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Abstract
Purpose  BMI1, which is a major component of the polycomb group complex 1, is an essential epigenetic repressor of mul-
tiple regulatory genes and has been identified as a cancer stem cell (CSC) marker in several cancers. However, its role in 
breast cancer (BC) remains to be defined. In this study, we have evaluated the prognostic significance of BMI1 among the 
different molecular subtypes and assessed its association with other breast CSC markers (BCSC).
Material and method  BMI1 copy number and mRNA was assessed in large and well-characterised cohorts of early-stage 
BC patients [METABRIC (n = 1980) and the Bc-GenExMiner (n = 9616) databases]. BMI1 protein expression was assessed 
using tissue microarray and immunohistochemistry in a cohort of 870 invasive BC patients with long-term outcome data 
and the expression of a panel of BCSC markers was monitored.
Result  BMI1 expression, prognostic significance and its association with BCSC markers were differed between molecular 
classes. In the luminal oestrogen receptor-positive (ER+) BC, BMI1 showed significantly higher expression compared to 
ER− tumours. BMI1 showed positive correlation with favourable prognostic features and it was negatively associated with 
the expression of key BCSC markers (ALDH1A1, CD24, CD44, CD133, SOX10 and SOX9). High expression of BMI1 
was associated with longer breast cancer-specific survival (BCSS) independent of other prognostic variables. In the basal 
triple negative BC subtype, BMI1 expression showed positive association with CD133 and SOX10 and it was significantly 
associated with shorter BCSS.
Conclusion  High BMI1 expression is associated with clinicopathological variables and outcome in BC. However, this asso-
ciation is dependent on the molecular subtypes. Further functional assessment to detect its underlying mechanistic roles in 
BC subtypes is warranted.
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Introduction

Polycomb complex protein or B-lymphoma Moloney murine 
leukaemia virus insertion region-1 (BMI1) is a member of 
the polycomb family which are a group of transcriptional 
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repressors [1, 2]. BMI1 has a RING finger at the N-terminus, 
a central helix-turn-helix domain and a carboxyl-terminal 
PEST-like domain at the C-terminal end. The RING domain 
is required for BMI1 to localise to DNA strand breaks; there-
fore, it is involved in DNA damage response. The central 
helix-turn-helix domain with RING domain increases the 
life span of the cell. PEST domain is required for protein 
degradation [3]. BMI1 has been reported to be involved 
in several different pathways such as Wnt, Akt, Notch and 
Hedgehog signalling [4–7]. Hence, BMI1 has been shown to 
behave as a key regulator in the self-renewal, differentiation 
and tumour initiation of breast cancer stem cells (BCSC) [8]. 
In in vitro models, it has been observed that overexpression 
of BMI1 is linked to increased cell motility and invasion in 
BC [9, 10]. Arnes et al. have reported that low expression 
of BMI1 is associated with high expression of Aldehyde 
dehydrogenase 1 (ALDH1) in African BC patients, where 
ALDH1 has been used as a functional marker to define the 
BCSC [11]. BMI1 has also been considered as a poor prog-
nostic and predictive biomarker in several types of cancer 
[1, 12, 13]. However, conflicting data have been reported in 
the same study where high expression of BMI1 at mRNA 
and protein levels was associated with high expression of ER 
and positive axillary lymph node metastasis, leading to some 
difficulty in the interpretation of the results [14].

There is little available evidence on the immunohisto-
chemical expression of BMI1 in BC tissue samples and 
whether it is also considered a biomarker of poor or good 
prognosis in BC. This study aimed to investigate the clinical 
and pathological relevance of BMI1 expression, including its 
genomic, transcriptomic and protein levels, in BC utilising 
large cohorts of early-stage BC with a long-term follow-up. 
This is to characterise the variation of BMI1 expression in 
different BC molecular subtypes and to explore the associa-
tions between BMI1 and a panel of relevant BCSC markers 
at both the mRNA and protein levels.

Material and methods

BMI1 protein expression

The study cohort comprised 870 invasive BCs derived from 
the retrospective Nottingham Primary Breast Carcinoma 
Series of patients presenting to Nottingham City Hospital 
between 1986 and 1998. Patients’ clinical and pathological 
data including age at diagnosis, histological tumour type, 
tumour size, lymph node status, Nottingham Prognostic 
Index (NPI), lympho-vascular invasion (LVI) and adjuvant 
therapy were available and prospectively maintained. Data 
for oestrogen receptor (ER), progesterone receptor (PgR), 
HER2 status and Ki67 data were available [15, 16]. ER and 
PgR cut-off values were defined as ≥ 1% and HER2 status 

was defined as previously published [15, 17, 18]. Survival 
data were accessible and prospectively maintained including 
the following: (1) BC-specific survival (BCSS), defined as 
the time (in months) from the date of the primary surgical 
treatment to the time of death from breast cancer, and (2) 
distant metastasis free survival (DMFS), defined as the time 
(in months) from the surgery until the first event of distant 
metastasis [19]. The clinicopathological parameters for the 
study cohort are summarised in supplementary Table 1. BC 
intrinsic molecular subtypes were determined as previously 
descried [20]. Immunohistochemical detection of a panel 
of BCSC, including ALDH1A1, CD133, CD24, CD44, 
EPCAM, SOX9 and SOX10, had been previously performed 
[21–23] and these were used in the current study to assess 
their relationship with BMI1 expression.

Tissue microarrays (TMAs) 
and immunohistochemical (IHC) evaluations

Full face BC tissue sections were stained using IHC to 
evaluate the pattern of immunohistochemical BMI1 expres-
sion prior to staining of TMAs. Kidney tissue was used as 
a positive control while the negative control was obtained 
by omitting the application of primary antibody in the IHC 
staining protocol.

Formalin-fixed paraffin-embedded BC tissue samples 
were arrayed as previously described [24]. Prior to IHC 
staining, the specificity of the anti-BMI1 antibody was 
validated using Western blotting in MCF7, MDA-MB-231, 
SKBR3, MDA-MB-468 BC cell lines’ lysates (American 
type culture collection, Rockville, MD, USA) and HeLa cells 
as control. This was performed using 1:5000 dilution of the 
primary antibody (EPR3745 (2), Abcam, UK), and 1:15,000 
of the horseradish peroxidase-labelled secondary anti-rabbit 
antibody, with b-actin (1:5000) used as a loading control. 
A single band for BMI1 was observed at the predicted size 
(40 kDa), which confirmed the specificity of the antibody 
(Supplementary Fig. 1). IHC staining was performed on 4 
μm TMA sections using Novolink polymer detection system 
(Leica, Newcastle, UK). In brief, the antigen retrieval was 
performed in citrate buffer (pH 6) in a microwave (Whirlpool 
JT359 Jet Chef 1000 W) for 20 min. The optimal dilution of 
BMI1 antibody in IHC was 1:100 and incubated for 1 h at 
room temperature. Stained TMA slides were scanned with 
high-resolution digital images (NanoZoomer; Hamamatsu 
Photonics, Welwyn Garden City, UK), at 20 × magnifica-
tion and viewed by Xplore viewer (Philips, Belfast UK). 
The BMI1 staining TMA cores were evaluated on the basis 
of a semiquantitative scoring of core digital images using a 
modified histochemical score (H-score) [25]. All cases were 
scored by M. Althobiti, blinded to histopathological data 
and patients’ outcome. To validate the results and test for 
the inter-observers reproducibility of the scoring, 10% of 
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the cases were randomly selected and rescored by another 
observer (M. Toss).

Genomic and transcriptomic analysis

A cohort of 1980 BC patients was evaluated in terms of 
BMI1 gene copy number (CN) aberrations and mRNA 

expression using the Molecular Taxonomy of Breast Can-
cer International Consortium (METABRIC) [26, 27]. The 
cut-off point of BMI1 was determined using X-tile software 
(version 3.6.1, Yale University, USA), which was based 
on prediction of BCSS. The clinicopathological param-
eters of METABRIC series are summarised in supplemen-
tary Table 1. There was no difference in the distribution 

Table 1   The association of BMI1 and clinicopathological parameters in breast cancer in (Protein and mRNA levels)

Bold represents the significant P values

Parameters Protein expression (n = 870) mRNA expression (1980)

Low BMI1
No (%)

High BMI1
No (%)

x2

P value
Low BMI1
No. (%)

High BMI1
No. (%)

x2

P value

Patient age (years)
 < 50 451 (80) 111 (20) 0.22 147 (37) 249 (63) 11.809
 ≥ 50 243 (79) 65 (21) 0.635 411 (28) 1047 (72) 0.001

Tumour size (cm)
 < 2 369 (82) 83 (18) 1.77 193 (31) 429 (69) 4.218
 ≥ 2 319 (78) 90 (22) 0.106 476 (36) 855 (64) 0.040

Tumour grade
 Grade I 90 (69) 40 (31) 20 (12) 143 (88)
 Grade II 211 (75) 69 (25) 22.33 162 (22) 567 (78) 91.336
 Grade III 385 (86) 64 (14)  < 0.0001 357 (41) 523 (59)  < 0.0001

Tubules formation
 Score 1 26 (67) 13 (33)
 Score 2 219 (76) 70 (24) 11.02 N\A
 Score 3 420 (83) 84 (17) 0.004

Mitotic count
 Score 1 187 (73) 68 (27)
 Score 2 131 (77) 39 (23) 14.99 N\A
 Score 3 347 (85) 60 (15)  < 0.0001

Nuclear pleomorphism
 Score 1 11 (78.6) 3 (21)
 Score 2 223 (72.2) 86 (28) 18.76
 Score 3 431 (84.7) 78 (15)  < 0.0001 N\A

Axillary nodal stage
 Stage I 426 (80) 103 (20) 0.65 281(29) 683(71)
 Stage II 214 (79) 57 (21) 0.721 29.4(29) 414(71) 3.418
 Stage III 46 (77) 14 (23) 34.5(34) 199(66) 0.181

Nottingham prognostic index
 Poor prognostic group 119(83.8) 23(16.2) 135(21) 508(79)
 Moderate prognostic group 389(81.7) 87(18.3) 7.46 346(34) 676(66) 42.356
 Good prognostic group 180 (74.1) 63(25.9) 0.024 77(41) 112(59)  < 0.0001

Oestrogen receptor
 Negative 213(91) 20(9) 26.12 224(56) 177(44) 165.226
 Positive 474(76) 152(24)  < 0.0001 319(23) 1095(77)  < 0.0001

Progesterone receptor
 Negative 309(87) 48(13) 14.48 368(42) 502(58) 116.00
 Positive 361(76) 114(24)  < 0.0001 190(19) 794(81)  < 0.0001

HER2 status
 Negative 557 (79) 151 (21) 8.46 467 (29) 1157 (71) 10.616
 Positive 103 (90) 11 (10) 0.002 90 (39) 139 (6) 0.001
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of clinicopathological parameters between Nottingham 
series and METABRIC series of patients (correlation coef-
ficients = 0.733, all P < 0.0001) [28].

To validate the prognostic significance of BMI1 mRNA 
expression, another publically available database (Breast 
Cancer Gene Expression Miner v4.0 (Bc-GenExMiner v4.0), 
with the online dataset available at https​://bcgen​ex.centr​
egaud​uchea​u.fr), was used. This large dataset (n = 9616) 
allowed the evaluation of the prognostic role of BMI1 in 
BC cohorts, which include key prognostic parameters such 
as patients’ age, tumour grade, nodal status, NPI, ER and 
molecular subtypes. Univariate analyses for molecular BC 
subtypes were performed [29].

Statistical analysis

IBM SPSS 24.0 (Chicago, IL, USA) software was used 
for statistical analysis. The inter-observer agreement was 
determined using intra-class correlation coefficient. BMI1 
expression was categorised using 9.1 and 130 H-score cut-
off of transcriptomic and IHC expression, respectively. Both 
cut-offs were determined using x-tile Bioinformatics soft-
ware version 3.6.1 (Yale University, USA). The association 
between the categorical groups of BMI1 and clinicopatho-
logical parameters was analysed using a Chi-square test. 
The correlation of BMI1 and other biomarkers was tested 
using continuous data and Spearman test for the IHC analy-
sis while the person test used for mRNA expression data. 
Associations with patient outcome were assessed using the 
Kaplan–Meier survival curves and the log-rank test. Cox 
proportional hazards regression models were built for mul-
tivariate survival analyses to estimate the hazard ratio (HR) 

of BMI1 adjusted by other well-known prognostic factors. 
A P value of less than 0.05 (two- tailed) was considered 
significant in all statistical tests.

Results

BMI1 expression in BC

The IHC staining showed a homogenous staining pattern, 
with BMI1 expression localised in the nuclei of the inva-
sive tumour cells. The staining intensities varied from nega-
tive (no stain) to strong intensity (Figs. 1, 2). Inter-observer 
agreement was determined, and the interclass correlation 
coefficient was 0.931, indicating an excellent concordance 
between the 2 scorers.

In the whole BC cohort, the IHC expression of BMI1 
ranged from 0 to 270 H-score. The data showed that high/
positive BMI1 IHC expression (H-score > 130) was observed 
in 20% of cases (176/870), whereas 80% of cases (694/870) 
was considered low/negative. Interestingly, the immu-
noexpression of BMI1 in the luminal ER-positive (ER+) 
subtype was higher than in ER-negative (ER−) subtypes 
(P < 0.0001). In the METABRIC cohort, high expression 
of BMI1 mRNA was seen in 65% of cases (1288/1980). In 
the Nottingham cases of the METABRIC cohort (n = 340), 
there was a strong association between BMI1 mRNA expres-
sion and protein expression (P = 0.001). BMI1 CN gain was 
observed in 6% of cases (113/1980) whereas 1% of cases 
(25/1980) showed CN loss. Supplementary Table 2 summa-
rises the mean, median and the range of expression of BMI1 
in BC subtypes at both protein and mRNA levels.

Fig. 1   Representative photomicrographs of the expression of BMI1 in invasive breast cancer a negative immunohistochemical (IHC) expression. 
b Positive IHC expression

https://bcgenex.centregauducheau.fr
https://bcgenex.centregauducheau.fr
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In this cohort, 73% of ER+ subtype expressed high BMI1 
while 60% of the ER-negative subtype expressed high BMI1.

BMI1 and clinicopathological features

High BMI1 protein expression showed an association 
with clinicopathological parameters characteristic of good 
prognosis including lower histological grade (P < 0.0001), 
more tubule formation (P = 0.004), lower mitotic count 
(P < 0.0001), lower nuclear pleomorphism (P < 0.0001), 
lower NPI scores (P = 0.024), special tumour type of 
good prognosis (P < 0.0001) and with tumours showing 
ER+ (P < 0.0001) and HER2− phenotypes (P = 0.002) 
(Table 1).

Similar findings were identified in the METABRIC 
cohort. High expression of BMI1 mRNA was positively 
associated with good prognostic factors, such as older age 

(P < 0.001), postmenopausal status (P < 0.001), lower grade 
(P < 0.0001), good NPI prognostic group (P < 0.0001), 
tumours of tubular subtype (P < 0.0001) and HER2− phe-
notypes (P = 0.001) as shown in Table 1.

These associations with good prognostic factors were also 
obtained in the BC Gene Expression Miner database; high 
expression of BMI1 was associated with older age, good 
prognostic factors, such as good NPI and luminal A subtype 
(P < 0.0001), as shown in supplementary Fig. 2.

Outcome analysis

Univariate survival analysis showed that high BMI1 protein 
expression was significantly associated with longer survival 
in terms of breast cancer-specific survival (BCSS) in the 
whole BC cohort (P = 0.02) (Fig. 2a). With regard to molec-
ular subtypes, in the luminal ER+ tumours, high expression 
of BMI1 was significantly associated with BCSS (P = 0.04; 
Fig.  2b) and distant metastasis free survival (DMFS) 
(P = 0.04; supplementary Fig. 3). However, in the basal / tri-
ple negative subtype (TNBC), high expression of BMI1 was 
significantly associated with shorter BCSS (P = 0.04) (sup-
plementary Fig. 3). In HER2-positive (HER2+) tumours, 
no significant association between BMI1 and outcome was 
identified.

The Cox regression model, including age at diagnosis, 
tumour size, tumour grade and nodal stage, showed that 
BMI1 as an independent predictor of good prognosis in the 
whole BC cohort and in the luminal ER+ patients (P = 0.04, 
HR 0.72; 95% Cl 0.51–0.99, P = 0.04, and HR 0.69; 95% Cl 
0.48–0.99, respectively) (Tables 2, 3) but not in the TNBC 
subtype. When the multivariate analysis including BMI1 and 

Fig. 2   Kaplan Meier survival plots for BMI1 expression (Protein) a breast cancer-specific survival (BCSS) in all cases and b breast cancer-
specific survival (BCSS) in ER + cases

Table 2   Multivariate Cox regression hazard model including other 
prognostic clinicopathological parameters shows that high BMI1 
(immunohistochemically) provided an independent prognostic value, 
associated with longer breast cancer-specific survival in the whole 
cohort

Bold represents the significant P values

Variable Hazard ratio 95% Confidence 
interval (CI)

p value

Lower Upper

Patient age 0.88 0.69 1.135 0.346
Tumour Grade 1.61 1.32 1.96  < 0.0001
Node stage 1.99 1.67 2.38  < 0.0001
Tumour size 0.67 0.52 0.87 0.002
Bmi1 0.72 0.51 0.99 0.048



586	 Breast Cancer Research and Treatment (2020) 182:581–589

1 3

other BCSC (ALDH1A1, CD133, CD24, and SOX9) mark-
ers, BMI1 was an independent predictor of good prognosis 
in the whole BC cohort (P = 0.017), supplementary Table 3.

With regard to the transcriptomic expression, high BMI1 
mRNA expression in the METABRIC cohort was sig-
nificantly associated with longer BCSS in the whole BC 
cohort (P < 0.001) as well as in the luminal ER+ tumours 
(P < 0.001) (see Fig. 3). However, no significant association 
between BMI1 and outcome was observed in ER− tumours 
or in HER2+ patients (P > 0.05). Moreover, CN gain of 
BMI1 was associated with longer BCSS (P = 0.031) in whole 
BC cohort.

Similar results were observed with the BC Gene Expres-
sion Miner dataset, where BMI1 mRNA was associated 
with longer survival in the ER+ tumour (P = 0.020), which 

confirms the previous findings in the METABRIC cohort as 
shown in Supplementary Fig. 4.

BMI1 and other biomarkers

We further investigated the association of BMI1 expression 
and key BC stem cell (BCSC) biomarkers. At protein level, 
there was a significant negative correlation between the 
high expression of BMI1 and BCSC markers: ALDH1A1 
(P = 0.017), CD133 (P = 0.006) and SOX9 (P = 0.004) in 
all BC cases (supplementary Table 4a). In the ER+ tumours, 
BMI1 maintained similar associations and showed nega-
tive correlation with ALDH1A1 (P = 0.005) and CD133 
(P = 0.001). Interestingly, in the ER- tumours, BMI1 showed 
positive association with CD133 (P < 0.0001) and SOX10 
(P = 0.01) expression (supplementary Table 4a).

Similarly at the mRNA level, high expression of BMI1 
was negatively associated with BCSC including ALDH1A3 
(P < 0.0001), CD133 (P = 0.0003), CD24 (P = 0.002) and 
CD44 (P = 0.0007) (Supplementary Table 4b) in the whole 
BC cohort. When the analysis was restricted to the lumi-
nal ER+ tumours, high BMI1 expression was associated 
with low expression of ALDH1A1 (P = 0.025), ALDH1A3 
(P = 0.026), CD133 (P = 0.038), CD44 (P = 0.0001), 
CD24 (P = 0.004) and SOX10 (0.0006) (Supplementary 
Table 4b). In the basal TNBC subtype, positive associa-
tion was observed between BMI1 and EPCAM and SOX10 
(P < 0.001).

Fig. 3   Kaplan–Meier survival plots for BMI1 expression (mRNA) a breast cancer-specific survival (BCSS) in all cases and b breast cancer-
specific survival (BCSS) in ER + cases

Table 3   Multivariate Cox regression hazard model including other 
prognostic clinicopathological parameters shows that high BMI1 
(immunohistochemically) provided an independent prognostic value, 
associated with longer breast cancer-specific survival in the luminal 
oestrogen receptor-positive breast cancer

Bold represents the significant P values

Variable Hazard ratio 95% Confidence 
interval (CI)

p value

Lower Upper

Patient age 1.03 0.76 1.39 0.824
Tumour Grade 1.70 1.36 2.13  < 0.0001
Node stage 2.03 1.62 2.56  < 0.0001
Tumour size 0.63 0.46 0.86 0.004
Bmi1 0.69 0.48 0.99 0.047
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Discussion

BC is a heterogeneous disease and the understanding of this 
heterogeneity is of great importance to improve patient out-
come and treatment regimens [30]. Studies have addressed 
and investigated prognostic factors or biomarkers that illus-
trate the complex clinical and biological differences in BC 
subtypes [28, 31, 32]. In the current study, BMI1 expression 
was evaluated at protein, transcriptomic and genomic levels 
in well-characterised cohorts of early-stage BC with differ-
ent molecular subtypes of BC tissue samples.

In the current study, immunopositivity and mRNA of 
BMI1 were observed in 20% and 70% of BC. Previous stud-
ies have reported high BMI1 expression in 62% and 53% of 
BC [14, 33]. The difference in the frequency of positivity 
between our results and previous studies could be explained 
by the difference in the scoring method and varying the 
definitions of the positivity cut-offs. Our cohort was scored 
using H-scoring, which is a widely accepted system in both 
clinical and research settings and the previous studies used 
other scoring system [17, 34]. BMI1 has been linked with 
poor prognosis and shorter survival in several cancer types 
[35, 36]. However, its prognostic role in BC remains con-
troversial. Engelsen et al. reported that low expression of 
BMI1 is associated with loss of ER and PR in endometrial 
carcinoma [37]. In BC, Kim et al. have reported that BMI1 
is associated with positive lymph node metastasis but it was 
also associated with ER + tumours, which are less aggressive 
tumour compared with other subtypes of BC [14]. Choi et al. 
demonstrated that BMI1 is favourable prognostic biomarker 
in BC [33].

In this study, a significant correlation between high 
expression of BMI1 and good prognostic BC features 
was found in the whole cohort and in the ER+ tumours. 
In ER+ subtype, BMI1 was highly expressed compared to 
ER− classes. This is in an agreement with Choi et al. study, 
which showed the same findings and reported that IHC over-
expression of BMI1 was associated with ER+ expression 
and other favourable clinicopathological parameters includ-
ing smaller tumour size, negative lymph node metastasis and 
intermediate nuclear grade [33].

BMI1 was also here demonstrated to be an independent 
good prognostic biomarker in ER+ tumours, independently 
of other clinical pathological features [33]. Engelsen et al. 
have suggested a potential link between BMI1 and hormone 
receptor status [37]. Interestingly, although there was a lim-
ited case number of TNBC subtypes in that study cohort 
(n = 56), increased expression of BMI1 was associated with 
shorter survival in TNBC [38]. This finding suggests a 
diverse role for BMI1 in different BC subtypes.

BMI1 plays a vital function in the epigenetic regulation 
of stem cell transcriptional pathways and is also implicated 

in the self-renewal, proliferation and cell cycle of CSCs [39, 
40]. To the best of our knowledge, this is the first study 
analysing the association of BMI1 with BCSC biomark-
ers at both transcriptomic and protein levels. Our data have 
shown that BMI1 is negatively correlated with some BCSC 
markers at both mRNA and protein levels in all BC and 
the ER+ subtypes; however, the association between BMI1 
and BCSC markers in TNBC was limited (only CD133 and 
SOX10), which further supports a different role of BMI1 in 
relation to the molecular subtypes of BC particularly ER+ . 
Our data favour a BCSC function of BMI1 in TNBC but not 
in ER+ tumours, though this warrants further experimen-
tal validation. Our results also showed that the interaction 
between BMI1 and HER2 is limited and that BMI1 is not 
associated with outcome in HER2+ tumours.

Conclusion

The current study indicates that BMI1 exhibited a varied 
role in BC subtypes. In ER+ tumours, BMI1 is associated 
with good prognosis and longer survival; however, in TNBC, 
BMI1 showed an association with shorter survival and shows 
different associations with BCSC markers, which suggest the 
ER status that may play an important role in modulating the 
biological function of BMI1. Further functional studies are 
essential to be performed in order to clarify the significant 
role of BMI1 in different BC subtypes.
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