crucial in reducing sys-
temic stressors affecting mitochondrial function and preserving kidney health. High
protein intake can elevate intraglomerular pressure, leading to glomerular damage. Si-
multaneously, a low-protein diet (LPD) of 0.6–0.8 g/kg/day has been shown to reduce
proteinuria, slow CKD progression, and improve metabolic acidosis, supporting mitochon-
drial function [103–106]. Combining LPD with renin–angiotensin system (RAAS) blockade
provides additional renal protection [107,108]. Salt restriction, particularly lowering sodium
intake to less than 2,000 mg/day, has been linked to reduced blood pressure and decreased
proteinuria, both important for slowing CKD progression. However, the long-term effects



Cells 2025, 14, 794 10 of 20

of strict salt restriction remain debated, with some studies raising concerns over potential
risks such as hypotension in advanced CKD [109–112]. Key nutrients like coenzyme Q10
(CoQ10) and B vitamins (riboflavin and thiamine) support mitochondrial health and energy
production. CoQ10, as an antioxidant, may diminish oxidative stress and enhance renal
function, while B vitamins help alleviate energy deficits caused by mitochondrial dysfunc-
tion in CKD [113]. Antioxidant-rich foods, such as berries, red bell peppers, and leafy
greens, also contribute to this protection by neutralizing reactive oxygen species (ROS),
thereby further shielding kidney mitochondria from damage [114].

6. Hormonal Guardians of the Mitochondria: Estrogen and Thyroid
Hormones in Kidney Disease Regulation

Hormones, particularly estrogen and thyroid hormones, are vital in mitochondrial
function and kidney health. Estrogen is vital in regulating mitochondrial dynamics and
oxidative stress in kidney disease through various mechanisms. It inhibits the production of
ROS by blocking angiotensin II receptor type 1 (AT1R) and mineralocorticoid receptor (MR)
signaling, which are typically linked to increased NADPH oxidase activity and intracellular
ROS generation. This inhibition helps to reduce oxidative damage in vascular smooth
muscle cells (VSMCs) and endothelial cells (ECs), thereby improving kidney function.
Additionally, estrogen enhances the expression of antioxidant enzymes, such as superoxide
dismutase (SOD), which further reduces oxidative stress [115–118].

Furthermore, estrogen protects against mitochondrial dysfunction by regulating
calcium-induced permeability transition and promoting mitochondrial calcium seques-
tration through L-type calcium channels. This regulation activates protective signaling
pathways, including Src/ERK/CREB via PI3K activation, which helps maintain mitochon-
drial integrity and prevent apoptosis [119]. By increasing the expression of Bcl-2 family
proteins, estrogen inhibits the mitochondrial apoptotic pathway responsible for triggering
excessive ROS and calcium concentrations. Overall, these effects preserve mitochondrial
function and prevent cell death, underscoring the potential of estrogen as a therapeutic
agent in treating kidney disease [120–125].

In addition to estrogen, other hormones have been shown to modulate mitochondrial
function and influence the progression of kidney disease. Among these, thyroid hormones
(T3 and T4) also play a critical yet dual role in mitochondrial function and kidney disease
pathophysiology. T3 enhances mitochondrial ATP production and oxygen consumption
through mechanisms such as mitochondrial uncoupling proteins (e.g., UCP-2), promot-
ing energy metabolism and increasing renal oxygen demand, which may induce cortical
hypoxia and exacerbate nephropathy [126–128]. Conversely, hypothyroidism, which is com-
mon in CKD patients, is associated with reduced mitochondrial efficiency, oxidative stress,
and accelerated kidney dysfunction. Thyroid hormones modulate antioxidant defenses,
such as superoxide dismutase (SOD), and interact with the renin–angiotensin–aldosterone
system (RAAS), further influencing oxidative stress, and fibrosis. These findings highlight
the delicate balance of thyroid hormone signaling in mitochondrial homeostasis and kidney
health, underscoring their potential as therapeutic targets in CKD management [126–132].

7. Therapeutic Approaches for Kidney Disease
Mitochondria-targeted therapies for kidney diseases have shown promise in address-

ing mitochondrial dysfunction, particularly in reducing oxidative stress, improving mito-
chondrial dynamics, and enhancing biogenesis. However, current evidence largely stems
from preclinical studies, with limited translation to clinical practice despite some advances.

Several studies assessed the effect of mitophagy as a therapy target for acute and
chronic kidney injury. A study conducted on ischemic AKI in mouse models and
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gentamicin-induced AKI in the zebrafish model demonstrated that cobaltosilicate oxide-
polyethylene glycol-triphenylphosphine (COPT) nanoparticles ameliorate the transition
from acute to chronic kidney disease by inducing BNIP3-mediated mitophagy [133]. Addi-
tionally, paeoniflorin (PF), a water-soluble monoterpene glycoside extracted from Paeonia
lactiflora, suppresses kidney inflammation by regulating mitophagy [134]. The mechanism
through which it exerted its beneficial effect was by promoting macrophage polarization
from M1 to M2 and inducing mitophagy via regulating Krüppel-like transcription factor
4 (KLF4) and upregulating mitophagy-related proteins PINK1, Parkin, Bnip3, P62, and
LC3 in vivo and in vitro. In line with this, a study dealing with immune-regulatory effects
on macrophages observed the ability of rapid-releasing hydrogen sulfide (H2S) donor
NaSH, and a slow-releasing H2S compound S-propargyl-cysteine (SPRC) to protect the
heart and kidney from tissue injury induced by LPS [135]. The study again portrayed a
link between macrophage polarization from M1 to M2 and the PINK1/Parkin-mediated
mitophagy pathway. Furthermore, treatment with the peroxisome proliferator-activated
receptor-α (PPAR-α) agonist could reduce the pathology of polycystic kidney disease (PKD)
and potentially improve the renal function of the disease by modulating mitophagy [136].
Additional information about targeting mitophagy or mitophagy-related pathways as a
treatment for kidney disease can be found in Table 1.

Table 1. Targeting mitophagy and mitophagy-related signaling in kidney disease.

Treatment Type Stage Target Pathway Key Indication Reference

TJ0113 Small molecule Phase II PINK1/Parkin activation AS [137]

Magnolol Natural metabolite Experimental FUNDC1/BNIP3
activation CKD fibrosis [138]

Huangkui Capsule Herbal formulation Phase IV STING1/PINK1 axis DCKD [139]

Astragaloside IV Botanical extract Experimental PINK1/Parkin
modulation DCKD-TI [140]

Metformin AMPK agonist Off-label use AMPK/PINK1/Parkin DCKD [141]

LY344864 5-HT1F receptor agonist Preclinical Mitochondrial biogenesis AKI [142]

MitoQ Synthetic antioxidant Phase II mtROS DCKD/HCKD [143]

Elamipretide Mitochondrial peptide Phase II Mitochondrial cristae DCKD [144]

Urolithin A Natural metabolite Experimental Mitophagy in
tubular cells HN [145]

Pirfenidone Anti-fibrotic Phase II Reduces kidney fibrosis DCKD [146]

Selonsertib ASK1 inhibitor Phase II JNK pathway DCKD [147]

Esculetin Coumarin derivative Experimental PINK1/Parkin
mitophagy

DOX-induced
KI [148]

Lademirsen miR-21 antagonist Phase II Inflammatory pathways AS [149]

Abbreviations: AMPK, AMP-activated protein kinase; 5-HT1F, 5-hydroxytryptamine; ASK1, Apoptosis signal-
regulating kinase 1; PINK1, PTEN-induced kinase 1; FUNDC1, FUN14 domain-containing 1; BNIP3, BCL2
Interacting Protein 3; STING, Stimulator of Interferon Genes; mtROS; mitochondrial reactive oxygen species; JNK,
Jun kinase; AS, Alport syndrome; CKD, chronic kidney disease; DCKD, diabetic chronic kidney disease; HCKD,
hypertensive chronic kidney disease; TI, tubulointerstitial injury; AKI, acute kidney injury; HN, hyperuricemic
nephropathy; DOX, doxorubicine.

Furthermore, an interesting approach to treating renal tubular injury using mitochon-
dria transplantation (MITO) was employed [150].The study found that MITO, a process
in which exogenous isolated mitochondria are taken up by cells, can mitigate AKI both
in vitro and ex vivo. The molecular basis included the modulation of genes and pathways
most consistent with mitochondrial biogenesis and energy metabolism, thereby reducing
kidney damage. Additionally, RNAseq detected the downregulation of genes involved
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in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. Diabetes mellitus (DM)
often leads to an increase in oxidative stress, which contributes to the development of
diabetes complications, including diabetic kidney disease (DKD) [150]. One study, which
investigated the effects of ethyl acetate extract of Potentilla indica on streptozotocin-induced
diabetic male rats, found a protective effect [150]. The study emphasizes the importance
of phenolic compounds in Potentilla indica extract for its renoprotective effect. Through
their potent antioxidant activity, these compounds reduce ROS production, lipid peroxida-
tion, and improve mitochondrial respiratory chain complex activity, as well as glutathione
peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities. In line
with another study that dealt with obesity-linked DN, a positive effect of L-carnitine was
found to be exerted through improvements in ROS production and SOD expression in the
kidney, among other effects [151]. Furthermore, Hallows and coworkers found that bempe-
doic acid treatment in hypercholesterolemia might benefit polycystic kidney disease [152].
Specifically, in Polycystic Kidney Disease 1 (Pkd1)-null kidney cells and ATP Citrate Lyase
(Acly) knockdown cells, BA inhibited mitochondrial superoxide production and promoted
mitochondrial elongation, suggesting improved mitochondrial function. Although several
studies have shed light on the role of Pyruvate kinase M2 (PKM2) in mitochondrial regula-
tion, one study discovered that PKM2 binds to myosin heavy chain 9 (MYH9) to promote
dynamin-related protein 1 (DRP1)-mediated mitochondrial fragmentation [153]. According
to the study, in the case of staurosporine or cisplatin AKI, the regulation of PKM2 activity
partially limits mitochondrial fragmentation, thereby directly decreasing the level of renal
tubular injury and cell death, including apoptosis, necroptosis, and ferroptosis. Yan and col-
leagues reported an advanced technique for treating AKI in 2023. They studied tetrahedral
framework nucleic acid (tFNA) as a vehicle and combined typhaneoside (Typ) to develop
the tFNA-Typ complex (TTC) for targeting mitochondria and treating AKI, which managed
to restore mitochondrial function [154]. Nanotechnology-mediated antioxidative therapy is
another target of research in AKI. Curcumin-loaded nanodrug delivery system (NPS@Cur)
was studied to assess its effects on apoptosis, autophagy, and ER stress in AKI [155]. The
results from cisplatin-induced AKI models revealed that NPS@Cur alleviates mitochondrial
injury, which subsequently leads to kidney protection through antioxidative protection,
regulated autophagy, and reduced ER stress. In addition, adenosine and related purinergic
molecules, which play central roles in energy metabolism, have recently been implicated in
the regulation of mitochondrial function in renal cells and may represent novel therapeutic
avenues [155].

8. Future Perspective
Future research on mitochondrial dysfunction in kidney disease holds promise for sig-

nificant advances in diagnosis, prevention, and treatment. Mitochondrial transplantation
represents a groundbreaking therapeutic approach, with preliminary studies demonstrat-
ing its ability to mitigate acute kidney injury by modulating inflammatory pathways and
enhancing bioenergetics [156]. Novel nanomedicine approaches, including the COPT
nanoparticles that induce BNIP3-mediated mitophagy and curcumin-loaded delivery sys-
tems, show promise in targeting mitochondrial pathology with high specificity and reduced
systemic toxicity [133]. Mitochondrial biomarkers, particularly urinary mitochondrial DNA,
hold promise for the early detection and monitoring of disease progression, with research
suggesting a correlation with declining eGFR and interstitial fibrosis in diabetic nephropa-
thy [157–160]. The field is moving toward personalized approaches, where treatment
strategies target specific mitochondrial pathways based on individual patient profiles,
including genetic background, disease etiology, and hormonal status. Epigenetic inter-
ventions, such as PPAR-α agonists and KLF4 modulators, represent another frontier in
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personalizing mitochondrial-targeted therapies. Translational research, which bridges
preclinical discoveries to clinical applications, is essential, with emerging technologies
like tFNA delivery systems progressing toward human trials. Integrating multi-omics
approaches with traditional clinical parameters will likely enhance our ability to stratify
patients and predict responses to mitochondrial-targeted interventions, ultimately improv-
ing outcomes in the diverse spectrum of kidney diseases where mitochondrial dysfunction
plays a central role.

9. Conclusions
This review highlights the essential role of mitochondria in kidney health and disease.

Mitochondria are key players in energy production and maintaining cellular balance, and
they also interact intricately with various signaling pathways and epigenetic mechanisms.
Their involvement is particularly significant in the development of acute kidney injury
(AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary
tract (CAKUT). Mitochondrial dysfunction, characterized by impaired dynamics, increased
production of reactive oxygen species (ROS), and disrupted metabolic processes, is a signif-
icant contributor to renal inflammation, fibrosis, and structural abnormalities. Therefore,
targeting mitochondrial function is a promising therapeutic approach to combat kidney
disease and improve patient outcomes.
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